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Abstract 
We study the nonlinear parabolic equations for travelling wave solutions of 
Burger’s equations. The purpose of the present work is to study various types 
of Burger’s equations describing waves and those are based on nonlinear eq-
uations. We focus on to describe the analytic solution in the special pattern of 
travelling wave solutions using tan-cot function method. We discuss about 
inviscid and viscous version of Burger’s equation for fluid flow and investi-
gate the effects of internal friction of a fluid via Reynolds number. By chang-
ing the velocity amplitude, the nature of flows with shock wave and distur-
bance are observed. For numerical solutions, the Crank-Nicolson scheme is 
introduced to establish the wave solutions. 
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1. Introduction 

The wave propagation is one of the important pillar of both linear and nonlinear 
partial differential equations. A wave is prominently observable which is 
transported from one segment of the medium to another segment with a 
recognizable speed of propagation. The mathematical term of wave is a function 
of the form  

( ) ( ),u t x g x ct= −  

where c is a constant known as wave speed and greater than zero; u is a wave 
function depends on two variables x and t. Here t represents the time, the initial 
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term translated to the right by ct spatial units. 
Many important sectors of sciences such as chemical, physical, economical 

and biological are introduced by Burger’s type nonlinear partial differential 
equations. It is also noted that in the area of nonlinear modeling of fluid flow 
and population dynamics the equations pattern like Burger’s is rigorously used 
to present various numerous scientific outcome. Exact solutions to nonlinear 
differential equations play an important role in physical science since they can 
provide much more physical information and insight which leads to further 
applications [1] [2] [3] [4] [5]. Nonlinear wave propagation phenomena of 
dispersal, dissipation, dispersion, and reaction-diffusion-convection are significant 
in wave equations. Some of the applications are drawn in the following series:  
 Fluid mechanics (water waves, aerodynamics);  
 Acoustics (sound waves in air and liquids);  
 Elasticity (stress waves, earthquakes);  
 Electromagnetic theory (optics, electromagnetic waves);  
 Biology (epizootic waves);  
 Chemistry (combustion and detonation waves).  

To solve the nonlinear equations, there are many analytical and numerical 
methods in the literature and among them are tan-cot scheme [1] [2], implicit 
finite difference scheme [3], Hopf-Cole transformation [4], hyperbolic conservation 
laws [5] [6] [7] [8], sine-cosine method [9] [10] and tanh-sech method [11]. 

To find the solutions of different patterns of Burgers’ equations, variant 
numerical methods are introduced. Anwar and Ali used tanh and tan-cot 
schemes for exact complex solutions of some different types of nonlinear partial 
differential equations [1] [2] whereas Soliman [3] used implicit finite difference 
scheme. The system of two-dimensional equations is solved by the method 
called Hopf-Cole transformation [4]. Fletcher used this transformation to give 
an analytic solution for the system of required equations [4]. In viscous fluid, the 
approximate theory of flow is used through a shock wave traveling. The 
persistence of viscous term supports to stop the wave-breaking, and smooth out 
shock discontinuities and finally the prediction gained a well-behaved and 
smooth solution. Solutions and characteristics of the Burger’s equation with 
non-zero viscosity, considering shock speed with weak solution are interpreted 
in [4]-[9]. Several hyperbolic conservation laws with various methods such as 
Riemann, conservative methods for nonlinear problems which are generalized 
for the advection equation are discussed in [11]-[16]. 

In this paper, we discuss the travelling wave solutions of different types of 
Burger’s equations analytically using tan-cot function method. For numerical 
illustration, we employ finite difference method which is based on Crank-Nicolson 
scheme to solve one dimensional Burger’s equation. Initially, we list out the 
equations for further analysis. Nonlinear differential equations such as Burger’s 
equation have various types [1] [3] [4] [5] and two well known of them are  

1) Travelling wave solution for Burger’s equation with viscosity, and  
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2) Travelling wave solution of the KdV-Burger’s equation.  
A simple introduction of these two different forms of Burger’s equations is 

given below: 
Consider the Burger equation of the form  

( )
2

2

u ud g u
t x

∂ ∂
= −

∂ ∂
                      (1) 

where d is the viscosity of the fluid and g is a nonlinear function of u. 
Introducing the function ( )g u , the Burger equation can be written in the form 
of  

2

2

u u ud u
t xx

∂ ∂ ∂
= −

∂ ∂∂
                      (2) 

here u is the fluid density, d is the viscosity, the spatial variable x and time is t. In 
absence of viscosity, 0d = , and the Equation (2) becomes  

0u uu
t x

∂ ∂
+ =

∂ ∂
                        (3) 

which is a non-viscid Burger’s equation and the travelling wave solution does 
not exist. The inviscid (non-viscid) Burgers’ equation is a quasilinear wave 
conservation equation. The analytic traveling wave solution of this equation is 
an implicit relation that provided characteristics and do not intersect. If the 
characteristics do intersect, a classical solution to this equation does not exist 
and leads to the formation of a shock wave. For smooth initial data, the solution 
satisfied the condition ( )1 0tG s′+ ≡/  is always satisfied for sufficiently small 
time t, where ( )G s  is the solution. Otherwise, the solution develops a 
singularity (discontinuity) and arise the shock wave. 

Let us now consider the KdV-Burger’s equation of the form  
2 3

2 3 0u u u uau d k
t x x x

∂ ∂ ∂ ∂
+ − + =

∂ ∂ ∂ ∂
                  (4) 

which is also known as Korteweg-de Vries Burger’s equation and here a and k 
are arbitrary constants and d is the viscosity. If 1a =  and 0k =  then the 
Equation (4) turn to the Burger’s equation. 

In the following section, we will discuss the tan-cot function method to get the 
exact solution of Burger’s equation.  

2. Tan-Cot Function Method 

For travelling wave solution of Burger’s equation, we used the tan-cot function 
method as introduced in [1] [2]. The key idea of this method is to discuss in the 
following steps. Consider the nonlinear partial differential equation in the 
following form [15] [16] 

2 2

2 2, , , , , , 0u u u u uF u
t x y t x

 ∂ ∂ ∂ ∂ ∂
= ∂ ∂ ∂ ∂ ∂ 

                (5) 

where ( ), ,u t y x  is a travelling wave solution of (5). Now using the travelling 
wave transformation,  
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( ) ( ), ,u t y x G s=                         (6) 

where s mx y nt= + + . Here m and n are real constant and transformation gives 
us following changes  

d d d, , .
d d d

n m
t s x s y s
∂ ∂ ∂
= = =

∂ ∂ ∂
                  (7) 

By integrating Formula (7) with respect to s, a non-linear partial differential 
Equation (5) transforms to a nonlinear ordinary differential equation such that  

( ), , , , 0.Q G G G G′ ′′ ′′′ =
                     (8) 

As an instant example, integrate the KdV Burger’s equation, (4) with respect 
to dummy variable s instead of x produces the following differential equation:  

2
2

1 2 3 02

d d
dd

G Ge e G e G e
ss

+ + + =  

where ( ), 1 1,2,3ie =  to be determined and the integral constant 0e . 
The derivative terms of Equation (8) can be reduced by using integration 

while the integration constants are negligible and we will obtain the solutions of 
many nonlinear equations represented by the form  

( ) ( ) ( ) ( ) πtan or cot for all
2

G s s G s s sδ δα µ α µ
µ

= = ≤        (9) 

where , ,α µ δ  are parameters and to be determined and µ  is known as a 
wave number.  

Remark 1. To get a function ( )G s  from the ordinary differential Equation 
(8), the key principle is to integrate this formula as long as all terms contain 
derivatives and setting the constant of integration to be zero. 

First we can write their solutions and derivatives using tan function such that  

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

2
2 2 2

2

tan
d tan tan
d
d 1 tan 2 tan 1 tan
d

G s s
G s s
s
G s s s

s

δ

δ δ

δ δ δ

α µ

αδµ µ µ

αδµ δ µ δ µ δ µ

− +

− +

 =

  = + 

  = − + + + 

  (10) 

Similarly, for cot function, we have  

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

2
2 2 2

2

cot
d cot cot
d
d 1 cot 2 cot 1 cot .
d

G s s
G s s
s
G s s s
s

δ

δ δ

δ δ δ

α µ

αδµ µ µ

αδµ δ µ δ µ δ µ

− +

− +

 =

  = + 

  = − + + + 

  (11) 

Replacing the Equations (10) or (11) in (8) and after balancing the terms of 
either tan or cot functions, we can solve the resulting system of algebraic 
equations by using computerized program. This method is defined as tan-cot 
function method. 
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Next, we will explore the tan-cot function method to find the pattern of exact 
solutions.  

3. Exploration of Burger’s Equations with Respect to  
Travelling Wave Solution 

In this section, we are interested to solve the Burger’s type equations as defined 
in the earlier section for finding the travelling wave solutions.  

3.1. Travelling Wave Solution for Burger’s Equation with  
Viscocity 

Let us recall the equation in (2) and the wave transformation is  

( ) ( ),u t x G s=  

where wave variable ( )s x ct= ±  and c is the wave speed. At first, we consider 
the wave variable, ( )s x ct= +  and after using the transformation Equation (8), 
which yields the following ordinary differential equation from (2) 

2

2

d d d
d dd
G G Gc d G
s ss
= −                     (12) 

Integrating Equation (12) once with respect to s, we have  

21 d 0
2 d

GcG G d
s

+ − =                     (13) 

Substituting ( )G s  and d
d
G
s

 from (10), the Equation (13) implies  

( ) ( ) ( ) ( )2 1 11tan tan tan tan
2

c s s d s sδ δ δ δµ α µ δµ µ µ− + + − +      (14) 

Equating the exponents and the coefficients of each pair of the tan functions, 
we find that  

2 1 1δ δ δ= + ⇒ =  

and we obtain the following relation  

2 dα µ=  

Substituting the values of δ  and α  in (10), the solution of the Equation (2) 
is of the form  

( ) ( )( ), 2 tanu t x d x ctµ µ= +                  (15) 

which is the travelling wave solution of one dimensional Burger’s equation.  
Figure 1 depicted the physical structure of travelling wave which counts the 

wave number and distributions. If we use the transformation ( ) ( ),u t x G s= , 
where s x ct= −  then Equation (2) reduces to  

2

2

d 1 d d 0
d 2 d d
G G Gc d
s s s

− + − =                    (16) 

and on integration with respect to s, we obtain 
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Figure 1. Travelling waves of Burger’s equation for 1d c= =  while (left) 0.5µ = , (middle) 1.0µ = , and (right) 8.0µ =  at 
time 15t =  over the domain [ ]2,2x∈ − . 

 

( )2d 1 2 2
d 2
G G cG A
s d
= − −                    (17) 

where A is a constant. For equilibrium points  

( )( )1 2
d 0 0
d
G G G G G
s
= ⇒ − − =  

Hence the roots are  

2
1,2 2G c c A= ± +  

Let us consider  

2 2
1 22 and 2G c c A G c c A= − + = + +  

We observe that 2 2c A>  and obviously 2 1G G>  then the travelling wave 
solutions are possible if ( )( )1 2 0G G G G− − <  for 1 2G G G< < . Now taking 
integration in (17), we have  

( )( )0 1 2

d d
2

s

s

s G
d G G G G
=

− −∫ ∫  

0

2 1 1 2

1 1 1 d
2

s s
G

d G G G G G G
 −

⇒ = − + − − − 
∫  

0 2

2 1 1

1 ln
2

s s G G
d G G G G

 − −
⇒ =  − − 

 

( ) 0 2
2 1

1

ln .
2

s s G GG G
d G G

 − −
⇒ − =  − 

 

After solving this we get  

( )
( )

( )

0

0

2 1e
1 e

m s s

m s s

G GG s
−

−

+
=

+
 

where  

2 1 0.
2

G Gm
d
−

= >  

Now we can write ( )G s  as follows  
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( ) ( )0

2 1
1

2 .
2 1 em s s

G GG s G
−

− = +  
+ 

                 (18) 

After that multiplying and dividing by 
( )0

2e
m s s−

−
, we obtain  

( )

( ) ( )

( ) ( )

( ) ( )
( )

0 0 0

0 0 0 0

2 2 2
0

2 2 2 2

2e e e1 1 tanh .
2

e e e e

m s s m s s m s s

m s s m s s m s s m s s

m s s
− − −

− −

− − − −
− −

−−
= − = −

+ +

 

Initial value 0s  is not essential and the derivative of ( )G s  is closer to zero 
because of smaller m and larger d. Moreover, we obtain inviscid Burgers 
equation which cannot give us continuous travelling waves for 0d = . So the 
wave solution is  

( ) ( )( )2 12 1 2 1, tanh
2 2 4

x ct G GG G G Gu t x
d

− − + −
= −  

 
         (19) 

This solution is similar to shock wave profile because of joining the 
asymptotic states of G2 and G1 with the boundary conditions  

( ) [ )2, , 0, ,u t G t−∞ = ∈ ∞  

( ) [ )1, , 0, .u t G t+∞ = ∈ ∞  

3.2. Numerical Solutions for Low to High Reynolds Number 

For numerical schematics, we choose finite-difference method based on 
Crank-Nicolson implicit time differencing [14] [15] [16]. At first we consider the 
Equation (2) and have to find the dimensionless form of this equation. For 
obtaining the dimensionless equation of (2), let  

0

0

, ,
ux ux u t t

l u l
= = =                    (20) 

where 0u  and l be the length of velocity amplitude and the calculation area 
(domain). Hence the non-dimensional form of Equation (2) is  

2

2
0

u u d uu
t x u l x

∂ ∂ ∂
+ =

∂ ∂ ∂
 

If we consider 0u l
Re

d
=  as a Reynolds number and ignore “-” we can write 

the above equation as follows:  
2

2

1u u uu
t x Re x

∂ ∂ ∂
+ =

∂ ∂ ∂
                     (21) 

Here the limit conditions are periodic and initial condition at 0t =  are 

written as ( ) 0
2π0, sin xu x u

l
 =  
 

 with the dimensionless variables  

( ) ( )0, sin 2πu x x= . We can observe that the high-speed fluid catches up with 
the slow-moving one so that to create a velocity break. This observation is  

known as shock. If we declare the disturbance as ( ) 0
2π0, sin πxu x u

l
 = + 
 

, the  
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slope would have decreased. As we say at first for numerical schematics of this 
dimensionless Equation (21), we use Crank-Nicolson method for simulation 
investigation. We can elaborate these partial terms of (21) and obtain  

11 2 2

2 2

1 1
2 2

j jj j j

i i i i i

u f f u u
t x x Re x x

++       ∂ ∂ ∂ ∂ ∂       + + = +          ∂ ∂ ∂ ∂ ∂               
     (22) 

where 
2

2
uf =  and expanding the term 

1j

i

f
x

+∂ 
 ∂ 

, we have  

( )
1

2
jj j

i i i

f f fK O K
x x t x

+∂ ∂  ∂ ∂      = + +      ∂ ∂ ∂ ∂      
 

Similarly for other terms and using the notations t K∆ =  and x h∆ = , 
finally Equation (22) becomes  

( ) ( )
2 2

1 11
1 1 1 1 1 11 1

1 1 1
1 1 1 1

2 2

2 2
2 4

2 21
2

j j

j j j j j jj j
i i i i i ii i i i

j j j j j j
i i i i i i

u u
u u u u u uu u

K h h
u u u u u u

Re h h

+ ++
+ + + − − −+ −

+ + +
+ − + −

   
−    − − −−    + +

 − + − +
= + 

 

   (23) 

Remark 2. Due to some limitations over Explicit method, mainly regarding 
convergence and stability, the another scheme of Finite-difference method is 
Crank-Nicolson method. The most common features of this method are as 
follows: 

1) Implicit method, unconditionally convergent and stable;  
2) The method derived by introducing a fictitious time level at ( 1

2
j + ); and  

3) Truncation error of order is ( ) ( )2 2O t O x∆ + ∆ , and hence less computation 
cost.  

We can nicely observe the simulation part of this calculation using MATLAB 
program and some graphical representation. It is noted that everywhere in the 
numerical simulations, we consider 0.1h K= =  unless notified the different 
values.  

In both left and right diagrams of Figure 2, let us consider the very small 
Reynolds number compared to later one and the shock creates and disturbance 
is erased as soon as it becomes visible. Here 0.1Re =  and 0.25Re =  are the 
values of the Reynolds number and the maximum velocity amplitude is 1.0. 

Figure 2 demonstrates the shock waves which appears for viscosity, 10d =  
in the left figure while 4d =  for the rest one, respectively, where time scales 
are equal in both figures.  

The similar scenarios’ are observed in Figure 3 for large Reynolds number 
( 10 &100Re = ) compared to Figure 2 although the amplitude structures change 
its directions and density.  

The illustration in Figure 4 (left) establishes that the shock arises and the 
viscosity is too small ( 0.005d = ) than the previous two illustrations. The 
viscosity makes the difference of velocity decrease till there is no break. The  
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Figure 2. The profile of the solution of Burger’s equation for small Reynolds number 
(left) 0.1Re =  and (right) 0.25Re =  at time 20t =  over the domain. 

 

 
Figure 3. Solutions profile of Burger’s equation for Reynolds number (left) 10Re =  and 
(right) 100Re =  at time 20t =  over the domain. 

 

 
Figure 4. The profile of the solution of Burger’s equation for large Reynolds number 
(left) 200Re =  and (right) 200Re =  with time scale 0.01K =  at time 20t =  over 
the domain. 
 
disturbance is increased highly for viscosity which was too small in earlier 
diagrams, for example in Figure 2 and Figure 3. It creates oscillations around 
the shock. 

If we increase velocity amplitude as 0
d 1
d

tu
x
= , we can see the following  

graphical scenario depicted in Figure 4 (right). The graphical illustration of 
Figure 4 (right) is similar to Figure 3 (left, right) while 0.01K = , the time scale 
is small, even the Reynolds number is equal and 200Re =  in both figures of 4. 
We get similar behavior of flow if we increase the velocity amplitude for 

0.01d =  which is large at time 20t = . Shock arises and the disturbance is 
removed. 
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Finally in Figure 5, the viscosity is smaller than the previous diagrams for 

0
d 1
d

tu
x
= . The shock tends to appear and the disturbance is increasing for  

decreasing of viscosity. More specifically, in Figure 5 (right), we take the value 
of viscosity 0.0003d =  which is too small than Figure 5 (left) and notice that 
the following schematics time scale is still similar. 

Investigating those results, we can say that bigger values of viscosity erase the 
disturbance in the flow. That is, the disturbance has no more issue, if the 
viscosity is huge. On the other hand, the smaller the viscosity is, the shock 
appears and the faster disturbance has more effect. So we have concluded that 
shock arises for small values of viscosity and produces disturbance as oscillations 
and also it creates sooner when velocity amplitude is bigger. 

4. Travelling Wave Solution of the KdV-Burger’s Equation 

We can similarly able to find the travelling wave solutions of KdV-Burger’s 
equation which is described in this portion shortly using only tan-cot function 
method [1] [2]. Consider the Equation (4), where a, b and d are arbitrary 
constants. In order to solve (4) by tan-cot function method, let the wave 
transformation is  

( ) ( ),u t x G s=  

where ( )s x ct= +  and c is the wave speed. 
After using the transformation Equation (8), we obtain the ordinary 

differential equation from (4) such that  
3 2

3 2

d d d d
d dd d
G G G Gc b d aG
s ss s
= − + −                 (24) 

Integrating Equation (24) with respect to s, we have  
2

2
2

1 d d 0
2 d d

G GcG aG d b
s s

+ − + =                  (25) 

Then substitute ( )G s  and d
d
G
s

 from (10), the Equation (25) translated to 

 

 
Figure 5. The profile of the solution of Burger’s equation for very low viscosity of the 
fluid (left) 0.001d =  and (right) 0.0001d =  at time 20t =  over the domain. 
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( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

2

1 1

2 2

2

1tan tan
2

tan tan

1 tan 2 tan

1 tan 0.

c s a s

d s s

b s s

s

δ δ

δ δ

δ δ

δ

µ α µ

δµ µ µ

δµ δ µ δ µ

δ µ

− +

−

+

+

 − + 

+ − +

+ + =

               (26) 

Equating the exponents and the coefficients of each pair of the tan functions, 
we find that  

2 1 1δ δ δ= + ⇒ =  

For 1δ = , we obtain the following relations from Equation (26)  
22 0

1 0
2

c b

a d

µ

α µ

 + =



− =

                         (27) 

and it is easy to find the following solutions  

2 22 & dc b
a
µµ α= − =  

Substituting the values of c and α  in (10), the exact solution of the Equation 
(4) is of the form  

( ) ( )( )22, tan 2du t x x b t
a
µ µ µ= −                 (28) 

which is the travelling wave solution of KdV-Burgers equation. 
It is remarked that the next two figures (Figure 6 & Figure 7) show the 

significance of different parametric values on exact travelling wave solutions. 
The travelling wave solutions pattern are displayed in Figure 6 due to the 

effect of wave number parameter µ  and for the fixed constants  
1, 0.1d a b= = = . It is seen that the travelling waves are visible with the 

increasing values of µ .  
Similarly, Figure 7 shows the effect of constant d when all the parameters are 

unchanged. It is remarked that wave length is too small and number of wave is 
easily countable as long as d is very small, see 7 (left) and simultaneously the 
wave number and length are increasing for larger values of d. 
 

 
Figure 6. Travelling waves of KdV’s equation for 1, 0.1d a b= = =  while (left) 0.5µ = , (middle) 1.0µ =  and (right) 4.0µ =  
at time 15t =  over the domain [ ]2,2x∈ − . 
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Figure 7. Travelling waves of KdV’s equation for 1.0a bµ = = =  while (left) 410d −= , (middle) 110d −=  and (right) 110d =  
at time 15t =  over the domain [ ]2,2x∈ − . 

5. Conclusion 

In this study, the Burger’s equation is solved by using tan-cot function method. 
Numerically we present the effect of viscosity on amplitude that corresponds to 
the Reynolds number. The Burger’s equation would shock up and tend to break 
without the presence of viscous terms. Mainly viscous term helps to suppress 
this breaking effect by countering the nonlinearity and the larger viscosity 
creates the smaller disturbance. Some exact solutions are presented graphically 
to observe the travelling waves. 
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