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Abstract

In this work, approximate analytical solutions to the lid-driven square cavity
flow problem, which satisfied two-dimensional unsteady incompressible
Navier-Stokes equations, are presented using the kinetically reduced local
Navier-Stokes equations. Reduced differential transform method and pertur-
bation-iteration algorithm are applied to solve this problem. The convergence
analysis was discussed for both methods. The numerical results of both me-
thods are given at some Reynolds numbers and low Mach numbers, and
compared with results of earlier studies in the review of the literatures. These
two methods are easy and fast to implement, and the results are close to each
other and other numerical results, so it can be said that these methods are
useful in finding approximate analytical solutions to the unsteady incompressi-
ble flow problems at low Mach numbers.
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1. Introduction

Fluid flow is one of the most important engineering phenomena that have re-
ceived widespread attention in theoretical and practical scientific research. Many
of these studies focus on simulated mathematical models which represent these

phenomena. Therefore, the equations of Navier-Stokes, which are the basic
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model for describing the movement of fluid, have received considerable atten-
tion from researchers to find their analytical and numerical solutions.

In this work, unsteady viscous incompressible flows characterized by
two-dimensional Navier-Stokes equations are studied. The non-dimensional

momentum and continuity equations have the following form

1
u, :_(uuxJFV”y+px)+R_e<u”+uyy)’ (1.1)

1
v, = —(LIV)C +VVy +py)+R_e(Vxx +Vyy)’

and

%4w9=0, (1.2)

where ¢ is the physical time, u(x,y,t) and v(x,y,r) are the fluid velocity
components, p(x, y,t) is the pressure, and Re is the Reynolds number. Since,
the Navier-Stokes equations are nonlinear partial differential equations and
there is no explicit equation for calculating pressure, these equations are difficult
to solve, so many studies have suggested the alternative thermodynamic description
of incompressible fluid flows. One of these alternative formulas is the kinetically
reduced local Navier-Stokes (KRLNS) equations [1] [2] [3] [4] [5] which is
obtained by replacing the pressure by

2 2
u +v
p=g+ ; (1.3)
2
and the continuity equation by

1

g =- u, +v, J+—Ig,+8, ) (1.4)
(Ma )2 ( y ) Re< W)

where Ma is the Mach number and g(x, y,t) is the grand potential. The time
scale in INS equations is related to that of KRLNS equations; fy, s (7)=Max1y.
Then, the system of equations of KRLNS has the following form

1
u, = —(2uux +w v, +gx)+R_e(uXX +u, ),

v, =—(uvx+uuy+2vvy+gv)+RL(vxx+v},},), (1.5)
i e
1 1
8 = _—(Ma)2 (ux +vy)+R—e(gxx +gyy).

The KRINS equations suggested in [1] of the reduced equations for the grand
potential and the fluid momentum were derived from the compressible Navi-
er-Stokes equations in order to present the thermodynamic description of in-
compressible fluid flows at low Mach numbers. The two-dimensional KRLNS
system is simplified and compared with a Chorin’s artificial compressibility me-
thod for steady state computation of flow in two-dimensional lid-driven cavity
and Taylor-Green vortex flow in [2]. In [3], KRLNS equations were applied to

two-dimensional simulation of doubly periodic shear layers and decaying ho-
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mogeneous isotropic turbulence, where the central difference scheme is used for
the spatial discrimination and four stage. Runge-Kutta method is utilized for the
time integration. High order approach of the KRLNS equations was applied to
two-dimensional numerical simulations of Womersley problem, doubly periodic
shear layers and three-dimensional decaying homogeneous isotropic turbulence
in [4] [5].

The lid-driven cavity problem refers to the flow in a box cavity with no-slip at
the walls, one or more which move at constant speed. It has been used exten-
sively as a benchmark case for the study of computational methods to solve
Navier-Stokes equations, because the simplicity of its geometry and boundary
conditions. Numerous literature studies have offered the solutions for this prob-
lem by using the different numerical methods in rectangular or square cavities.
For example, in [6], the implicit cell-vertex finite volume method was described
to solve the steady and unsteady two-dimensional lid-driven cavity problem at
high Reynolds numbers. In [7], Chebyshev-collocation method in space is in-
troduced with Adams-Bashforth backward-Euler scheme for the time integra-
tion to calculate the solution of three-dimensional lid-driven cavity flows. The
finite element scheme based on the Galerkin method of weighted residuals of
unsteady laminar mixed convection heat transfer in a lid driven cavity is per-
formed in [8]. The vorticity-stream formulation of the Navier-Stokes equation
with the strong-stability-preserving Runge-Kutta (SSPRK (5, 4)) scheme in very
fine grid mesh was used for solving lid driven cavity at high Reynolds number in
[9]. For the problem of flow inside a square cavity with constant velocity, the fi-
nite volume method with numerical approximations of second-order accuracy
and multiple Richardson extrapolations is utilized in [10]. The compact finite
difference approximation is developed for non-uniform orthogonal Cartesian
grids in [11] for solving the stream function-velocity formulation of the steady
two dimensional incompressible lid-driven square cavity flow problem. The
numerical simulations of two-dimensional fluid flow and heat transfer in a
four-sided lid-driven rectangular domain have been preformed in [12], where
the quadratic upstream interpolation for convective kinematics (QUICK)
scheme of finite volume methods was used and semi-implicit method for pres-
sure linked equations (SIMPLE algorithm) was adopted to compute the numeri-
cal solutions of the flow variables.

The main aim of this study is to obtain the approximate analytical solutions
for two-dimensional lid-driven square cavity flow problem, since most of the re-
search focused on the numerical solutions for this problem. Reduced differential
transform method (RDTM) and perturbation-iteration algorithm (PIA) are used
for this purpose for several reasons. The first reason is that both methods have
not previously been applied to resolve this problem. Secondly, these methods
can directly be applied to KRLNS equations. Moreover, these methods can re-
duce the size of the calculations and at the same time maintain the accuracy of
the numerical solution.

We have organized this paper into seven sections, of which this introduction
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is the first. In Section 2 and 3, we describe the reduced differential transform
method and perturbation-iteration algorithm, and applied them to KRLNS equ-
ations. We derived the condition of convergence for both methods (Section 4).
We then present the approximate analytical solutions for two-dimensional
lid-driven cavity flow, which are obtained by applying differential transform
method and perturbation-iteration algorithm (Section 5). Next, we introduce the
numerical results and compare these results with other works (Section 6). The

last Section summarizes the major findings of this study.

2. Reduced Differential Transform Method (RDTM)

The RDTM was first introduced by Keskin [13]. It is an iterative procedure
based on the use of the Taylor series solution of differential equations. It has
been successfully applied to solve various nonlinear partial differential equations
[13]-[27]. Since it does not require any parameter, discretization, linearization or
small perturbations, thus it reduces the size of computations and can be easily
used. The RDTM was used for solving the generalized Korteweg-de Vries equation
[14], the fractional Benney-Lin equation [15], the Wu-Zhang equation [16], the
equal width wave equation and the inviscid Burgers equation [17], the Sine-Gordon
equation [18], the Burgers and Huxley equations [19], the time-fractional telegraph
equation [20], the generalized Drinfeld-Sokolov equations and Kaup-Kupershmidt
equation [21], the Zakharov-Kuznetsov equations [22], the heat-like equations
[23], the coupled Ramani equations [25], two integral members of nonlinear
Kadomtsev-Petviashvili hierarchy equations [26], and the second order hyper-
bolic telegraph equation [27]. Few studies have been applied RDTM to solve the
Navier-Stocks equations, which is one of the reasons for choosing it as a method
for solving the lid-driven cavity flow.

In this section, we give some properties of the (2 + 1)-dimensional RDTM
[16] [18] [20] [22] [23] [24] [26] [27] which is used to find the approximate so-
lutions to two-dimensional Navier-Stokes equations. Consider X = (x, y) be a
vector, if u(X,t) is analytic function and continuously differentiable with re-
spect to time #and space in the domain of interest. Then, let

1] o
Uk(X)ZF{yM(X,I)} . (21)

is the #dimensional spectrum function of u(X ,t) which is the transformed

function. The reduced differential inverse transform of U, (X ) is defined as
u(X,t)=YU, (X)", (2.2)
k=0
from Equation (2.1) and Equation (2.2), we can conclude that

u(x.0)=3 1 {iu(X,t)} o 23)

Tl Ak
i k!l ot 0

The fundamental mathematical operations performed by RDTM are readily
obtained and listed in Table 1.
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Table 1. Reduced differential transformation.

Functional form Transformed form

w(X,t)=u(X,t)v(X,1) W (X)=U (X)V.(X)
W(X,t)=0m(X,z) Wk(X)=aUk(X), a is constant

w(X,1)=u(X,1)v(X,1) W(X)=Y" U (X.0)V,,(X.1)

0 . k+r)! .
W)= S u(x) W ()= (k1) (k) U, () = - Vo, (x)
o P
X,t)= X /4 = X
W( at) 6)(‘“6)(;'“6 ’,’ u( t) k( ) 6x1"6x§--~6 ’,’ ,( )

In order to apply this method with KRLNS equations to find approximate
analytical solutions for INS equations, we suppose that X = (x, y) , u= (u,v)
and U, =(U,.V,), where u(X,t) and v(X,t) are the fluid velocity
components in the x and y directions, and U, (X) , Y, (X) and G, (X) are
t-dimensional spectrum functions of u(X,r) , v(X,f) and g(X.f)

respectively. Then, we have
(k+1)U,., (X)
- —(2Ak +B,+C, +(G, (X)), —é((uk (X)), +(U, (X))W)j,
(k+1)V (X)
{01426, (0), (02 (), + (0 (), )|

(k+1)Gp. (X)

1 1 (2.4)
=—[<M ; ((We(2), # (5 (X)), ) === ((G (), +(Ge >)yy)}
such that
k k
A, = Z(;U (X)(U, (X)), Bi= ;V (X)) (Ve (X))
k k
C, = ;Vz (X)(Uk—i (X))} , D= ;Uz (X)(Vk—i (X))X >
k
B =30, (0(U (X)), =200 (1),
where k=0,1,2,3,---, U,(X)=u(X,0), ¥,(X)=v(X,0) and
G, (X ) = g(X ,0) . Then the exact solution is obtained as follows:
u(X,z') =limu, (X,r),
V(X,T) =limv, (X,z'),
g(X,r):limgn (X,r), (2.5)
where
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n n

u, (X,7)= kZ:)Uk (X)), v, (X,7) =2V (X)7", g,(X.7)=2.G, (X)r"

k=0 k=0

This approach is referred to by (KRDTM) in this paper.

3. Perturbation-Iteration Algorithm (PIA)

Perturbation methods are important analytical methods which have been used to
construct approximate analytical solutions of algebraic equations, differential
equations, and integro-differential equations. The main limitation of using the
perturbation methods is to install a small auxiliary parameter in the equation.
For this reason, the solutions of these methods are restricted by validity range of
physical parameters, so many of perturbation techniques have been suggested by
several authors. PIA is one of the techniques which was proposed by Pakdemirli
and Boyac in [28], and used a combination of perturbation expansions and Tay-
lor series expansions to construct an iteration scheme for using to generate root
finding algorithms. It is applied by many authors to get the approximate analyt-
ical solution for differential equations. In [29], PIA was applied to obtain the so-
lution of Bratu-type equations. In [30], PIA was utilized to find the solution first
order differential equations. This algorithm was tested on three nonlinear heat
equations in [31]. Moreover, PIA was generalized to an arbitrary number of
first-order coupled equations in [32]. It was applied to Fredholm and Volterra
integral equations in [33]. Also, in [34], PIA was proposed for solving the Riccati
differential equation. It was developed in [35] to obtain the solutions of
Lotka-Volterra differential equations. In [36], some types of fractional differen-
tial equation systems were solved by using this method. PIA with Laplace trans-
form method was combined in [37] to solve Newell-Whitehead-Segel equations.
In [38], PIA is used for solving the fractional Zakharov-Kuznetsov equation and
compared with the residual power series method. By reviewing the previous li-
terature, we have not found any research that has used this method to find a so-
lution to the two-dimensional lid-driven cavity flow problem and which is an
important reason to use this method to solve this problem.

In general, PIA is obtained by taking different numbers of terms in the per-
turbation expansions and different order of correction terms in the Taylor series
expansions. Therefore, the perturbation-iteration algorithm is called PIA(m,n)
where the m is the number of the correction terms in the perturbation expansion
and n is the highest order derivative term in the Taylor series such that m should
always be less than or equal to n.

To obtain approximate analytical solutions for two-dimensions Navier-Stokes
equations, PIA (1, 1) will be applied to KRLNS equations and which will be re-
ferred to this article by (KPIA). Firstly, we write Equation (1.5) as follows:

E(u,v,u,,ux,uy,vx,gx,uxx,uyy,e)

1
=1, +e(2uux v v, + g _E(u“ +uyy) s
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F, (u VoV, U,V L,V ,gy,vm,vw,e)

y2 Vo

1
=, +e(uvx +tuu, +2vw +g, _R_e(v” +vyy) ,

E(gt’uxsvyﬁgxxvg)we)

1 1
-g +€{(Ma)2 (ux +V),)_R_6(gxx T8y )]’

where € is a small perturbation parameter. Secondly, we define the following

(3.1)

perturbation expansions with only one correction term:
u,, =u, +e(u, )n ,
V.=V, +f("c )n ,
g =g,+¢(g.), (3.2)

where 1 represents the n_th iteration and u,, v, and g, are the correction
terms in the perturbation expansion. Thirdly, by replacing (3.2) into (3.1) and
writing in the Taylor series expansion for first order derivative terms about

€=0, yields

(a0, ), (), (8,), (), (), 0)
e BBy, (), + B, (00), 4 F, ) ((00),),
+@mm«%hl+ﬁmm«%hh+ﬁmm«%Lk
g (8,), # Fr (0),), Py (0),),]0.
(17,0, (8,), (), (), (), (7)), 0)
e Bt B, (1), B, (0), + By, ((vc)n)t

0, (), )+ B, ((0), ) o, (0),),

o, ((2),), +F ( ),), P 1)},,(<vc>,,)w}=0»
a(<gﬂ)l,<un>x,< ), ().04(2),,0)
v Bt P ((2),), 5 << D) (), 6

+ F3(gn+1)n ((gc )n ) + F3(gn+1)w ((gc )n )yy:| =0.

pey

+F

All derivatives in Equation (3.3) are evaluated at ¢ =0 such that

F(,0,0(8,), (1), (1), 2 (v),(2,), 5 (1,). . (8,),,0) = (1),
By (1,09, (7,), (1), (), (0,),(8,), (0, )5 (0,1 0) = (0,),
Fi((2.),(),5(0), (2.),.(2.),,-0) = (.),
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Fiuml = i = 1(“n+1)x = 1("n+l)y :F;(Vnn)x = 1("n+l)xx = 1(un+l)», :0’
Frs =P =), = Frt), = Fotin), = Fotin) = ot =0
ew)y = Foter), = Fotura), = B, = Frterar = Fiter,, =0

|

=20, 9, 0), #0, 0), ), = (), (1), )|
|

Fy = (un (vn )x Tu, (un) +2v, (vn) +(gn )} _E((vn )xx +(vn )y_y) >

1 1
F, = [W((“ ), +(v, )y)_R_e((gn )xx +(g, )yy)j‘

Finally, by substituting the above derivative in the formulas (3.3) and setting

e =1 we obtain the following iteration equation formulas:

((0,), =), =20, ), 0,0, 20, ), (), +(0), )
(001,) =0 (), #0250, (), = (), 40, )|

(<gc>,1),:<g,,>,—[#(w»x+<vn>},)—Rie(<gn>ﬂ+<gn>,w)j. G4

The calculations start with initial condition u(x,»,0), v(x,»,0) and
o (v, )0 and
( g. )0 in Equation (3.4), and then substitute the results of Equation (3.4) into

g(x, y,O) where these values are used as estimate values for (uc)

Equation (3.2) to obtain u,, v, and g, which are the solutions at the first
iteration. So we can get (n+ 1) iteration solutions by repeating this process and

using the previous solution # as an initial guess.

4. Analysis of Convergence

We now study the convergence analysis of the approximate analytical solutions
which are computed from the application KRDTM and KPIA.
Let us consider the Hilbert space H = I’ ((a,b)2 x [O,T]) as defined by

w:H >R with [ ot (Xo1)dxds <o,

and the norm

||u||2 = J‘(a’b)zx[oj]u2 (X,r)dxdt,

where X = (x,y) . Defined as

u=(u,v,g): H - R’ with J.(ab (uz (X,0)+v’ (X,1)+g’ (X,t))dth <o,

y'o7]

such that Julf = [+ " + "
We consider the KRINS equation in the following form
E(u(X,T)):N(u(X,T))+R(u(X,r)), (4.1)
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which is equivalent to the following formula

u(X,r)zf(uk (X,z')),

(4.2)

where £ is the linear partial derivative with respect to 7, AN is a nonlinear

operator, R is a linear operator, and F is a general nonlinear operator

involving both linear and nonlinear terms.

Case 1: According to KRDTM, formula (4.1) can be written in the following

form
(k+1)U,, (X)=N (U, (X))+R(U, (X)),

and the solutions
u(X,7)= ZUk (X)c" =3B,
= k=0
where B, =(B,,B,,,B;) . It is noted that the solutions by
equivalent to determining the sequence
S, =U, (X)=5,
S, =U,(X)+U,(X)r=B,+8,

S, =U,(X)+U,(X)r+U,(X)r* =B, +B +B,,

(4.3)

KRDTM is

Case 2: To study the convergence of KPIA, we write the approximate

solutions in different form. To do this, we define

B, :(610,820,830):(u(X,O),V(X,O),g(X,O))=u(X,0),

B,.. = (Bl(n+l)’82(n+])’83(n+l))

=((u.), (%.2).(v), (X.7).(2.), (X.7)) = (u,), (X.7),

u, =5, =S,
u =u,+e(u,), =5,+5 =8,
u, :u1+e(u6)1 =B,+B +B,=8,,

u,=u,+e(u,), =B +B +B,+B, =8,,

n

So the solutions, which are resulted from KPIA have the form

M&ﬁzémLmﬁ:i@.

k=0

such that S,,, =F(S,) for both cases.

u,=u,_ +e(u,) =B +B+B+B++B, Zin =S, .
k=0

(4.4)
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The sufficient condition for convergence of the series solution {Sn};O is

given in the following theorems.

thereis y suchthat O0<y <1, y=y+y,+y, and

Theorem 4.1. The series solution {Sn (R,.S,.T, f}: converges whenever
k+1)

B |<r 8]
Proof: Firstly, we show that {S =(R,.S,.T, )}0 isa Cauchy sequence in the

no

Hilbert space H’. For this reason, we suppose that

R, —R, :“Bl(nﬂ) < |Ba|<o HBl(n—])‘g.”<7/ln+l
Sn+1_Sn :”BZ(nH) <7/2|82n <722 Bz(n—l)‘g.“<7/2n+] 20"7
T, -T, :HB3(71+I) <7’3|B3n <732 ”63(n71)‘<'”<7/3n+1 |830"-

Then, by using the triangle inequality, we find that

~(R,,S, T”WR-RW&—&J;QN
= + Rn—l_Rn—Z +'”+||Rm+l_Rm||
+[S, =Sl S s = S
|7, =T o+ 17es =T+ + [T = T,

<(71n+71 tot Bl + (73 + 73 ek 23 ) [Buo
Hr e e Bl

<(7 +y" +"'+7m+1)("810"+||820"+"Bsou)

=y (e 1) (1B + Bl + 8o

<Ll

since ||BO|| <o and 0<y <1, we then have lim S, —Sm" =0. Thus, we

conclude that {S"}: is a Cauchy sequence in the Hilbert space A, thus, the

n,m—»o0

series solution {S,}" converges to some {S}eH".

Theorem 4.2. Let F =(7,7,,%;) be a nonlinear operator satisfies Lipschitz
condition from a Hilbert space & into /P and u(X ,T) be the exact solution of
INS equations. If the series solution {S, }: converges, then it is converged to
u(X,7).

Proof Let u, (X, T),ll2 (X,r) , then we have

"‘7:(“1 ) -F (“2 )"
=|| ]: (“1))_(*7: (“2 "
—" u]) F(uy), 7 (u)-F (u,), 7 "
<J7 () =7 (o) 7 () = 72 ()] + IIfs , —fs(“z)ll
<au, —u, |+ fu, —u, |+ e flu, —u,
=(a,+a, +a; )|, —u, | = afju; —u,|.
Therefore, from the Banach fixed-point theorem, there is a unique solution of

the problem (4.1). Now we have to prove that {Sn }: converges to u(X , 2')
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u(X,7)=F(u(X,7))= [ZBJ @mi@j
s

—hmf(ZBj—mnf@)—hms =s.

n—o

Definition 4.1. For i=1,2,3 and ke NU{0}, we define
[Bs

Vie = "Btk "

0, 1B, =o.

18]l 0,

then we can say that the series approximate solutions {S, }: converges to the

exact solution u(X,f) when y, =y, +y,;+7y and O<y, <l for all

keNU{0}.

5. The Two-Dimensional Lid-Driven Cavity Flow

In this work we presented the recirculation viscous flow problem in a square
cavity, that is called Burggraf Flow [10] [39] [40] [41] [42] [43], and has exact

solutions in a steady state as a form

u(x,p)=87(x)g'(»),
v(xy)=-8f"(x)g(»),

P(x,y)=%(F(x)g"’(x)+f'(x)g'(x)) (5.1)

where
f(x)=x"-2+x*, g(x)=»"-)%
=[1(x)dx F(x)=[1(x)f (x)dx,
such that the stream function y and vorticity @ are defined as

w=8f(x)g(y), suchthaty =u, & v, =-v

w=v,—u, ==8(/"(x)g(y)+f(x)g"(»))-

The boundary conditions for the velocities z and v in this problem are of
Dirichlet type, which are equal to zero everywhere except along the top surface

where
u(x,l,t) = 16()64 —2x° +x2).

To obtain the approximate analytical solutions of the unsteady lid-driven
cavity flow problem, we consider the analytical solutions to this problem, which
are given in (5.1) as initial conditions for u, vand p.

Then, by applying KRDTM with the initial conditions of this problem, we

obtained the iterative solutions like the form (2.5), such that

U (x,y)=0,
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%[3@—9)(@2 1)

192
(Re)’
~30y* (17 —1) +4(531y* ~102)7 +1)x” ~14(531y*
~156y” +10)x° +(2520y° + 7344 —2244y” +215)x°

(1227 +2)% —12x+1) y +

U, (x,y):—

~25(252y° =9y* +9y” +5)x" +5(72)" +932y° - 660y
+264y” +5)x° ~5(108y° +138y* —201y” +111)x")”
+5(48y" —62y* +19)” +11)xy2]

~1024x> (x—1)’ y[6(2y6 =5yt +4y?-1)y*

—44(257 1) * (> 1) 2 +(36)° ~18y* 487 1) (x—4)
-2(90y" ~236y° +105y* ~37)" +3)x°

+2(270y" —456y° +189y* - 55" +2)x°

+(144y'0 ~954y* +1172y° —429y* +93y” ~1)x*

~8(36)" —126)° +124y* —39)” +5)x’y’

+(232y" —634)° + 544" ~149y +7)x2y2],

14 (x,y) =;—2[3(y4 —y*+x* —%xs)—2(12y2 —l)x3
e
+6(6)” —1)x" —2(3y* +3)” —1)x}
#128 (x—1)"[ (63 ~ 257 +1)(x-2) %’
—(8y6 —-18y* +6)° —l)x2 +2<2y4 -3y° +1)(2x—1)y2J,

v, (x,y)=— 1922 (12(2x=1)y +10x° ~ 155" +x+2)

(Re)

+%[10y7 +15(108x° —324x” +334x" ~128x" +10x” ~1) y°
+(864x" —3456x7 +4652x° ~1860x° — 710x* +480x" +30x +5))’
—x* (x=1) p(132x° ~396x* +130x" +400x* ~315x+45) |

~2048x" (x—1)" (2x—1)[ 4(16x" ~16x+9) '°

~2(15x* =30x" +81x* —66x+37) "

+2(18x* —18x+23)(x* —x+1))°

—(7x4 —14x° +21x° —14x+8)y4 +x° ()c—l)2 yz},

G, (x,») :%(4)62 +2y? —4x—1)(2x—1)y
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+%[—3(50y4 18y +1)(x—4)x"
—6(84)° +68y" —32)” +3)x°

+12(126y° = 73" +15y” +1)°

—(1205" +1388y° —1320y* +372)" +3)x*
+16(15° +16y* =30y” +12)x°y?
—2(78y° =98y* + 21y +15)x°y’

£2y* (2 1) (18x-1),

G, (x,y) :%y(bc—l)+%[—9(50yz -3)(x—4)x’
—~6(980y" +78y” —9)x° +18(980y" —272)” +12)x’
—3(1820y° +4490y* —1800y” +107) x*
+12(910y° —205y* —45y” +13)x’

—6(60y" +1058y° —905y* +207y +4)x*
+6(60y° +148y* —210y” +66) y”x —21)” +9y*
96

2

(Ma) Re

x’ (x—l)2 [(30y4 -6y’ +1)(x—2)x3

+70y° —78y8]+

(4x2 +2y° —4x—1)y(2x—1)

64
(Ma)’
—~(565° =90y +18y” ~1)x’

+2(28y° -30y* +6)7 ) x - 2(14y* ~15y? +3)y2],

To make a decision on the convergence of the KRDTM, we computed y, as:

|9, (=)l
o Al )
" o el

nen)e] \/714(3227504(Re)2 —12514788Re+1994117697) .

AT 14586 Re

>

(x| \/ 60(49405942(Re)’ +1467358893)

* G (y)] \1253680(Re)’ —21900879Re + 292485765 Re’
I G301
LGl
AN :
R AEr r|16422(4861754265600( Re)

+2305887904320( Re)’ +15827448430362608 (Re)’
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0.5
—25967180162523600Re + 3689889931 130027625)}

05
+ [260015 (3227504(Re)2 —12514788Re+19941 17697) Re} ,

i ACHS

e ey

- {3((2007409369056(1%)2 +14901358071600 ) (Ma)’

+(1477832512(Re)’ —165570645240)(Re)2 (Ma)’

0.5
+(20792594 (Re) +4402076679)Re4 )}
[6 49405942 (Re)’ +1467358893)°'5 Re(Ma)z},

such that y, =y, + s + 730571 =711 + Va1 + 751>+ - For example, if Ma=0.1,
t=0.1, and Re=1 such that 7= Maxt, for all x and y in domain [0,1]2,
then

7 =0.9991283888 < 1,7, =0.7958329986 < 1,---,

if Ma=0.1, t=0.01,and Re=10 then
7, =0.0129736262 < 1,7, =0.2936820858 < 1,---

Thus, the iterative solutions (3.2) for this problem, which are obtained by

using KPIA, have the following form

u, (x,,7) =l6x2y(2y2 —1)(x—1)2 ,

192y —= (1207 ~12x+2y* +1)

u, (x,y,z'):16xzy(2y2 —1)()c—1)2 (Re)

+%(3(6y ~1)(2x-9)2" +4(531y" ~102y7 +1)7

—14(531y" ~156)” +10)x* +(2520)° + 7344 "
—2244)" +215)x° -25(252° —9y* +9y +5)x*
+5(72)" +932y° —660y* + 264y +5)x’
—~5(108y° +138y* —201y” +111)x°y’
+5(48y6—62y4+l9y2+11)xy2—30y4(y2—1)2)
—1024x* (x—1)" p((365° ~18y* +8y” =1)(x—4)x’
~2(90y" ~236y° +105y* —37)” +3)x°
+2(270" —456y° +189y* —55y° +2)x°
+(144y'0 —954y" +1172)° —429y* +93y” 1) x*
—4(72y° —252y° +248y" —78)" +10) )y
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+(232y8 —634y° +544y" —149)” +7)x% )

—44(2y2 —l)y4 (y2 —1)2 x+6(2y6 —5y*+4y° —1)y4)}'2
—16384{[—%(3@—2))9 +3(12) ~1)x* =6(6)” —1)x
+39*+3)° —1)+8y((6y4 ~2)7 +1)(2x=7)x°

—3(4y° —24y* +8y” —3)x* +5(6)° 15" +5)* -1)x*
—(28y° —48y* +16)7 1) + (20" ~3y? +1)(6x—1)xy2))
x(—123R8(3(2x—5)x4 +10(12y” 1)’

=30(6y” —1)x* +10(3y* +3y* =1)x 15" _1))

+%((6y4 -2y’ +1)(x—4)x7 —2(4y6 —-24y* +8)° —3)x6
+4(6y° —15y* +57 —1)x* —(28)° —48y* +16y” —1)x*

+2(2y4 -3y° +1)(4x—1)x2y2 ))}13,

v, (x,y,z')=—l6(2x3 —3x7 +x)<y4—yz)+|:%[3£y4 -y +x* —%J
—2(12y2—1)x3+6(6y2—1)x2—2(3y4+3y2—1)xj
#1285 (x=1)" y((65* =20 +1)(x=2)x’
_(gy6—18y4+6y2—1)x2+2(2y4—3y2+1)y2(2x—1))},
vz(x,y,r)=—16(2x3—3x2+x)( y2)+128|: (<6y4—2))2+1)()c—4))c7
—2(4y" - 24" +8y =3)x* +2(12y° =30y +10y” -2}’
)x4+2(2y -3y° +1)(4x—1)x y )
(

( (2x-5)x* +10(12y” =1)x” =30(6)” ~1)’

—(28y° —48y" +16y* -1

1
20Re

(Zx—l)

+10(3y* +3y> ~1)x =157 (5 —1)):|z'+ —(;962)2

x(5x% =5x+12y* =2) + 2556y(12(72 Z-11)(x—4)x
+2(810y" +2326y* —263)x° ~30(162)" +62y" +9)x°
+5(1002y" —142y” +143)x* —120(16y* —4y” +3)x°

+15(10y4+2y2+3)x2+5(2y4—3y2+1)y2)

+512(y2 —1)()c—1)3 x (2x—1)y2 (x2 (x—l)2
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—4(16x* —16x+9) y* +2(15x° —15x+19)(x2 —x+1)y*
~2(30% —3x+4)(x* —x+1) 7 )]ﬁ +[—%(20y((6y4
=2y +1)(x—4)x" —2(4y° —24y" +8)” —3)x°

+2(12° =30p" +10y” -2)x* - (28)° - 48" +16y” —1)x*

+2(2y* -3y? +1)(4x—1)x2y2)—Rie(s(zx—s)x“
+10(12y” —1)x* =30(6y” = 1)x* +10(3y* +3)” —1)x
~15y%(5? —1)))><(2(3oy4 ~6y +1)(x—4)x’
—4(28y° —120y* +24y =3)x* +8(42)° — 75"
+15y7 —1)x° =2(196y° —240y* +48y” —1)x*
+16(14y° —15y" +3)7 )x* - 4(14y° ~15y* +3)% ) ¥’

—%(4(2x—3)x2 +2(2y +1))x -2 +lﬂz’3,

2
g (xy,7)= 312;2/ [[4)/2 —3x+%jx2 —(2y2 —1)(3x—1)}
—64()(—1)2 x’y? |:(10y4 -9y’ +3)(x—2)x3

+(8y6 6y —y? +3)x2 —2y2(y2 —1)2(4x—1)}

{(;9:)2 (2x-1)(4x* +2)* —4x-1)

128

—R—e(3(50y4 ~18y* +1)(x—4)x" +6(84)° + 68"
~32)7 +3)x° = 6(252y° ~146y" +30y” +2)x°
+(120y° +1388y° ~1320y* +372)” +3) x*

~16(15y° +16y* —30)” +12)x)” +2(78)° —98y*
+21y° +15)x°y* =2(18x~1) * (5 —1)2)},

2, (x,y,r) = —64x (x—l)2 e ((IOy4 —9y? +3)(x—2)x3
(80 —6y* =37 +3)x* —2(3 -1} (4x-1)»?)
+%(3(2x—5)x4 +20°y7 =5(2y” =1)(3x~1)x)

192y
(Re)’

—18y” +1)(x—4)x" +6(84)° +68y* 32" +3)x°

+[

(2x-1)(4x> ~4x+2y? —1)—%(3(5@4

—12(126y° = 73" +15y% +1)x° + (120" +1388°
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~1320y* +372)7 +3)x* =16(15y° +16y* =30y” +12) %"y

+2(78)° ~98y* +21y7 +15) %y ~2y* (2 ~1) (18x—1))}'

3(2?(%—1)—%(9(5@2 ~3)(x—4)x"

+6(980y" +78y” —9)x* —72(245y" — 68" +3)x’
+3(1820y° +4490y* ~1800y” +107) x* ~12(910y°
~205y" —45y” +13)x* +2(180y" +3174y° - 2715y
+621y7 +12)x” —12(30° +74y* ~105)" +33)

+(78y° = 70y* -9y +21)y2)+@(91§—5(4(2x—3)x2

+2(2 #1)x=2y" +1) = 642" (x=1)" ((30p* ~ 6y +1)(x—2)’

~(565° ~90y* 18y ~1)x" +2(14y* 15" +3) (26-1) 7 )| .

To test the convergence of the approximate solutions, we calculated y, as:

¥ :|(u6)1(x,y,r)": ¥ :|(u6)2(x,y,r)||:0
B TGS R (ONCS%
[(v2), (2]

T o]

\/714(3227504(Re)2 ~12514788Re+1994117697) _

14586 Re’
I(g.), (x.3.7)| 60(49405942(Re)” +1467358893)

0~ = 2 )
lg(x.3.0)| | 1253680(Re)’ —21900879Re + 292485765 Re

= M =2+/534905 z’[(2527954485033081241601’2

700, G|

+13571076548224512000)( Re)’

—-1150099707715306782720| 7° + T—
41150401552 66021376

+ (71 1292050328745194045447° +41318854991213292979207

20037330051 369495 j 3
(Re)

+441806604112720321581 60) (Re)2

19609947 5360355 j
T+ Re

23628440 13747456

34459425 T+182807249625j -
275978504 141300994048

—185898066637793079398400 (2'2 +

+7961346208200723 126497280[r2 +

0.5
+{3506302275(3227504(Re)2—12514788Re+1994117697) Re},
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XS
5 e G

- ;2[((2007409369056(Re)2 + 14901358071600)(Ma)4
Re(Ma)
+ (1477832512(Re)2 —165570645240)(Re)2 (Ma)’

+(20792594(Re)’ +4402076679)(Re)4)

0.5
+(12(49405942(Re)2+1467358893))} ,

such that y, =y, + Vs + 730571 =711 + Va1 + 731>+ - For example, if Ma=0.1,
t=0.1,and Re=1 suchthat r=Maxt,then

7o = 0.9991283888 < 1,7, =0.7959676332 < 1,---,

if Ma=0.1, t=0.01,and Re=10 then
7o =0.0129736262 < 1,7, =0.2936820051 < 1,---

6. Results and Discussion

In this section, we introduce the numerical computations of velocity components u,
v, vorticity function wand stream function  , which have been obtained by the
application of KRDTM and KPIA. All calculations are run by Maple 2017
software with used various values of Reynolds numbers and Mach numbers in
the domain [0,1]2.

In Table 2 and Table 3, we reviewed the calculated values of u velocity along
the vertical line and v velocity along the horizontal line through the geometric
center of the square cavity by using KRDTM and KPIA at 7r=0.1 and
Ma =0.01 for different Reynolds numbers. By comparing the results of these
methods, we observe they are close to each other for the different values of

Reynolds numbers. In Table 4, we compare the results obtained from these

Table 2. The approximate solutions by KRDTM for zand vat ¢=0.1.

u(0.5,,0.1) Re=10 Re=100 Re=400 Re=1000

0.0625 —0.0620116263 -0.0620117178 —0.0620117080 -0.0620117057
0.125 —-0.1210934186 —-0.1210937382 —-0.1210937303 —-0.1210937281
0.1875 —0.1743158597 —0.1743163948 —0.1743163886 —0.1743163864
0.25 —0.2187492697 —0.2187500032 —0.2187499985 —0.2187499963
0.3125 —0.2514639638 —0.2514648747 —0.2514648714 —0.2514648693
0.375 -0.2695302503 -0.2695313138 —-0.2695313119 —-0.2695313098
0.4375 —-0.2700184296 -0.2700196175 -0.2700196172 -0.2700196153

0.5 —0.2499987981 —-0.2500000797 —-0.2500000812 —-0.2500000796
0.5625 —0.2065416607 —0.2065430027 —0.2065430066 —0.2065430054
0.625 -0.1367173508 -0.1367187180 —0.1367187250 -0.1367187244
0.6875 —0.0375962574 -0.0375976129 —0.0375976240 —0.0375976244
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Continued

0.75
0.8125
0.875
0.9375

0.0625
0.125
0.1875
0.25
0.3125
0.375
0.4375
0.5
0.5625
0.625
0.6875
0.75
0.8125
0.875
0.9375

0.0937511524
0.2602543373
0.4648427531
0.7104460577

0.1520352246
0.2443698776
0.2840233785
0.2797924904
0.2404575825
0.1747890513
0.0915546641
—0.0004740000
—-0.0925173262
-0.1757864500
—0.2414853287
—0.2808158432
—0.2849851434
—0.2452139088
—0.1527436594

0.0937498465
0.2602531196
0.4648416627
0.7104451334
v(x,O.S,O.l)
0.1535990206
0.2458276287
0.2853353452
0.2809293365
0.2413982264
0.1755190079
0.0920648498
—0.0001880250
—0.0924556955
—0.1759449258
—0.2418548488
—0.2813816962
—0.2857257912
—0.2460994800
—0.1537341432

0.0937498298
0.2602530957
0.4648416294
0.7104450882

0.1537294237
0.2459491556
0.2854446967
0.2810240781
0.2414766095
0.1755798316
0.0921073612
—-0.0001641937
—0.0924505555
—0.1759581261
—-0.2418856383
—0.2814288551
—0.2857875328
—0.2461733253
—-0.1538167704

0.0937498282
0.2602530924
0.4648416238
0.7104450798

0.1537555060
0.2459734619
0.2854665674
0.2810430265
0.2414922860
0.1755919962
0.0921158634
—0.0001594275
—0.0924495275
—0.1759607661
—-0.2418917961
—0.2814382869
—0.2857998815
—0.2461880953
—0.1538332975

Table 3. The approximate solution by KPIA for uzand vat =0.1.

u(O.S,y,O.l)

Re=10

Re=100

Re =400

Re=1000

0.0625
0.125
0.1875
0.25
0.3125
0.375
0.4375
0.5
0.5625
0.625
0.6875
0.75
0.8125
0.875
0.9375

0.0625
0.125
0.1875

—-0.0620116267
—-0.1210934190
—-0.1743158600
—0.2187492699
—-0.2514639639
—-0.2695302503
—-0.2700184292
—0.2499987975
—-0.2065416599
—-0.1367173502
—-0.0375962576
0.0937511505
0.2602543328
0.4648427455
0.7104460475

0.1520352173
0.2443698698
0.2840233713

-0.0620117178
—-0.1210937382
—0.1743163948
—-0.2187500032
—-0.2514648747
-0.2695313137
-0.2700196175
-0.2500000797
-0.2065430027
-0.1367187180
-0.0375976130
0.0937498462
0.2602531191
0.4648416618
0.7104451322
v(x,0.5,0.1)
0.1535990205
0.2458276285
0.2853353451

—-0.0620117080
—-0.1210937303
—-0.1743163886
—0.2187499985
—0.2514648714
—-0.2695313119
—-0.2700196172
—0.2500000812
—-0.2065430066
—-0.1367187250
—-0.0375976241
0.0937498298
0.2602530956
0.4648416292
0.7104450879

0.1537294237
0.2459491556
0.2854446967

—-0.0620117057
—-0.1210937281
—-0.1743163864
—0.2187499963
—0.2514648693
—0.2695313098
—-0.2700196153
—-0.2500000796
—-0.2065430054
—-0.1367187244
—-0.0375976244
0.0937498282
0.2602530923
0.4648416237
0.7104450797

0.1537555060
0.2459734619
0.2854665674
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0.25
0.3125
0.375
0.4375
0.5
0.5625
0.625
0.6875
0.75
0.8125
0.875
0.9375

0.2797924846
0.2404575786
0.1747890492
0.0915546634
—0.0004739999
—-0.0925173258
—-0.1757864500
—0.2414853294
—-0.2808158450
—0.2849851463
—-0.2452139127
—0.1527436637

0.2809293364
0.2413982263
0.1755190079
0.0920648498
—-0.0001880249
—0.0924556954
—0.1759449258
—0.2418548488
—0.2813816962
—0.2857257912
—0.2460994800
—0.1537341433

0.2810240781
0.2414766095
0.1755798316
0.0921073612
—-0.0001641937
—0.0924505555
—0.1759581261
—0.2418856382
—-0.2857875328
—0.2461733253
—0.2461733253
—-0.1538167704

0.2810430265
0.2414922860
0.1755919962
0.0921158634
—0.0001594275
—0.0924495274
—0.1759607660
—0.2418917961
—0.2814382869
—0.2857998815
—-0.2461880953

—-0.1538332975

Table 4. Comparison between the approximate solutionsat #=0.1 and Re=1.

Ref. [10] KRDTM KPIA
Vi -0.125 ~0.1263030704 —0.1262878352
(Vo) 0.5 0.5 0.5
y(¥o) 0.70703 0.70703125 0.703125
u,, -0.2721659 —0.2720274424 —0.2720273443
y(uy,) 0.40869 0.41015625 0.40625
Vo ~0.2886756 ~0.365196882 -0.3649970593
x(Von) 0.78857 0.78515625 0.78125
v 0.2886756 0.3590485063 0.3588814265
x(vi) 0.21143 0.21484375 0.21875
u(0.5;0.0625) ~0.062011718741 ~0.0619894102 -0.0619894551

u(0.5;0.125)
u(0.5;0.1875)
u(0.5;0.25)
u(0.5;0.3125)
u(0.5;0.375)
u(0.5;0.4375)
u(O.S;O.S)
u(0.5;0.5625)
u(0.5;0A625)
1(0.5;0.6875)
1(0.5;0.75)
u(0.5;0.8125)
u(0.5;0.875)
u(0.5;0.9375)

—0.121093749988

—0.174316406238

—0.218749999990

—0.251464843745

—0.2695312499997

—0.270019531254

—0.250000000006

—0.206542968755

—-0.1367187500006

—-0.037597656248

0.093749999998

0.260253906243

0.46484374998

0.710449218737

—0.1210481233

—0.1742486127

—0.2186617447

—-0.2513583768

—-0.2694093550

—0.2698855135

—0.2498576781

—0.2063966790

—-0.1365733705

—0.0374586584

0.0938764774

0.2603609875

0.4649238234

0.7104941432

—0.1210481633

—0.1742486451

—-0.2186617667

—-0.2513583858

—0.2694093482

—0.2698854884

—0.2498576334

—-0.2063966152

—-0.1365732911

—-0.0374585703

0.0938765646

0.2603610630

0.4649238796

0.7104941808
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Continued

v(0.0625;0.5)

0.153808593744

0.1365030994

0.1365023819

v(0.125;0.5) 0.24609374999 0.2298505049 0.2298497694
v(0.1875;0.5) 0.28564453123 02709291888 0.2709285329
v(0.25;0.5) 0.28124999999 0.2684293744 0.2684288605
v(0.3125;0.5) 0241699218747 0.2310463824 0.2310460353
v(0.375;0.5) 0.175781250002 0.1674821344 0.1674819447
v(0.4375;0.5) 0.092285156254 0.0864478792 0.0864478112

v(0.5;0.5) 2.3e-14 —0.00333375 -0.003333749
v(0.5625;0.5) -0.092285156254 -0.0931287051 -0.0931286946
v(0.625;0.5) -0.175781250002 -0.1741943413 -0.1741943774
v(0.6875;0.5) -0.241699218746 -0.2377853663 -0.2377854934
v(0.75;0.5) —0.281249999989 -0.2751626592 -0.2751629021
v(0.8125;0.5) -0.28564453123 -0.2776041425 -0.2776044993
v(0.875;0.5) -0.24609374999 -0.2364163347 -0.2364167719

—0.153808593744

—0.1429446548

—0.1429451057

v(0.9375;0.5)

Table 5. Comparisons of the L”-errorsat ¢=0.1 and Ma=0.001.

Grid size Ref. [43] KRDTM KPIA
4 2] 14 0] 4 2]
Re=10
21x21 3.230e-7 1.008e-5 2.0098e-8 8.1319e-7 5.8382e-8 1.5946e—-6
41x 41 2.347e-8 7.740e-7 3.4138e-8 9.7680e-7 7.2296e-8 1.8527e-6
81x81 1.559¢-9 5.168e—-8 4.4644e-8 1.0757e-7 9.2885e-8 2.0028e-6
Re=100
21x21 8.087e-5 4.081e-3 4.2498e-9 3.6230e-7  4.2494e-9 3.6230e-7
41x41 7.120e—6 2.508e—4 5.1135e-9 3.6230e-7 5.1130e-9 3.6230e-7
81x81 4.927e-7 1.717e-5 5.6559e-9 3.6372e-7 5.6555e-9 3.6372e-7
Re=1000
41x41 3.322e—4 1.449e-2 5.0673e-9 3.6448e-7 5.0669e-9 3.6449e-7
81x81 3.916e-5 1.659e-3 5.7419e-9 3.6448e-7 5.7419e-9 3.6449e-7
161x161 2.795e—-6 1.469e—4 6.1146e-9 3.6448e-7 6.1146e-9 3.6449e-7

methods at Re=1, Ma=0.01 and #=0.1 with the numerical results which
have been evaluated by using the finite volume method and introduced by [10].
By comparison, we note that our solutions are remarkably good, and these
results represent solutions for the second iteration step. The L*-errors for
stream function y and vorticity @ are given in Table 5 for Reynolds numbers
Re=10,100 and 1000 at Ma =0.001, are compared with the calculated errors

by the rational fourth-order compact finite difference method in [43]. We note

DOI: 10.4236/jamp.2018.612211

2538 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.612211

A.-S. J. Al-Saif, A. J. Harfash

that the calculated errors are small for all values of the Reynolds number and are
not affected by the number of grid points. Also, the approximate solutions of
velocity in the two directions at cavity center, which are obtained by KRDTM
and KPIA, are shown in Figure 1 at r=2 and Re=10 for three different
values of Mach numbers, and in Figure 2 at Re=1 and Ma =0.01 for three
different time levels. We observe that the results of KRDTM and KPIA methods
at Ma=0.01 are better than the results at other Mach numbers. Thus, the
numerical results of both methods are good and close to each other at low values

of Mach numbers.

7. Conclusion

In this paper, we applied the reduced differential transform method and the
perturbation-iteration algorithm on the kinetically reduced local Navier-Stokes
equations to find approximate solutions to the problem of lid-driven square cav-
ity flow. The calculations in this study show that KRDTM and KPIA are fast and

T

0.2 0.4 0.6 0.8 1
X

Ma =0.01 —— Ma =0.05 Ma =0.1

0.2 0 0.2 04 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1

[ Ma=0.0l —— Ma :0.05 Ma =0.1] [ Ma =0.01 —— Ma:XO.OS Ma =0.1
(b)
Figure 1. The approximate solutions of #(0.5,y,2) and v(x,0.5,2) Re=10. (a) KRDTM;
(b) KPIA.
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Figure 2. The approximate solutions of u(0.5,y,r) and v(x,0.5,r) at Re=1. (a)
KRDTM; (b) KPIA.

successful techniques and yield remarkably good results to solve unsteady visc-
ous incompressible flow problems at low Mach numbers. Therefore, the applica-
tion of KRDTM and KPIA could be expanded to include various and mul-
ti-dimensions of flow problems. In addition, these methods can be combined

with other methods to increase the accuracy of solutions.
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