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Abstract 
In this paper, we discuss the dynamics of a stochastic SIRC epidemic model 
with infection rate affected by white noise. We prove that this stochastic 
model has a unique nonnegative solution globally. A threshold is identified. 
When the noise is small, the solution of the stochastic model converges to the 
disease-free equilibrium point of the deterministic model if 0 1sR < , which 

means the basic reproductive number of the stochastic model. And if 0 1sR > , 
the solution of the stochastic model fluctuates around the epidemic equili-
brium of the deterministic model. When the noise is large, the disease tends 
to extinction. The results are illustrated by computer simulations. 
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1. Introduction 

Mathematical models have become important instruments in the analysis and 
control of infectious diseases. Several models corresponding to epidemic with 
different characteristics have been proposed and discussed in literature [1] [2] 
[3] [4] [5]. The fundamental assumption in epidemic models is that the popula-
tion can be divided into distinct groups; the most common are: the susceptible 
(S) that are the subjects that may catch the disease; the infected (I) that are the 
subjects that are already infected and can spread the disease to susceptible indi-
viduals; the removed (R) that are the subjects that are immune for life. There-
fore, these models are referred to as SIR models.  

SI, SIS, SIR models are the basic epidemic models. The differences of these 
models are that the population is divided into different distinct groups and the 
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relationships between groups in these models are different. The SI model is 
suitable for the disease without recurrent seizures. The SIS model can describe 
the patient getting sick repeatedly. The SIR model is used when the patient are 
immunized after infection. Other descriptions may include the presence of sub-
jects in the quarantine state (Q) and in this situation SIRQ models are analyzed 
[6]. The models are more and more complex with the development of epidemi-
ology. 

Recently the class of cross-immune individuals (C) in the population has been 
introduced [7]: it is an intermediate state between the fully susceptible state (S) 
and the fully protected one (R). The obtained SIRC model takes temporary par-
tial immunity into account. The author gave a brief description of the determi-
nistic SIRC model and calculated the basic regeneration number [8]. In 2013, 
Iacoviello and Stasio studied the SIRC model more closely [9], and discussed the 
optimal control method in the case of the outbreak of the SIRC model based on 
the mathematical results.  

In the study of stochastic epidemiological model, the authors give the proof of 
asymptotic stability of stochastic epidemic models and the theoretical results are 
verified by simulation experiments. The global uniqueness and asymptotic sta-
bility of the solution of the stochastic SIR model [10] were deduced in 2011. 
Zhao studied the stochastic SIS model in 2013 [11], and the global uniqueness 
and asymptotic stability of the solution of the stochastic SIS model were deduced 
based on the basic regeneration number. Liu published a study of the stochastic 
SIRS model in 2017 [12]; the global uniqueness and asymptotic stability of the 
solution of a stochastic SIRS model are deduced under the condition that the ba-
sic regeneration number is greater than 1 or less than 1. 

In the existing research, there is no literature to give the basic regeneration 
number of stochastic SIRC model and other related characteristics. Therefore, 
this paper mainly studies the stochastic SIRC model, and gives the basic regene-
ration number of the model. It is proved that when the basic regeneration num-
ber is less than 1, the disease-free equilibrium point is randomly asymptotically 
stable, and when the basic regeneration number is more than 1, the solution of 
the stochastic model revolves around the endemic equilibrium point of the cor-
responding deterministic model, and computer simulation is used to verify the 
correctness of the conclusions. 

This paper is organized as follows. We give the model description in Section 2. 
In Section 3, we show that there is a unique positive solution of system (2.2). In 
Section 4, we investigate system (2.2) is exponential stability when the noise is 
large. In this case, the infective decays exponentially to zero. When the noise is 
small, we deduce the condition 0 1sR <  which will enable the disease to die out 
exponentially in Section 4 and the condition 0 1sR >  for the disease being per-
sistent is given in Section 5. In Section 6, we show that 0 1sR ≥ , the result of sto-
chastic model is asymptotically stable and is oscillating around the endemic 
equilibrium of the deterministic model when t →∞ . Simulations in Section 7 
are reported to support the analytical results. 
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2. The SIRC Model 

The SIRC model and its correlations between the variables are shown in Figure 
1. The population can be divided into four parts.  

The natural death rates of different compartments can be different for a long 
period. But in a short time, we can consider that the rates are the same. In this 
paper, we assumed that the natural death rate of S, I, R, C compartments are the 
same. 

Here, ( )S t  denotes the number of members who are susceptible to an infec-
tion at time t. ( )I t  denotes the number of members who are infective to an in-
fection at time t. ( )R t  denotes the number of members who are immune to an 
infection at time t. ( )C t  denotes the number of members who are cross-immune 
to an infection at time t. The parameters in the model are summarized in the 
following list: 

A: a consistent input of new members into the population per unit time; 
μ: natural death rate of S, I, R, C compartments; 
β: transmission coefficient between compartments S and I; 
α: transmission coefficient between compartments I and R; 
ε: transmission coefficient between compartments R and C; 
γ: transmission coefficient between compartments C and S. 
All parameter values are assumed to be nonnegative and 0 1d< < . 
Consider the following SIRC model:  

( )
( ) ( )

( )
1

S A S SI C
I SI d CI I

R d CI I R

C R CI C

µ β γ

β β µ α

β α µ ε

ε β µ γ

 = − − +


= + − +


= − + − +
 = − − +









              (2.1) 

The threshold of system (2.1) is  

0
AR β

µ α µ
= ∗

+
 

System (2.1) always has the disease-free equilibrium:  

0 ,0,0,0AP
µ

 
=  
 

 

If 0 1R > , then 0P  is unstable and there is an epidemic equilibrium. If 

0 1R ≤ , then 0P  is the unique equilibrium and is globally stable in intΓ, where 
 

 
Figure 1. SIRC model. 
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( ), , , : 0, 0, 0, 0, AS I R C S I R C S I R C
µ

 
Γ = ≥ ≥ ≥ ≥ + + + ≤ 

 
. 

In fact, epidemic models are inevitably affected by environmental white noise 
which is an important component in realism, because it can provide an addi-
tional degree of realism in comparison to their deterministic counterparts. Many 
stochastic models for epidemic population have been developed in [13]-[21]. For 
example, stochastic models are able to take care of randomness of infectious 
contacts occurring in the latent and infectious periods [22]. Dalal, Greenhalgh 
and Mao [20] have previously used the technique of parameter perturbation to 
examine the effect of environmental stochasticity in a model of AIDS and con-
dom use. They found that the introduction of stochastic noise changes the basic 
reproduction number of the disease and can stabilize an otherwise unstable sys-
tem. Nasell [23] formulated stochastic models to show that some stochastic 
models are a better approach to describe epidemics for a large range of realistic 
parameter values in comparison with their deterministic counterparts. 

In this paper, we mainly discuss while β is affected by noise, 

( )B tβ β σ→ +   

where ( )B t  is standard Brownian motions with ( )0 0B = , and with the in-
tensity of white noise 2 0σ > . The stochastic version corresponding to the de-
terministic model (2.1) takes the following form:  

( ) ( )
( )( ) ( ) ( )

( ) ( )( ) ( ) ( )
( )( ) ( )

d d d

d d d

d 1 d 1 d

d d d

S A S SI C t SI B t

I SI d CI I t SI d CI B t

R d CI I R t d CI B t

C R CI C t CI B t

µ β γ σ

β β µ α σ σ

β α µ ε σ

ε β µ γ σ

 = − − + −


= + − + + +


= − + − + + −
 = − − + −

     (2.2) 

3. Existence and Uniqueness of Positive Solution 

In the biological dynamical system, the researcher is concerned about whether 
the positive solution of the system exists globally. Therefore, in this section, we 
show that the solution of system (2.2) is global and positive. 

Theorem 3.1. There is a unique solution ( ) ( ) ( ) ( )( ), , ,S t I t R t C t  of system 
(2.2) on 0t ≥  for any initial value ( ) ( ) ( ) ( )( ) 40 , 0 , 0 , 0S I R C +∈R , and the solu-
tion will remain in 4

+R  with probability 1, namely ( ) ( ) ( ) ( )( ) 4, , ,S t I t R t C t +∈R  
for all 0t ≥  almost surely. 

Proof. Since the coefficients of the equation are locally Lipschitz continuous 
for all given initial value ( ) ( ) ( ) ( )( ) 40 , 0 , 0 , 0S I R C +∈R , there is a unique local 
solution ( ) ( ) ( ) ( )( ), , ,S t I t R t C t  on ( )0, et τ∈ , where eτ  is the explosion 
time (see [24]). To show that this solution is global, we need to show that 

eτ = ∞ , a.s. Let 0 0k ≥  be sufficiently large so that ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0S I R C   

lie within the interval 0
0

1 , k
k
 
 
 

. For each integer 0k k≥ , define the stopping 

time  
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[ ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1inf 0, : min , , , or

max , , ,

k et S t I t R t C t
k

S t I t R t C t k

τ τ= ∈ ≤



≥ 



 

where throughout this paper, we set inf ∅ = ∞  (as usual ∅  donates the empty 
set). According to the definition, kτ  is increasing as k →∞ . Set limk kτ τ∞ →∞= , 
whence eτ τ∞ ≤ , a.s. If we can show that τ∞ = ∞ , a.s., then eτ = ∞  and 

( ) ( ) ( ) ( )( ) 4, , ,S t I t R t C t +∈R , a.s. for all 0t ≥ . In other words, to complete the 
proof all we need to show is that eτ = ∞ , a.s. If statement is false, then there ex-
ist a pair of constants 0T >  and ( )0,1ν ∈  such that 

( )P Tτ ν∞ ≤ >   

Hence there is an integer 1 0k k>  such that 

( ) 1,kP T k kτ ν≤ ≥ ≥                      (3.1) 

For kt τ≤ , we can see for each k 

( ) ( )d dS I R C A S I R C tµ+ + + = − + + +     

and so 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )e 0 0 0 0tA AS t I t R t C t S I R Cµ

µ µ
−  

+ + + = + + + + − 
 

  

If ( ) ( ) ( ) ( )0 0 0 0 AS I R C
µ

+ + + ≤ , then ( ) ( ) ( ) ( ) AS t I t R t C t
µ

+ + + ≤ , a.s. So 

the region 

( )* , , , : 0, 0, 0, 0,
, . .
AS I R C S I R C S I R C
a sµ

 
Γ = ≥ ≥ ≥ ≥ + + + ≤ 

 
  

is a positively invariant set of system (2.2) on *Γ , which is similar to Γ  of sys-
tem (2.1). From now on, we always assume that ( ) ( ) ( ) ( )( ) *0 , 0 , 0 , 0S I R C ∈Γ . 

Define a C2-function W: 4
+ +→R R  by 

( ) ( ) ( ) ( ) ( ), , , 1 log 1 log 1 log 1 logW S I R C S S I I R R C C= − − + − − + − − + − −   

The nonnegativity of this function can be seen form 1 log 0, 0u u u− − ≥ ∀ > . 
Let 0k k>  and 0T >  be arbitrary. Applying the Itô formula, we obtain 

( )d d dW LW t K B t= +   

where 

( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )

( )

22 2 2 2 2 2 2 2 2
2 2 2 2

2 2 2

1 10 1 1

1 11 1 1

1 1 1 1 11
2

2 4 2

LW A SI SI C SI d CI I
S I

d CI I R R CI C
R C

S I SI dCI d C I C I
S I R C

A M M M

µ β γ β β µ α

β α µ ε ε β µ γ

σ σ σ σ

β µ α ε γ σ

   = + − − − + + − + − +   
   

   + − − + − + + − − − +   
   
 + + + + − + 
 

≤ + + + + + + +
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: N=  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

1 1 1 11 1 1 1 1

11 1 1 1 1 1

11 1 1

K SI SI d CI d CI CI
S I R R

S I I S I d C d CI C I
R

I S C I S d C d CI
R

σ σ σ σ σ

σ σ σ σ σ

σ σ σ σ

       = − + − + + − − + − −       
       

 = − + − + − + − − − − 
 

 = − + − + + − − 
 

 

Therefore, we get Formula (3.2) 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

0

, , ,

0 , 0 , 0 , 0 d

0 , 0 , 0 , 0

k

k k k k

T

E W S T I T R T C T

W S I R C E N t

W S I R C NT

τ

τ τ τ τ
∧

 ∧ ∧ ∧ ∧ 
 ≤ +   

≤ +

∫       (3.2) 

Set { } 1,k k T k kτΩ = ≤ ≥ , and by (3.1), ( )kP νΩ ≥ . Note that for every 

kω∈Ω , there is at least one of ( ),kS τ ω , ( ),kI τ ω , ( ),kR τ ω , and ( ),kC τ ω   

that equals either k or 1
k

, and hence  

( ) ( ) ( ) ( )( ) ( ) 1, , , 1 log 1 logk k k kW S I R C k k k
k

τ τ τ τ  ≥ − − ∧ − + 
 

 

It then follows from (3.1) and (3.2) that  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( )

0 , 0 , 0 , 0

1 , , ,

11 log 1 log

k k k k k

W S I R C NT

E V S I R C

v k k k
k

ω τ τ τ τΩ

+

 ≥  
  ≥ − − ∧ − +    

∗  

Let k →∞ , we have 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
0 , 0 , 0 , 0

1 , , ,
k k k k k

W S I R C NT

E V S I R Cω τ τ τ τΩ ∗

∞ > +

 ≥ → ∞ 
  

The former formula is contradictory and we must therefore have τ∞ = ∞ , a.s.  
For convenience we introduce the notation:  

( ) ( )
0

1 d
t

x t x r r
t

= ∫   

and 
2

2

0

1
2s

A A

R
β σ
µ µ

µ γ

 
−  

 =
+

 

4. Extinction 

In this section, we investigate the conditions for the extinction of disease. 
Theorem 4.1. Let ( ) ( ) ( ) ( ), , ,S t I t R t C t  be the solution of system (2) with 

initial value ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0S I R C ∈Γ . If  
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(a): 
( )

2
2

2
βσ
µ γ

≥
+

 or   

(b): 0 1sR ≥  and 
( )

2
2

2
βσ
µ γ

<
+

  

Then 
( )log

limsup 0
t

I t
t→∞

≤ , a.s. 

Proof. An integration of system (2.2) yields, the Formula (4.1) is as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0 0

0

0

0
d

0

d d

0
1

1 d

0
d

t

t t

t

t

S t S
A S t S t I t C t S r I r B r

t t
I t I

S t I t d C t I t I t
t

S r I r B r d C r I r B r
t t

R t R
d C t I t I t R t

t

d C r I r B r
t

C t C
R t C t I t C t C r I r B r

t t

σµ β γ

β β µ α

σ σ

β α µ ε

σ

σε β µ γ

−
= − − + −


 −

= + − +



+ +


− = − + − +

 − −

 − = − + + −

∫

∫ ∫

∫

∫

 

Applying the Itô formula, we obtain 

( )( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( )

2

2

d ln

1 10 d
2

1 d

I t

S t d C t S t I t dC t I t t
I t

S t I t d C t I t B t
I t

β β µ α σ

σ σ

    = + + − + + − +     

+ +

 

Then Formula (4.2) is as follows 

( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

22

0

ln ln 0 1
2

d
t

I t I
S dC S dC

t

S r dC r B r
t

β µ γ σ

σ

−
= + − + − +

+ +∫
  

Let  

( ) ( ) ( )( ) ( )
0

: d
t

M t S r dC r B rσ= +∫ ,  

which is a local continuous martingale and ( )0 0M = . Moreover 

2 2

2

,
limsup t

t

M M A
t

σ
µ→∞

≤ < ∞ , a.s.  

According to Strong Law of Large Numbers, we obtain 

( )
lim 0
t

M t
t→∞

= , a.s.                    (4.3)  

Since ( ) ( ) ( ) ( ) AS t I t R t C t
µ

+ + + ≤ , we obtain 
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AS dC
µ

+ ≤                       (4.4)  

Substituting (4.3) (4.4) into (4.2) yields 

( )( )

( )

( )( ) ( ) ( ) ( )

( )

( )( ) ( ) ( ) ( )

22

0

22

0

ln
limsup

1limsup
2

ln 0
d

1limsup
2

ln 0
limsup d

t

t

t

t

t

t

I t
t

S dC S dC

I
S r dC r B r

t t

S dC S dC

I
S r dC r B r

t t

β µ γ σ

σ

β µ γ σ

σ

→∞

→∞

→∞

→∞

= + − + − +



+ + + 


 ≤ + − + − + 
 
 

+ + +  
 

∫

∫

 

If the condition (a) is satisfied, the following statement is tenable. 

( )
2

2
2

1 0
2

βσ µ γ
σ
  − + < 
 

  

then  

( )( )

( )

( )

22
2 2

2 2

2
2

2

ln
limsup

1 1limsup
2 2

1limsup 0
2

t

t

t

I t
t

S dCβ βσ µ γ σ
σ σ

βσ µ γ
σ

→∞

→∞

→∞

   ≤ − + − + −   
   

  ≤ − + ≤     

 
 
 
 

 

If the conditions (b) are satisfied, Formula (4.5) can be rewritten in another 
way as follows 

( )( )

( )

( ) ( )( )

2 2
2 2

2 2

2
2

0

ln
limsup

1 1limsup
2 2

1 1 0
2

t

t

S

I t
t

S dC

A A R

β βσ µ γ σ
σ σ

β σ µ γ µ γ
µ µ

→∞

→∞

   
  
 

 
 
 
 

≤ − + − + −   
   

 
= − − + = + − < 

 

 

Lemma 4.1. Let ( )A t  and ( )U t  be two continuous adapted increasing 
process on 0t ≥  with ( ) ( )0 0 0A U= = , a.s. Let ( )M t  be a real-valued con-
tinuous local martingale with ( )0 0M = , a.s. Let 0X  be a nonnegative 0

-measurable random valuable such that ( )0E X < ∞ . Define  

( ) ( ) ( ) ( ) ( )0X t X A t U t M t= + − +   

for all 0t ≥ . If ( )X t  is nonnegative, then ( )lim
t

A t
→∞

< ∞  implies that 
( )lim

t
U t

→∞
< ∞ , ( )lim

t
X t

→∞
< ∞ , and ( )lim

t
M t

→∞
−∞ < < ∞ , a.s. 
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Consider the equation 

( ) ( ) ( )( ) ( )( ) ( )
0 0

0 0, d , d , ,
t t n
t t

x t x t h s x s s g s x s B s x R t R= + + ∈ ∈∫ ∫   

Here, ( )B s  is an m-dimensional Brownian motion. 
Lemma 4.2. Suppose that: 
1) The function h and g satisfy the local Lipschitz and line growth conditions; 

2) ( ){ }0sup
p

t E x t≥ < ∞ , where ⋅  is the Euclidean norm in nR . 

Then almost every sample path of ( )( ) ( )
0

, d
t

t
g s x s B s∫  is uniformly conti-

nuous on 0t ≥ . 
Lemma 4.3. Let j be a nonnegative function defined on [ )0,∞  that is in-

tegrable on [ )0,∞  and uniformly continuous on [ )0,∞ . Then ( )lim 0
t

j t
→∞

= . 
Theorem 4.2. Under the condition of Theorem 4.1, the disease is extinct. And 

( ) 0lim
t

AS t S
µ→∞

= = , a.s. 

( ) 0lim 0
t

I t I
→∞

= = , a.s. 

( ) 0lim 0
t

R t R
→∞

= = , a.s. 

( ) 0lim 0
t

C t C
→∞

= = , a.s. 

Proof. By applying Itô formula to system (2.2), Formula (4.5) is established, 

( ) ( )

( ) ( )( ) ( )

( ) ( )

( ) ( ) ( )

d

1

d 1 d

2 d d

d d

A S R C

A S SI C d CI I R

R CI C t SI d CI CI B t

A S R C C d CI SI I t S dC I B t

A S R C S I t S dC I B t

µ

µ β γ β α µ ε
µ

ε β µ γ σ σ σ

µ γ β β α σ
µ

µ β α σ
µ

 
− + + 

 
  

= − − + − + − + − +  
 


+ − − + + + − −


  

= − − + + − − + + + −  
  

  
≤ − − + + + + + −  

  

 

Then, 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

0

0 0

0 0

d

0 0 0 d d

3 d d

t

t t

t t

A S s R s C s s

A S R C P s s S s I s s Z t

A AP s s I s s Z t

µ

µ β α
µ

µ β α
µ µ

 
− + + 

 

≤ − + + − + + +

 
≤ − + + + 

 

∫

∫ ∫

∫ ∫

 

where, 

( ) ( ) ( )( ) ( ) ( )
0

d
t

Z t S s dC s I s B sσ= −∫  and ( ) ( ) ( ) ( )AP t S s R s C s
µ

= − + +  
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Obviously, we have 

( ) ( ) ( ) ( )
0 0

0 3 d d
t tA AP t P s s I s s Z tµ β α

µ µ
 

≤ ≤ − + + + 
 

∫ ∫   

Clearly, ( ) ( ) ( ) ( )( ) *, , ,S t I t R t C t ∈Γ , ( )0 2 AP s
µ

< ≤  and  

( )0 A A AI sβ α β α
µ µ µ

   
≤ + ≤ +   
   

,  

so ( )
0

d
t
P s sµ∫  and ( )

0
d

t A I s sβ α
µ

 
+ 

 
∫  are uniformly continuous on [ )0,∞ . 

Next, we prove that ( )Z t  is uniformly continuous. Noting that  

( ) ( ) ( ) ( )( ) *, , ,S t I t R t C t ∈Γ ,  

we can easily check that the coefficients of system (2.2) satisfy the local Lipschitz 
and liner growth conditions. In addition, 

( ) ( ) ( ) ( ){ }2 2 2 2

0
sup 2p

t

AE S t I t R t C t
µ≥

+ + + ≤   

Then, by lemma 4.2, ( )Z t  is uniformly continuous. ( )
0

d
t
P s sµ∫ ,  

( )
0

d
t A I s sβ α

µ
 

+ 
 

∫   

and ( )Z t  are uniformly continuous, so ( )P t  is uniformly continuous. By 
lemma 4.1, 

( ) ( ) ( )
0

lim d
t

t

A S t R t C t s
µ→∞

  
− + + < ∞  

  
∫   

By lemma 4.3, we obtain 

( ) ( ) ( )lim 0
t

A S t R t C t
µ→∞

 
− + + = 

 
  

Then,  

( )lim
t

AS t
µ→∞

=  a.s. 

( )lim 0
t

R t
→∞

=  a.s. 

( )lim 0
t

C t
→∞

=  a.s. 

5. Persistence 

Theorem 5.1. If 0 1sR >  and 
( )

2
2

2
βσ
µ γ

<
+

, then for any initial value  

( ) ( ) ( ) ( )( ) *0 , 0 , 0 , 0S I R C ∈Γ , the solution of system (2.2) has the following 
property:  

( )liminf 0
t

I t
→∞

>  a.s. 
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Proof. From Formula (4.2), we obtain 

( )( ) ( )( )

( ) ( ) ( ) ( )( ) ( )

( ) ( )( )

( ) ( )( ) ( ) ( )

22
0

22

0

ln ln 0

1 d
2

1 1
2

d 1

t

t

I t I
t

S dC S dC S r dC r B r

A A I R d C

S r dC r B r I R d C
t

σβ µ γ σ
µ

β µ γ σ
µ µ
σ β

−

= + − + − + + +

= − + − − + + −

+ + − + + −

∫

∫

 

 

( ) ( )( )

( ) ( ) ( )( ) ( )

( )

2
22 2

2
0

1 1 1
2 2

1 d

1

t

A A I R d C

A I R d C S r dC r B r
t

I R d C

β µ γ σ σ
µ µ

σσ
µ

β

  = − + − + + + − 
  


− + + − + +


− + + −

∫  

From Formula (3.1), we have 

AI
µ

≤  

( )
( ) ( ) ( ) ( ) ( ) ( )

0

1 0
1 d

t

Ad R t R
R I d C r I r B r

t t

β α
σµ

µ ε µ ε µ ε

− +
−

≤ − − −
+ + +∫

 

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0
d

t

A
C t C

C I C r I r B r
t t

β
σµ

µ γ µ γ µ γ
−

≤ − +
+ + + ∫  

So Formula (5.1) can be rewritten as 

( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )( ) ( )( )

22 2

2
2

0

1 1 1 1
2

1 d
2

ln ln 0

t

AI R d C I R d C I R d C

A A S r dC r B r
t

I t I
t

σ σ β
µ

σβ µ γ σ
µ µ

+ + − − + + − + + + −

 
= − + − + + 

 
−

−

∫ (5.2) 

for ( ) ( ) ( ) ( ) AS t I t R t C t
µ

+ + + ≤ , when t →∞ , Formula (5.2) can be rewritten 

as 

( ) ( )( )2 2
0

1liminf 1 1 0
2

S

t

A AI R d C Rσ β σ µ γ
µ µ→∞

 
+ + − + − > − + > 

 
  

( )1I R d C+ + −  can be rewritten as (5.4) 

( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

0

1 1

1 0
1 d

t

I R d C I R d C

Ad R t R
I d C r I r B r

t t

β α
σµ

µ ε µ ε µ ε

+ + − = + + −

− +
−

≤ − − −
+ + +∫
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( ) ( )
( ) ( ) ( ) ( ) ( )

0

0
d

t

A
C t C

I C r I r B r I
t t

β
σµ

µ γ µ γ µ γ
−

+ − + +
+ + + ∫  

Taking inferior limit of Formula (5.4), we have Formula (5.5) 

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

0

0

liminf 1

1
1 liminf

0
liminf 1 d

0
liminf d

1
1 liminf

t

t

t

t

t

t

t

I R d C

A Ad
I

R t R
d C r I r B r

t t

C t C
C r I r B r

t t

A Ad
I

β α β
µ µ

µ ε µ γ

σ
µ ε µ ε

σ
µ γ µ γ

β α β
µ µ

µ ε µ γ

→∞

→∞

→∞

→∞

→∞

+ + −

 − + 
 ≤ + +

+ + 
 
 

− 
+ − − − 

+ + 
 −

+ − +  + + 
 − + 
 ≤ + +

+ + 
 
 

∫

∫

 

liminf
t

k I
→∞

 

where 
( )1

1

A Ad
k

β α β
µ µ

µ ε µ γ

 − + 
 + +

+ + 
 
 

 , if 0 1sR > , 21 0
2

Aβ σ
µ

− > . By substi-

tuting (5.5) into (5.3), 

( )
( )( )0

2

1
liminf

1
2

s

t

R
I t

Ak

µ γ

β σ
µ

→∞

− +
>

 
− 

 

  

therefore, when 0 1sR > , ( )liminf 0
t

I t
→∞

> . 

6. Asymptotic Property around the Epidemic Equilibrium 

Consider the basic reproductive number of stochastic model 0
sR , if 0 1sR < , the 

disease becomes extinct and the solution of stochastic model converges to the 
disease-free equilibrium point of the deterministic model when t →∞ . There-
fore, the following part is to introduce the characteristic of stochastic model 
when the disease survives. 

Theorem 6.1. When 0 1sR ≥ , the result of stochastic model is asymptotically 
stable and is oscillating around the endemic equilibrium of the deterministic 
model when t →∞ . That is 

( ) ( ) ( ) ( )

( )

2 2 2 2* * * *
0

1 2 3 4

1limsup d

min , , ,

t

t
S S I I R R C C s

t
b

a a a a

→∞
− + − + − + −

≤

∫
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where 
*

*
1 *

2 0Sa I
S

µ β γ β− − +
= + <  

*
2 2 3 0A Aa I dβ β µ α β β

µ µ
= − + − − + + <  

( ) ( ) ( )*
3 1 1 2 0Aa d d I dβ β α µ ε ε

µ
= − + − + − + + <  

( ) ( )*
4 * 1 2 0a d d I d

S
γ β β ε µ γ= + + − + − + <  

2 4
2 *

*

12 6A Ab I
S

σ
µ µ

       = + +           
 

Proof. When 0 1sR ≥ , 0 1R ≥ . And the disease-free equilibrium ( )* * * *, , ,S I R C  
of the deterministic model satisfies following equality: 

( )
( ) ( )

( )

* * * *

* * * * *

* * * *

* * * *

0

0

0 1

0

A S S I C
S I d C I I

d C I I R

R C I C

µ β γ

β β µ α

β α µ ε

ε β µ γ

 = − − +


= + − +


= − + − +
 = − − +

  

that is 

( )* * * * 0A S I R Cµ− + + + =   

Define a C2-function W: 4
+ +→R R  by 

( ) ( ) ( ) ( )

( )

2 2 2* * *
*

2* * *
*

1, , ,

ln

V S I R C S S I I R R
S

Id C C I I I
I

= − + − + −

 + − + − − 
 

  

by Itô formula,  

( ) ( ) ( )1 2 3 4 5d d d d dV LV t H B t LV LV LV LV LV t H B t= + = + + + + +   

where 

( ) ( )( ) ( ) ( )
2 2* *

1
1
2

LV I I S d C I S d Cβ β µ α σ σ= − + − + + +
 

( )( )( )* 2 2 2
2 *

1 2LV S S A S SI C S I
S

µ β γ σ= − − − + +
 

( ) ( )( ) ( )2*
3 2LV I I SI d CI I SI d CIβ β µ α σ σ= − + − + + +

 

( ) ( ) ( )( ) ( )2* 2 2 2
4 2 1 1LV R R d CI R d C Iβ µ ε σ= − − − + + −

 

( ) ( )( )( )* 2 2 2
5 2LV d C C R CI C C Iε β µ γ σ= − − − + +  

And 

( ) ( ) ( )( )* * *2 2H I SI d CI S S SI I I SI d CIσ σ σ σ σ= + + − + − +   

 

DOI: 10.4236/jamp.2018.612210 2510 Journal of Applied Mathematics and Physics 
 

https://doi.org/10.4236/jamp.2018.612210


G. Y. Zhang 
 

( )( ) ( )* *2 1 2R R d CI C RC CIσ σ+ − − + −  

from (6.1), we obtain Formula (6.2) 

( ) ( )( ) ( ) ( )

( ) ( ) ( )( )( )
( ) ( )

( ) ( ) ( ) ( ) ( )

2 2* *
1

* * *

2 2*

2 2* * * *

1
2

1
2

1
2

LV I I S d C I S d C

I I S d C S d C

I S d C

I I S S d C C I S d C

β β µ α σ σ

β β µ α β β µ α

σ σ

β β σ σ

= − + − + + +

= − + − + − + − +

+ +

 = − − + − + + 

 

for ( )( ) ( ) ( )2 2* * * *1
2

I I S S S S I I− − ≤ − + − 
  

, Formula (6.2) can be rewritten 

like this 

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2* * * *
1

2 2*

1 1
2 2

1
2

LV S S I I d C C I I

I S d C

β β

σ σ

   
     

≤ − + − + − + −

+ +

   

similarly, 

( ) ( )( ) ( )

( ) ( ) ( )( )
( )
( ) ( ) ( ) ( )( )( )
( )

2*
3

* * * * * *

2

* * * * * *

2

2

2

2

LV I I SI d CI I SI d CI

I I SI d CI I S I d C I I

SI d CI

I I SI S I d CI C I I I

SI d CI

β β µ α σ σ

β β µ α β β µ α

σ σ

β β µ α

σ σ

= − + − + + +

= − + − + − + + +

+ +

= − − + − − + −

+ +

 

for ( ) ( )* * * * *S I SI S I I I S S− = − − − , we have  

( ) ( )( ) ( )
( )( ) ( )

( ) ( ) ( )( )(
( ) ( )( ))

( )( )( ) ( )

* * * * *
3

2*

* * * *

* * *

2* *

2

2

2

LV I I SI S I d CI C I

I I SI d CI

I I I S S S I I

d I C C C I I

I I I I SI d CI

β β

µ α σ σ

β

β

µ α σ σ

= − − + −

− + − + +

= − − − −

+ − − −

− + − − + +

 

( ) ( )( ) ( )

( ) ( )( ) ( )
( )( ) ( )

2 2 2* * * *

2 2 2* * * *

2 2*

2 2

2 2

2

d I S S I I S I I

d I C C I I d C I I

I I SI d CI

β

β β

µ α σ σ

≤ − + − + −

+ − + − + −

− + − + +

 

Similar to 1 3,LV LV , 2 4 5, ,LV LV LV  can be rewritten in the same way  

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2* * * *

2 *

2 2* 2 2 2 * * 2 2 2

*

2 2

2

S S S S C C S S
LV

S

S S S I S S I I S I

S

µ β γ γ

σ β σ

− − − − + − + −
≤

− + − + − +
+
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( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )

2 2 2* * * *
4

2 2 2* * 2 2 2

1 1

1

LV d C R R I I d I R R

I I R R d C I

β β

µ ε σ

≤ − − + − + − −

+ − − + − + −
 

And 

( ) ( ) ( ) ( )
( )( )

2 2 2 2* * * * *
4

2* 2 2 2 22

LV d C C R R d C C C I I

d C C d C I

ε β

γ µ σ

≤ − + − + − + −

− + − +
  

Then we obtain 

( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

*2* *
*

2* *

2* *

2* *
*

2 22 2 2 2 2 2
*

2 2

2 2 1 2

1 1 2

1 2 2

1 1
2

I SLV S S I
S

I I S I d C d C

R R d C d I d

C C d d I d I
S

I S dC S I SI dCI
S

µ β β γ β

β β β β β µ α α

β β α µ ε ε

γ β β ε µ γ β

σ σ σ

 − − − +
≤ − + 

 

+ − − + + + + − − + +

+ − − + − + − + +

 + − + + − + − + − 
 

+ + + + +

 

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 2 2

*2* *
*

2* *

2* *

2* *
*

1

2

2 3

1 1 2

1 2

d C I dC I

SS S I
S

A AI I I d

AR R d d I d

C C d d I d
S

σ σ

µ β γ β

β β µ α β β
µ µ

β β α µ ε ε
µ

γ β β ε µ γ

+ − +

 − − +
≤ − + 

 
 

+ − − + − − + + 
 
 

+ − − + − + − + + 
 
 + − + + − + − + 
 

 

( ) ( )

( )

( )

( )

( ) ( ) ( ) ( )

2 2* 2 2 2 2 2
*

2 2 2 2 2 2 2

*2* *
*

2* *

2* *

1 1
2
1

2

2 3

1 1 2

I S dC S I SI dCI
S

d C I dC I

SS S I
S

A AI I I d

AR R d d I d

σ σ σ

σ σ

µ β γ β

β β µ α β β
µ µ

β β α µ ε ε
µ

+ + + + +

+ − +

 − − +
≤ − + 

 
 

+ − − + − − + + 
 
 

+ − − + − + − + + 
 

 

    

( ) ( ) ( )

( ) ( ) ( ) ( )

2* *
*

2 4
2 *

*

2 2 2 2* * * *
1 2 3 4

1 2

12 6

C C d d I d
S

A AI
S

S S a I I a R R a C C a b

γ β β ε µ γ

σ
µ µ

 + − + + − + − + 
 

       + + +           

= − +∗ ∗ ∗ ∗− + − + − +

 

Let  
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( ) ( )
0

d
t

K t H B s= ∫ , ( ) ( ) 2
0 0 0

, d d d
t t t

tK K H B s H B s H t= =∫ ∫ ∫ ,  

so we have 
4

2,
lim 144t

t

K K A
t

σ
µ→∞

 
≤ < ∞ 

 
 

then, 

( )
lim 0
t

K t
t→∞

= , a.s. 

therefore, 

( ) ( ) ( ) ( )

( )

2 2 2 2* * * *
0

1 2 3 4

1limsup d

min , , ,

t

t
S S I I R R C C s

t
b

a a a a

→∞
− + − + − + −

≤

∫
  

7. Computer Simulations 

In order to verify the above conclusions, the numerical simulation results of de-
terministic and stochastic models and their comparisons are given below. In 
these figures, ( )StoS t , ( )StoI t , ( )StoR t  and ( )StoC t  denote the amount 
of ( )S t , ( )I t , ( )R t , ( )C t  that change over time in stochastic model. 

( )FixS t , ( )FixI t , ( )FixR t  and ( )FixC t  denote the amount of ( )S t , ( )I t , 
( )R t , ( )C t  that change over time in deterministic model separately. 
We use R to solve these three examples and get figures. 
Example 1. let 0.2A = , 0.2µ = , 0.4β = , 0.1γ = , 0.19α = , 0.2d = , 

0.7ε =  and 0.05σ = . The initial values of deterministic and stochastic models 
are both ( )0 0.4S = , ( )0 0.2I = , ( )0 0.2R = , ( )0 0.2C = . We compute that 

0 1R >  and 0 1sR > . Then theorem 6.1 implies that the system will persist and 
the solution of stochastic model will randomly oscillate around the positive 
equilibrium point of its corresponding deterministic model. The simulation re-
sult is shown in Figure 2.  

Example 2. let 0.2A = , 0.2µ = , 0.4β = , 0.1γ = , 0.15α = , 0.2d = , 
0.7ε =  and 0.3σ = . The initial values of deterministic and stochastic models 

are both ( )0 0.4S = , ( )0 0.2I = , ( )0 0.2R = , ( )0 0.2C = . We compute that  

0 1R >  0 1sR <  and 
( )

2
2

2
βσ
µ γ

<
+

.  

Then theorem 4.1(b) implies that the disease will be extinct, as shown by the 
following four pictures in Figure 3. 

Example 3. let 0.2A = , 0.2µ = , 0.4β = , 0.1γ = , 0.15α = , 0.2d = , 
0.7ε =  and 0.6σ = . The initial values of deterministic and stochastic models 

are both ( )0 0.4S = , ( )0 0.2I = , ( )0 0.2R = , ( )0 0.2C = . We compute that  

0 1R >  and 
( )

2
2

2
βσ
µ γ

>
+

.  
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Figure 2. The sample paths of model (2.2) with 0 1R >  and 0 1sR > . 

 

 

Figure 3. The sample paths of model (2.2) with 0 1R >  0 1sR <  and 
( )

2
2

2
βσ
µ γ

<
+

. 

 
Then theorem 4.1(a) implies that the disease will be extinct, as shown by the fol-
lowing four pictures in Figure 4. 
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Figure 4. The sample paths of model (2.2) with 0 1R >  and 
( )

2
2

2
βσ
µ γ

>
+

. 

8. Conclusions 

The solution of our stochastic SIRC model is affected by basic reproduction 
number and noise strength. When the noise is small, the solution of the stochas-
tic model converges to the disease-free equilibrium point of the deterministic 
model if 0 1sR < . And if 0 1sR > , the solution of the stochastic model fluctuates 
around the epidemic equilibrium of the deterministic model. When the noise is 
large, the disease tends to extinction. 

In Section 6, we get that the solution of the stochastic model fluctuates around 
the epidemic equilibrium of the deterministic model. Our next work is to prove 
this conclusion is valid by probability; that is  

( ) ( ) ( ) ( )( )2 2 2 2* * * *lim 0 1
t

P S S I I R R C C
→∞

− + − + − −


= 


+ = . 
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