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o oo st -
pen fccess non-autonomous thermoviscoelastic equation with strong damping

|| w, — Au—Au, +'[0+wg(s)Au(t—s)ds—Aut +VO=0(xt),xeQ,t>7, (1.1)

1. Introduction

9,—A¢9+divut=f(x,t),er,t>T, (1.2)
6(x,t)=u(x,t)=0, on dQx[r,+x), (1.3)
u(x,z’)zué (x),u, (x,r):uf (x), u(x,t):ur (x,t), 0()6,2’)29(; (x),er, (1.4)

where Qc R"(n=1,2) is a bounded domain with smooth boundary 0Q, u
and 6@ are displacement and temperature difference, respectively. u, (x,t)
(the past history of u) is a given datum which has to be known for all <17, the
function g represents the kernel of a memory, O'=0'(x,t), f=f (x,t) are

non-autonomous terms, called symbols, and o is a real number such that

l<p<

ifn>3 p>1 if n=12. (1.5)

n—
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Now let us recall the related results on nonlinear one-dimensional thermovis-
coelasticity. Dafermos [1], Dafermos and Hsiao [2], proved the global existence
of a classical solution to the thermoviscoelastic equations for a class of solid-like
materials with the stress-free boundary conditions at one end of the rod. Hsiao
and Jian [3], Hsiao and Luo [4] obtained the large-time behavior of smooth so-
lutions only for a special class of solid-like materials. Ducomet [5] proved the
asymptotic behavior for a non-monotone fluid in one-dimension: the positive
temperature case. Watson [6] investigated the unique global solvability of clas-
sical solutions to a one-dimensional nonlinear thermoviscoelastic system with
the boundary conditions of pinned endpoints held at the constant temperature
and where the pressure is not monotone with respect to z and may be of poly-
nomial growth. Racke and Zheng [7] proved the global existence and asymptotic
behavior of weak solutions to a model in shape memory alloys with a stress-free
boundary conditions at least at one end of the rod. Qin [8] [9] obtained the
global existence, and asymptotic behavior of smooth solutions under more gen-
eral constitutive assumptions, and more recently. Qin [10] has further improved
these results and established the global existence, exponential stability and the
existence of maximal attractors in H' (i = 1,2,4). As for the existence of global
(maximal) attractors, we refer to [11] [12] [13]. More recently, Qin and Lii [12]
obtained the existence of (uniformly compact) global attractors for the models of
viscoelasticity; Qin, Liu and Song [13] established the existence of global attrac-
tors for a nonlinear thermoviscoelastic system in shape memory alloys.

Our problem is derived from the form

f(u, )u, — Au—Au, =0, (1.6)

which has several modeling features. The aim of this paper is to extend the decay
results in [14] for a viscoelastic system to those for the thermoviscoelastic system
(1.1-1.2) and then to establish the existence of the uniform attractor for this
thermoviscoelastic systems. In the case f (u,) is a constant, Equation (1.6) has
been used to model extensional vibrations of thin rods (see Love [15], Chapter
20). In the case f (u,) is not a constant, Equation (1.6) can model materials
whose density depends on the velocity u,. For instance, a thin rod which
possesses a rigid surface and with an interior which can deforms slightly. We
refer the reader to Fabrizio and Morro [16] for several other related models.

Let us recall some results concerning viscoelastic wave equations. In [17], the

author concerned with the quasilinear viscoelastic equation
u, —Au+_[;g(t—r)Au =|u|y+1 , (1.7)
he proved that the energy decays similarly with that of g In [18], Wu considered
the nonlinear viscoleastic wave equation
|ut|pu”—Au—Au”+g*Au+|u|pu=0 (1.8)

with the same boundary and initial conditions as (1.7), the author proved that,

for a class of kernels g which is singular at zero, the exponential decay rate of the
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solution energy. Later, Han and Wang [19] considered a similar system like:
|ut|pun—Au—Autt+g*Au+|ut|mut =0, (1.9)

with Dirichlet boundary condition, where p>0,m >0 are constants, they
proved the energy decay for the viscoelastic equation with nonlinear damping.
Then Park and Park [20] established the general decay for the viscoelastic

problem with nonlinear weak damping
|ut|puﬂ—Auﬂ—Au+g*Au+h(ut):0, (10)

with the Dirichlet boundary condition, where p >0 is a constant. In [14],
Cavalcanti et al studied the following equation with Dirichlet boundary

conditions
|u,|pun—Au—AunJrg*Au—yAu, =0 (1.11)

where g*Au= L; g(t—s)Au(s)ds . They established a global existence result for
720 and an exponential decay of energy for y >0, and studied the
interaction within the |ul|p u, and the memory term g *Au. Messaoudi and
Tatar [21] established, for small initial data, the global existence and uniform

stability of solutions to the equation
|u[|p u, —Au—Au, +g*Au =b|u|p_2 u, (1.12)

with Dirichlet boundary condition, where y >0,p0,b>0,p >2 are constants.
In the case »=0 in (1.12), Messaoudi and Tatar [22] proved the exponential
decay of global solutions to (1.12) without smallness of initial data, considering
only the dissipation effect given by the memory. Considering nonlinear dissipation.

Recently, Aradjo et al. [23] studied the following equation
|u,|p u, —Au—Au, +I0m,u(s)Au(t —s)ds+ £ (u)=h(x),

and proved the global existence, uniqueness and exponential stability, and the
global attractor was also established, but they did not establish the uniform
attractors for non-autonomous equation. Then, Qin et al [24] established the
existence of uniform attractors for a non-autonomous viscoelastic equation with

a past history
|u,|p u, —Au—Au, +f0+wg(s)Au(t—s)ds+u, =o(xt),xeQt>r,

Moreover, we would like to mention some results in [25] [26] [27] [28] [29].

For problem (1.1)-(1.4) with O'(x,t) =0, when I(:wg(s)Au(t—s)ds was
replaced by g*Au, Han and Wang [30] established the global existence of
weak solutions and the uniform decay estimates for the energy by using the
Faedo-Galerkin method and the perturbed energy method, respectively. To the
best of our knowledge, there is no result on the existence of uniform attractors
for non-autonomous thermoviscoelastic problem (1.1)-(1.4). Therefore in this
paper, we shall establish the existence of uniform attractors for problem (1.1)-(1.4)

by establishing uniformly asymptotic compactness of the semi-process generated
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by their global solutions. Noting that the symbol O'(x,t), f (x,t), which are
dependent in £ so our estimates are more complicated than [23] [24] and we
must use new methods to deal with the symbol O'(x,t), f (x,t) as the change
of time. Therefore we improved the results in [23] [24]. For more results
concerning attractors, we can refer to [31]-[37].

Motivated by [38] [39] [40], we shall add a new variable 7 =7' (x,s) to the

system which corresponds to the relative displacement history. Let us define
n=n'(xs)=u(xt)-u(xt-s), t>27,(x,5) e QxR". (1.13)
A direct computation yields
n (x,8)=-n!(x,8)+u, (x,t), 127,(x,5) e QxR", (1.14)
and we can take as initial condition (¢t =7
n (x,8) =ug (x)—uy (x,7-5), (x,5) e QxR". (1.15)
Thus, the original memory term can be written as
[“g(s)Au(t—s)ds=| "g(s)ds-Au—["g(s)An'(s)ds,  (1.16)
and we get a new system
1,1, ()5 ) A=, = [ " (5) A7y (s)ds = A, + VO = (x.0), (1.17)
6, = AG +divu, = f(x,1) (1.18)

=, (1.19)
with the boundary conditions
u=0 on 0QxR*, n'=0 on 0QxR"xR*, (1.20)
and initial conditions
u(x,7)=ug (x),u,(x,7)=u (x),7' (x,0)=0,7" (x,5) = ug (x)—u(x,7—s).(1.21)

The rest of our paper is organized as follows. In Section 2, we give some
preparations for our consideration and our main result. The statements and the
proofs of our main results will be given in Section 3 and Section 4, respectively.

For convenience, we denote the norm and scalar product in I’ (Q) by ””
and (,) , respectively. C, denotes a general positive constant, which may be

different in different estimates.

2. Preliminaries and Main Result

We assume the memory kernel g:R" —>R" is a bounded C' function such
that

g(s)<+oo,l:1—.fo+wg(s)ds>0 (2.1)

and suppose that there exists a positive constant &, verifying
g'(1)<-&g(1), V=0, (2.2)

In order to consider the relative displacement 77 as a new variable, one
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introduces the weighted I*-space
M= L (R (@) = {us R — Hy (@)1, g (5)[Vu(s)] ds <+,
which is a Hilbert space equipped with inner product and norm
+o0 +00 2
(u,v)M = fo g (s)(IQVu (s)Vv(s)dx) ds and ||u||i/l = JO g (s)"Vu (s)" ds,
respectively.
Let
7 =Hy(Q)x Hy (Q)x I* (Q)x M. (2.3)
Define the generalized energy of problem (1.17)-(1.21)
1

F(t)=—u.(¢)

_p+2

p+2

2
eIV 3 1ve o +lef <3 [, e
To present our main result, we need the following global existence and
uniqueness results.
Theorem 2.1. Let (ué,uf,@{,?]’)e/‘/ (VreR*) , R, =[T,+OO) , and any
fixed o, f € E,. Assume (2.1) and (2.2) hold. Then problem (1.17)-(1.21) admits a
unique global solution (u,ut,H,n’ ) € C([O,T],// ) such that

uel* (R, Hy(Q)),u, e L* (R, Hy (Q)),u, € I (R,, Hy (Q)), (25)
0el” (R, Hy(Q)),n eL*(R,,M). (2.6)

We now define the symbol space for (1.17)-(1.21).
Let

G=(o,f,0)€E, ELZ(]R+,(L2 (Q))3). 2.7)

Observe the following important fact: The properly defined (uniform) attractor A
of problem (1.17)-(1.21) with the symbol G, must be simultaneously the
attractor of each problem (1.17)-(1.21) with the symbol G(t) eH, (GO) , which
is called the hull of G, and defined as

S=H, (G,)=[G,(t+h)|heR"] (2.8)

£
where [-] . denotes the closure in Banach space E,.
1
We note that

. 3
GO eE‘l - El :L?oc (R+’(L2 (Q)) )
where G, is a translation compact function in E] in the weak topology,
which means that G, is compact in E;. We consider the Banach space
17

loc

(R,E,) of functions ,u(s),s € R" with values in a Banach space E, that
are locally p-power integrable in the Bochner sense. In particular, for any time
interval [1,,5,]cR",

J; B ds <.

Let u(s)ell

loc

(R+ LE, ) , consider the quantity
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77” (h) _ Sup J'l+h

t
teR”

y7, (s)"p ds.

Ey

Lemma 2.1. Let ¥ defined as before and G, € E|, then

1) G, is a translation compact in l:fl and any GeX=H, (Go) is also a
translation compact in El , moreover, H, (G) cH, (GO) ;

2) The set H, (Go) isbounded in I? (RﬂL2 (Q)) such that

1 (h) <ng, (h) <+, forallGeX.
Proof. See, e.g., Chepyzhov and Vishik [41].

Lemma 2.2. For every 7 €R, every non-negative locally summable function
@ on R = [2',+OO) and every v >0, we have

sup ,Lt(ﬁo (S)ei‘/(ﬂ)ds = 1 : Rl (S)ds

> —€ >

foraa. t27.

Proof. See, e.g., Chepyzhov, Pata and Vishik [42].

Similar to Theorem 2.1, we have the following existence and uniqueness result.

Theorem 2.2. Let £=H, (G,)= [GO (t+h)|heR" ]E] , where G, €E, isan
arbitrary but fixed symbol function. Assume (2.1) and (2.2) hold. Then for any
G eX and for any (ué,uf,@or,nf)e 4 (VT e ]R*) , problem (1.17)-(1.21) admits
a unique global solution (u, u,0,n' ) € .# , which generates a unique semi-process
{UG (t,z')},(t >reR",Ge Z) on -# of atwo-parameter family of operators
such that forany 1>7,7eR",R, =[r,+),

U, (t,r)(ué,uf,@,if):(u,u,,H,n’)e v, (2.9)
uel” (Rr’H(lJ (Q)), u el” (RT,H(; (Q)), u,el’ (RT,H(I) (Q)),
0el” (R, Hy(Q)).n' e L* (R, M). (2.10)

Our main result reads as follows.
Theorem 2.3. Assume that Ge E, and X is defined by (2.8), then the family
of processes {UG!f (t, T)} (G eX,t>1,7€ ]R+) corresponding to (1.17)-(1.21) has

a uniformly (w.r.t. G € X) compact attractor A, .

3. The Well-Posedness

The global existence of solutions is the same as in [23] [30] [40], so we omit the
details here. Next we prove the uniqueness of solutions.

We consider two symbols o, f; and o,,f, and the corresponding
solutions (u,@l,i]’) and (V,Hz,cf’) of problem (1.17)-(1.21) with initial data
(ug,uf,é’w,nr) and (vé,vf,@zo,gf) respectively. Let a)(t) = u(t)—v(t) ,
p(1)=6,(1)=0.(1), ¢ (x.5)=n'(x.5)=&" (x.5).

Then (w,p,é") verifies

|ut |p ®,+v, (|ut |p - |v[ |p ) -IAw-Aw,

(3.1)
—.[(:mg(s)Aé’(s)ds—Aa)t +Vp=0,-0,,xeQ,t>r,
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p,—Ap+divo=f, - f,, (3.2)
G+ =0, (3.3)

with Dirichlet boundary conditions and initial conditions
o(x,7)=w0),0,(x,7)=0f ,p(x,7)=p,{ =n" =& (3.4)

The corresponding energy for (3.1)-(3.3) is defined

1 / 1 1 1 2
EIQ|ut|p a)tzdx +E"V(0"2 +5"th”2 +E"H"2 +E||éd ||M . (35)

,p

It is easy to see that

(€5:¢) =3 -1 [ j;*g(s)ilva’(s)lz ds]dx
3Ll e () o)ar

Noting that x — |x|p is differentiable since p >1. Then

l%jﬁ|ut|pa)t2dx=_|.ﬂ|ut|pa) a)dx+pf |u |p *uu @] dx,

and clearly
SE, ) =val 3] e O o
+j 0,0, )odx+ [ (f; - /,)6dx (3.6)

pJ' |u |p1uﬂa)tdx i@, (|ut|p—|vt|p)dx

To simplify notations, let us say that the norm of the initial data is bounded by
some R>0.Thengiven 7 >7 weuse C,, todenote several positive constants
which depend on Rand T

By Young’s inequality and the interpolation inequalities, we derive

(01 =)ot <o, ~ o] <o~ o} +Cor B, (1), (37)

Um-medx\snﬁ — £ +Cur e, (0), (3.8)

p-1
| u,o, dx‘ p"u
p+]

5 wlle . < CorIVu Vol 39)

o (e e (A e Y G PP
<c (ke L+ o
<c vy lIvaf.

which, together with (3.6)-(3.9), yields for some C, >0 large

d
S gy <lo ol +1 - 4 + G (47 V) B () G0

Integrating (3.10) from 7 to tand using Holder’s inequality, we have

E, (t)<E,,(r)+[ o (s)- ~ £, (s)[ ds

DOI: 10.4236/jamp.2018.612209 2481 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.612209

Z.Y.Ma

G [ (1+]va [+ 9% ) B, (5) ds

<E,, @+ [ o (s)=o (s)] ds+ !

. 1
G ([0l o f (122, (o)

L)L) as G

Noting that

J (9 9, ) ds < €.

then we get for any f € [T,T]

£, (1)<2(E,, ()+[

o1 (s) o () ds+ 1 (5) - 5 () )

(3.12)
+Cyp [ B2 (s)ds.
Applying Gronwall’s inequality, we see that
£, () <3 (E, (o) o (s) -0 (o) as
(3.13)

SIDEAD R !

Using | [u,|” |o,[* dx <llu,|”, o, ||i+2 < Cur [V | > we know that E,, ,(¢) is

p+2
equivalent to the norm of u,0 in ~# and we get
2

Ew,p (T)SCRT (a)g’a)lr’pg’é/r) P )

which, together with (3.13), gives forall 7<¢<T
"”(t)_v(t) 2(1) +||ut (t)_vt (t)

2
SCRT(

.t
Hy

2
M

2
H} +||77! _51

2

2(r1:(9) )

This shows that solutions of (1.17)-(1.21) depend continuously on the initial

2
+|oy o,
M 1 2

n=¢&’

2
T T T T

Uy =V U =Vt
0

data. We complete the proof of Theorem 2.1.

4. Uniform Attractors

In this section, we shall establish the existence of uniform attractors for system
(1.17)-(1.21). To this end, we shall introduce some basic conceptions and basic
lemmas. For more results concerning uniform attractors, we can refer to [31] [36]
[37] [43] [44].

Let X be a Banach space, and S be a parameter set. The operators
{Ug (t.7)} (t >r,reR,Ge f:) are said to be a family of processes in X with
symbol space X ifforany GeX,

Ug (t,5)Ug (5,7)=Ug (t,7), Vizs>t,7eR", (4.1)
Ug(7,7)=1d (identity), VzeR" (4.2)

Let {T (S)} be the translation semigroup on 3, we say that a family of
processes {U, (t,7)} (t >7,7eR",Ge i) satisfies the translation identity if
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UG(t+S,T+S)=UT(s)G(t,T), VvGelt>r,r,se R, (4.3)
T(s)i:ﬁ, VseR". (4.4)

By B (X ) we denote the collection of the bounded sets of X, and
R, =[r,+®),7eR".

Definition 4.1. A bounded set B, € B (X ) is said to be a bounded uniformly
(wrt GeX) absorbing set for {UG (t,z-)}(G eli>r,re R+) if for any
7eR" and Be B(X) , there exists a time Tj =T (B,T) 27 such that

UU, (1.,7)B< B,, (4.5)

Ges

forall t>7T;.

In the following, as usual, (w.r.t) will represent “with respect to”.

Definition 4.2. The family of semi-processes {UU (t.o)}(t=27,7eR o€ ﬁ)
is said to be asymptotically compact in X if {U{I (t,z-)(ué(”),uf(”),6’5("),777(”) )} is
precompact in X, whenever (ug(”),ul’(”), eg<">,77’(">) is bounded in X, G") %,
and ¢, €R_,t, >+ as n—>+o.

Definition 4.3. A set 4 < X is said to be uniformly (w.rt Ge ) attracting
for the family of semi-processes {UG (t,z-)} (t >r,reR" Ge i) if for any fixed
7eR" andany BEB(X),

lim (sup dist (U, (t,7) B, 4)) = 0, (4.6)

1>+

here dist(-,-) stands for the usual Hausdorff semidistance between two sets in
X. In particular, a closed uniformly attracting set A is said to be the uniform

(w.r.t G eX) attractor of the family of the semi-process

{UG (t,‘r)}(t >r,7eR",G ef‘,)

if it is contained in any closed uniformly attracting set (minimality property).
Definition 4.4. Let X be a Banach space and Bbe a bounded subset of X,%
be a symbol (or parameter) space. We call a function ¢(, -;-,-) , defined on

(XxX)x(ﬁxﬁ) to be a contractive function on Bx B if for any sequence

©

{xn}:o:1 cB andany {u,}c 3., there is a subsequence {xnk }::1 c{x,)”, and
{#, }ZI <{u,} , such that

lim lim g (x, ,x, s 4, 44, ) = 0. (4.7)

k—0 [—>w

We denote the set of all contractive functionson BxB by Contr(B,i) .

Lemma 4.1. Let {UG (t,r)}(t >7,reR",Ge ﬁ) be a family of semi-processes
satisfying the translation identities (4.3) and (4.4) on Banach space X and has a
bounded uniformly (w.rt Ge ) absorbing set B, — X . Moreover, assuming
that for any &> 0, there exist T=T(BO,8) >0 and ¢, € Contr(BO,i) such
that

"UGI (T,O))C—UG2 (T,O)y"S E+¢; (x,y;Gl,Gz),V Ges,tz2r,reR". (4.8)

Then {UG (t,r)}(t >r,reR",Ge ﬁ) is uniformly (w.r.t G e3) asymptoti-
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cally compact in X.
Proof. This lemma is a version for semi-processes of a result by Khanmamedov
[45]. A proof can be found in Sun et al [43], Theorem 4.2.

Next, we will divide into two subsections to prove Theorem 2.3.

4.1. Uniformly (w.r.t. G €X) Absorbing Setin #

In this subsection we shall establish the family of processes {UG (t,r)} has a
bounded uniformly absorbing set given in the following theorem.

Theorem 4.1. Assume that Ge E, and X is defined by (2.7), then the family
of processes {UG (t,z’)}(G eXt>1,T€ R*) corresponding to (1.17)-(1.21) has a
bounded uniformly (w.r.t. G €X) absorbingsetBin 7 .

Proof. We define

F()= bl e Ivel 31wl < Sl + o, @)
Using Young’s inequality, Poincaré’s inequality, we arrive at
F(t)==|Vu | =(n1'),, (o) +(£,0)
<o L e o as i rt)
2 2 270 2¢

Let

o) +]7 () )ds for all £ > 7. (4.11)

R =F+5 [
Then (4.11) gives F(¢ ( ) 0, whence from (4.9), for t>7>0
PR B0 =F @)+ [ (lo@f | @) o
:F(T) ("O_"L2 R,,2(Q )+"f||iz(n1z,,ﬁ(9)))’
/ 2 1 2 2 1y e
SIval +Zvu ]+ el +5||77 |, <F()<E()<F(r). “13)
Now we define

(D(t J‘ |u |p u udx+J Vu, - Vudx. (4.14)

p+1°¢

From (1.17), integration by parts and Young’s inequality, we derive for any

e€(0,1),

'(¢t) =(1Au+j;wg(s)Anl (s)ds +Au, —V9+O',u)

+ ! (|ut|p ) (Aut,ut)

p+1
—|vuff _(vu, J g(5) ' (s)ds )~ (v O.u)

(4.15)

+(Au,u) || 12+ IVl + (o).

Using Young’s inequality, Holder’s inequality and Poincaré’s inequality, we

DOI: 10.4236/jamp.2018.612209

2484 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.612209

Z.Y.Ma

deduce

1
|(Aut,u)| < g”Vu"2 +4—8||Vut ||2 , (4.16)

1 1
|-(VO.u)| < eljul JFE||V¢9||2 < eA? |Vl +E||V€||2 , (4.17)

‘_(w, (g (s)Vn (s)ds)‘

< ||Vl +Lj (rwg(s)Vnt (s)ds)zdx (4.18)
~1 2
<e|vill + 2 [e @ (o) &
1 1
() < effull + 5Nl < o2 [Vl + -l (4.19)

hereinafter we use A to represent the Poincaré constant.

From the expression of F (t) we get
+2 1 2 1 ) 1 N
e e R T

which, together with (4.15)-(4.19), yields

[l =2
/ p+2

' 1 1 2

D'(1) < —5(1—25/12 - 2¢)|Vul —5(1—2512 —25)(7F(t)
2 1 2 Ly 1p P

T L L

1-1y .12 1 . 1
s PR 2 i (B3 1

1
(el +Iv el

1=2eA* =2¢

=0

~{1-262 - 25)vuf -
1-2e0* -2¢ P2
(e
1
[“E* (i- 2,9/12—2.9)}"% i (420)
( (l 25&2—26 ]”77 "
+4i||a||2+(%+i]uveuz

&

Noting that ||Vu, ||2 <2F(t)<2F(r) and the embedding theorem
H' (Q)— 2P (Q), we have forany ¢ € (0,1) ,

1—2812 - 26‘ || |p+2
I(p+2) p +1 pr2
<G ey < GV e

p+]
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< g"Vu, ||2(p+1)

<27 eFP

which, together with (4.20) and Poincaré’s inequality, gives

2
@'(£) < —%(1—25/12 —2¢) |Vl _[1—25#_%# eF? (T)JF(t)

2
+ (1 +LC5&2 Lm2eh —2e +LJ||Vut||2
4g 21 4g

(4.21)
4 1_2812 —25 +ﬂ || l||2
2 [
ol (2 ivor
Now we take € € (0,1) so small that
2
l—2£/12—252é, 1_26%%28—2””5171” (7)2%. (4.22)

Hence from (4.21)-(4.22), it follow
, l 1 (12 1
(1)< = Vul = F () +C |, + €, (Ivu I +[vel) +o el 423
We define the functional
1
¥(t)= jﬂ(Au, Y
It follows from (1.17) that

‘I"(t)=J.Q(—IAu—J.+wg( n'(s)ds+u, +VO- a)rwg(s)r]’(s)ds

+'[Q(Aut - p+1|u I’ utj.[o%g (s)m; (s)ds (4.25)

=1 +1,.

|u,|” u,jj‘gwg(s)n’ (s)dsdwx. (4.24)

From Young’s inequality, Hoélder’s inequality and Poincaré’s inequality, we
derive for any &€(0,1),

o (1) [ ()1 ()| < o] va L g{;’) T . (426)

L~(1sts)an (s)as) as| <=0 [, (4.27)

e () ()| < v +—||77 [, s

- ["a(s)n (s)as| <olvel +7 (4.29)
Jo(-0)[ g (5) (s)| < S o +—|| T,

which, together with (4.26)-(4.29), gives
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1
<o(IVu [ + vl +||V«9||2)+—||0||2

3(1_1) (1+/12+12 (4.30)

; 2\,

+

Noting that
j;“’g(s)n;(s)ds=—j*°° ) ’sds+r°°g s)u, (¢)ds
=["g (s)ds+(1-1)u,,
then we have
== (=DIV = 72+ () (e (5) s
(4.31)
p+1IIu|” I”' 7' (s)dsdx.
By Young’s inequality, we derive
[7g'(s)[ Au, (£)n' (s)dxds
Al Ol ol (43
<o 0 - L @ () o

and for any ¢ >0

p+1I |u |p rw ' dsdx<5||Vu || -C J.ﬂ0 "Vn’(s)"zds

which, together with (4.30)-(4.32) and taking & >0 small enough, yields

1-1/ +
—— -6

12_——||v I - - (Ve () s @33

Inserting (4.30) and (4.33) into (4.25), we arrive at
, 1-1 2 1
(1) <=V [ +o (Ival v el )+ c [, +2 o
0 2 1-1/ +2
~C[g (s)|va' ()] ds—m””x I
Set
H(t)= MF(t)+&®(1)+ ¥ (1), (4.35)

where Mand ¢ are positive constants.
Then it follows from (4.10), (4.23), (4.34) and (2.2) that

, M le £ 1-1 M
RO T ) L T O e

‘(%—5—C'€)||ve|r+(ﬂ—q‘%)Ifg%s)llw () asta30
oSt ot + e~
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Now we claim that there exist two constants S, 5, >0 such that

PF(1)<H(t)< BF(t), t20. (4.37)

Forany f2>7,wetake & sosmallthat

M IE ceso (4.38)
2"

For fixed &, we choose ¢ small enough and A so large that
M+§—Clg > 0,1—8—5 >0, M—C1 -Cé, >0.
2 4 2
Then there exist a constant 7 >0 such that
H' (1)< =yF (0)+C (Jo] +1/T)- (4.39)
which, together with (4.37), gives

H'(f)< —ﬁlH(t)+Cl (Il +1/1°). (4.40)

2

Integrating (4.40) over [T,t ] with respect to fand using Lemmas 2.2-2.3, we

obtain

i) ¢ ) 2 2
H(t)<H(r)e ” +C1Le b (”0'(3)” +||f(s)|| )ds

‘ﬂL("f) 1 t+1
<Czpe ™ +(C p supj.t (
- 27

P

() +[r () s (aan)

1-e
—é(t—r) 1
<Cge +C, LnG(l).

l—e_ﬁ2

Now for any bounded set B, < .+, for any (ug ,uy , 6y ,77’) € B, , there exists
aconstant Cy >0 suchthat F(r)<Cy <C,.Taking

s, (1) +1],
_r

J22)

R} =2|2C,

1-¢

- Cn. (1)+1
B

2 - ’
Cg | 1-e P2

then for any #>¢, >1, we have

—L(t—r) 1 2
H(1)<Cge ™ +C — 16, (1)57,
1-¢
which gives
H(u,ut,ﬂ,nt)  <2H(1)=R;,
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Le,
B=B(0,R))= {(u,ut,é’,n’ ) eV :“(u,ut,ﬁ,n’ )”2 < Ré} c 7
is a uniform absorbing ball for any G € E| . The proof is now complete.

4.2. Uniformly (w.r.t. o €X) Asymptotic Compactnessin #

In this subsection, we will prove the uniformly (w.r.t. Ge€X) asymptotic
compactness in -~ , which is given in the following theorem.

Theorem 4.2. Assume that G € E, and X is defined by (2.8), then the family
of processes {UG (t,r)}(GeZ,tZr,reR*) corresponding to (1.17)-(1.21) is
uniformly (w.r.t. G €X) asymptotically compactin -+ .

Proof. For any (ugi,ufi,ﬂgi,ni’)e B,i=1,2. We consider two symbols o, f;
and o,,f, and the corresponding solutions u,,6, and u,,f, of problem
(1.17)-(1.21) with initial data (ugi,ufi,%.,nf) , i=1,2, respectively. Let
o(t)=u (1) -1, (t), p(1)=6,(1)-0,(1), ¢ ()= (x.5)-1 (x.5).

Then (a),é' ’) verifies

P P p
|ult| W, + Uy, (|u1t| - |u2t| )_ A - Aa)tt

(4.42)
—J'(:wg(s)Ag(s)ds—Aa)t +Vp=0,-0,,xeQt>1,
p,—Ap+divo=f - f, (4.43)
i+ =0, (4.44)
with Dirichlet boundary conditions and initial conditions
o(x,7)=a),0,(x,7)=0,p(x,7)=p;.{" =0 —1n;. (4.45)

The corresponding energy for (4.42)-(4.45) is defined
1 / 1 1 1
E, ()= [ fu] @lax ZVal + Vo [ +JJof +J[¢ [, (440
Clearly,
d 1 oo,
EEw’p(t) =—|Vo, ||2 +EI° g (s)"Vé” (s)"2 ds
+,[Q(51_Gz)wrdx+fg(ﬁ_fz)ﬁdx (4.47)
+ §IQ|ult |P*1 uma)tzdx - _[QMZttwt (|u1t |P - |”2t |P )dX

Using Holder’s inequality, Poincaré’s inequality and Theorem 4.1, we derive

UQ(O'1 —Uz)a),dx‘ < ||O'1 -0, ||||a)[ ||, (4.48)
1,05 =) pax| <[ £, = ] (4.49)
P - P -
N R e ey 20 o Y
<Gy [V, | Vo, ||V et o] (4.50)
<Cy o[ [Vau ],
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P P
- QuZn (|u1t| _|u2t| )a)tdx‘

ST 0 Y (7 T ey 1
< G Vs (Ve [ + Vs | o]
< Gy [Vitz o]

which, combined with (4.47)-(4.50), yields

d +o0
GO lal el <3 e e @ astloflo -
+M—mquuw%ww%mmw
We define

1
@, ,(1)= J'Q|u“ |” w,dx + L}Va;, -V odx +EIQ(Va))2 dx. (4.52)
It is very easy to verify

1
., <5 (Val +IVal )+, .l

sqmwﬁ+wmm3Q@Ag

1
o+l

Taking the derivative of @, (t ) , it follows from (4.42)-(4.43) that
q);),p (t) = _I Ui (|u1, |p —|u2, |p )“)dx—l"W)"z
—IV(OI dsdx+.[Vpa)dx+J. 0, -0, ) wdx

_ (4.54)
1 (Plnl um@w+WAp@ﬂder@”

> 2 2
=24 - lVol Vel

Applying Hoélder’s inequality, Young’s inequality, Poinceré’s inequality and
Theorem 4.1, we get

41 oy () + ey el e

<G ¥ (150, o IV o (459
< Cy[Va|
Tg(s)ve (s)ds“ <e|Val + ||§ [ vee(o). (456)
[4:]<Joi -] (457)
[l [Vpllel. (4:58)
%KQM$W1ALJ%MWMH%MMJM; (59)
<Gy [V, ||+ Cs [V -

By virtue of (4.46), we have

2 1 1 1 1
Woff =2£,, ()~ L[ Jul orde v~ wpf -2, o0
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Then from (4.54)-(4.59), we can conclude

, l-¢ 2 l—&(2 1 1
., (1)< -—=|Vel —T(jEw,p(f)—;fJ“nV o dx—

2

L Jralval ol

t

1 > 1
— vl ==

2

1-1
1V, [+ 19Pl) o oo+

<= EIvaf ~(1-0)E, (1)

+CiJor =] lof + Cs || (V2 |+ [Vt + [V

é't

W (4.61)

Now we define
¥, (0= [, (A0, [ 0,)( [, "2 (5)¢" (5)ds . (4.62)
From (4.42)-(4.43) and integration by parts, we derive
iy (0= [ ] =), "5 (5)¢" 5) mw+4VwI V¢! (s)dscx
o[ e)ve (s)ds) dx— [ Ao, [g(s)¢" (s)dsd
+[ Vo[ e s)dsdx — j o, - az)j “g(s)¢" (5)dsdx (63)
=p[ |w. " w,@ j*"" s)dsdr+ [ Ae, [ “g(s)¢/ (s)dsd

o 0 A - s)dsdx = ZB

Using Hoélder’s inequality, Poincaré’s inequality and Theorem 4.1, we derive
forany 0 € (0,1) ,

B s (B i+l o e "2 5D (s,
<€, [V o[, e (5)v¢" ()]
1
<C,y (1-1)2 |V, ||, (4.64)
1
< ¢, (1=02Vas ], 2.,
< Gy [V, [llea
8, <svef + AL (4.65)
<(1-1)[¢" ||M : (4.66)
2 lz 7
<5V +—(1—1)||§ I, (4.67)
1 l)l 2
B, <5|Vp[ A8 7 <[, (4.68)
1
B, <A(1-1) o~ [|¢], < Clov-auf +G |, (4.69)
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-1

o ey o e 2
B7 - ult 2(p+1) ultt 2(p+1) wt 2(p+1)

J, 8(s)¢" (s)ds

<G, [V, [l ][], "2 (5) V¢ (5)as] (4.70)
<G, (1=0 [V [l ¢’ < i IVl
Noting that
[, g(5)¢! (s)ds = ["g(s)ds o, [ "g (s)¢! (s)ds
- (l—l)a)t + J-(:wg'(s)é’t (s)ds,
then we see that
By <-(1-0)|[Vo, - [, g (s)|Ve, (1)]|v¢" (5)]ds
1-1 1 e e (4.71)
S_T||th||z_2(l_l) .[o g (S)”V§ (S)" ds,
I, ()" ()]
(4.72)

B, <—(1 _I)_[Q|”r|p a)fdx+||u“||§(p+l) ||wl||2(p+l)
CA%g(0) cio
<-(1=0)[ |u]” @} dx+ 5|V, - 4§( )jo g'(s)|[v¢ (s) ds.

Plugging (4.64)-(4.72) into (4.63), we get
; 2
(=G (Va |+ Vel + e [, + 5 (lel +Ivol)

1-1
rGllo-af (152 |Ivof

-G [ )¢ () ds—(1-1)] || @dx.

lP;u,p
(4.73)

On the other hand, we can get
1
¥, (0] (1=13 Ve ¢
1 1
<(-1pwalle], + (-1 2090, [V

[ e ()¢ ()]
-

ralal
+||u11|p+2 @ p+2

M
(4.74)

M

<C, (||Va>, § +||.§’||; ) <G,E, ().

Define
G,,(t)=ME,  (1)+s0, (6)+Y¥,, (), (4.75)

which, together with (4.53) and (4.74), yields
(M -Cye-C,)E, (1)<G, (1) <(M+Cye+Cy)E, , (1) (4.76)
Now we take ¢ >0 so small and M so large that

%Ew (1)<G,(r)<2ME, (¢).

(4.77)

Then for any ¢ =7, we have
’ M 2
6., (0 =~(1-e)eE,,, (0-{ 34 -G - e,
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M 2 (l-¢ 2
(%-c.-s |l -(55-0 1wl

_(M+%—25—C85j||th||2

(4.78)
+C(BM. ) (Vi | +[Va, |+ Vo) (e |+ o]
+C(8.M.¢) (|| +lol)lo -0+ € (lor ~ e +15 - 4IF)
Now we take 6 >0 and ¢>0 so small that
M+l s ces0lZ8 550 ¢ _sso.
2 2 2
For fixed & and &, we choose M so large that
M
752 _C1égz _CI >0.
Then there exist some constant >0 such that
Gy, (1)< =PE,, (1) + C, |V | +[Vaer, [ +[VPI) (o] + o]
+G ( A VAl ) +C oy = o (o] + 1]
B (4.79)
< =7 Oons ()4 G (Ve |+ Vet ) (| + o]
+G (o=l +15 - £ )+ Gl =l (o |+l
Integrating (4.79) over (T,l) with respect to ¢, we derive
“Loe-e) L ) > >
G,,(1)<G,, () +G e (lov = +1/i = £ ) s
—hrti=s)
+G [l 20 (Vi |+ 9, | + 2] (o |+ o] dis
()
+G [ e oy~ o (e +ef s (4.80)
7%04) ! 2 2 % : 2
<G, (r)e e (L( o+ )ds) +C[o ~ | ds

1
o +lef )as).

+C (L’("Ul —o, [ +|If; —lelz)dS); (ff(

For any fixed €€ (0,1) ,we choose T >7 solarge that

P,
G,,(7)e '’ )Sg,

@,p

which, together with (4.77) and (4.80), gives
1
£, (052G ([l +leff Jas +.[
1 1
+ G ([l -l s ([ (JeaF + el s

oo +fi - F)as
(4.81)

Let
B (4515450505017 ) (521850505 ): Gy, G )

(4.82)
= [ (0102 ) @dxds + [ ] (fi - /,) pdxds
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Then
Ew,p (t) Se+¢; ((uglaulrlaeorpmr)’(“52’“1rzaeorza7hr);G1’G2)~ (4.83)

It suffices to show ¢, (-,-,-,-) € Contr(B,Z) for each fixed T > 7. From the
proof of existence theorem, we can deduce that for any fixed T >, and the
bound B depends on 7,

U UUs(7)B (4.84)

GeEte[r,T]
isboundedin 7 .
Let (u,,u,.,0,,nm)) be the solutions corresponding to initial data
(ugn,ufn,ﬁgn,n,f)eB with respect to symbol G, €X,n=1,2,---. Then from
(4.84), we get

u, >u *-weaklyin L” (0, T, H(]) (Q)), (4.85)
u, >u, *-weaklyin L” (O,T;Hé (Q)), (4.86)
6 — 6 *-weaklyin L” (0, T; H(]) (Q)) (4.87)

Taking u]:un’ u2:um’ el:9n’ 92:0m’ Ulzo-n’ fl.:f;q’ .fZ:fm’
o, = , noting that compact embedding H.(Q)— I[*(Q), passing to a
2 m g p g 1 p g

subsequence if necessary, we have

u, and wu, converge strongly in C([z’,T];L2 (Q))

Therefore we get

.[j ||um —-u,, ||2 ds >0, asm,n— +wo, (4.88)
J~T
J~T

On the other hand, by o,,0,,f,,f, € X, we see that

u, —u, ||2 ds -0, asm,n—> +oo, (4.89)

0,-0,[ ds—0, asm, n—+o. (4.90)

LT"Gn —O'm||2 ds >0, asm,n— +o, (4.91)

LT"f,, - fo ||2 ds =0, asm,n—>+o. (4.92)

Hence it follows from (4.88)-(4.92)
¢T ((un’unt’gn’n:l)’(u umt’gm’nrtn);Gn’Gm)_)O as m,n—)+oo, (4'93)

m?>

thatis, ¢, € Contr(B,2).

Therefore by Lemma 3.1, the semigroup {UG (t,z')} (t127>0,GeX) is
uniformly asymptotically compact and the proof is now complete.

Proof of Theorem 2.3. Combining Theorems 4.1-4.2, we can complete the
proof of Theorem 2.3.
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