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Abstract 
By Invoking symmetry principle, we present a self-consistent interpretation 
of the existing quantum theory which explains why our world is fundamen-
tally indeterministic and that why non-local quantum jumps occur. Symme-
try principle dictates that the concept of probability is more fundamental 
than the notion of the wave function in that the former can be derived direct-
ly from symmetries rather than have to be assumed as an additional axiom. It 
is argued that the notion of quantum probability and that of the wavefunction 
are intimately connected. 
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1. Introduction 

Quantum theory originated in the early 20th century with the inability of classical 
physics to account for the observed spectral distribution of the black body radia-
tion and the new experimental data related to the electronic structure of atoms 
and molecules. Through the works of Max Planck, Albert Einstein and Arthur 
Compton light began to be conceived as consisting of discrete packets (quanta) 
of energy, now known as photons. In 1913 the mathematical model of Neils 
Bohr for the hydrogen atom came, subsequently improved by the work of Ar-
nold Sommerfeld. The next revolutionary idea that came in 1924 was de Brog-
lie’s hypothesis on the possibility of an electron and the like, having wave-like 
properties, and its subsequent verification by the seminal electron diffraction 
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experiments by Davison and Germer in 1927. This provided impetus for the de-
velopment of the elegant quantum mechanics. Influenced by Werner Heisenberg 
and many other giants, including Paul Dirac, Max Born, Erwin Schrödinger, 
Wolfgang Pauli and John von Neumann, to name only a few, the basic mathe-
matical structure that we have today of quantum mechanics was formed. Max 
Jammer’s classic book [1] dwells at length on the chronological account of the 
development of quantum formalism. The theory so developed consists of a com-
plete and logically consistent framework of mathematical deductions that could 
be applied to any quantum physical system and is beyond doubt one of the ma-
jor advances in the history of science. Since its beginning, quantum theory has 
never been found to be contradicted by any microscopic phenomenon. The 
spectacular advances in physics, chemistry, biology, electronics—and essentially 
every other science—could not have occurred without the wonderful tools made 
possible by the deep knowledge of the micro-structure that quantum mechanics 
has offered us. With its elegant mathematical structure, firstly, quantum me-
chanics solved with immense success mysteries ranging from macroscopic su-
perconductivity to the microscopic theory of elementary particles. Secondly, this 
compelled physicists to revise drastically the pre-existing ideas regarding reality 
and to reshape the concepts of cause and effects when dealing with matter at the 
microscopic level. 

Despite such profound success, however, quantum mechanics has been noto-
riously confusing when it comes to its interpretation. Since the early develop-
ment of quantum mechanics, the concept of measurement or the collapse of the 
quantum wave function has been at the root of the controversy that found con-
crete expression in the historical Bohr-Einstein debates [2]. There emerged 
many interpretations of quantum mechanics differing over which physical 
processes are to be considered measurements; can the measurement process be 
understood in deterministic terms; what actually causes collapse of the wave 
function; which elements of quantum theory can be called as real; what is the 
role of a conscious observer in the measurement process, and other matters. 
Among the prominent interpretations are, for instance, the hidden variable 
theories (an example of which is the de Broglie-Bohm pilot wave theory [3] [4], 
the relative state formulation or the many worlds interpretation of quantum 
mechanics due to Haugh Everett [5] [6], the consistent histories interpretation 
[7], the ensemble or statistical interpretation [8], etc. We do not, however, in-
tend to evaluate these various views regarding the foundations of quantum me-
chanics; in fact, a huge amount of work have been devoted to these topics but 
the puzzles that quantum theory generated persist to this day [9] [10]. One na-
turally wonders how it is possible that such an extraordinarily successful theory 
may lead to such dubious issues and so many contending interpretations. 

Lucien Hardy [11] showed elaborately that quantum theory can follow from 
five very reasonable axioms which, being related to the classical probability 
theory, might well have been posited prior to any empirical data which became 
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available at the beginning of the 20th century leading ultimately to the founda-
tions of quantum mechanics. One would however wonder to understand why a 
physical theory should be probabilistic at the fundamental level.  

Symmetries have long been realized to play a fundamental role in quantum 
mechanics. The very basic algebraic structure and conservation laws in quantum 
mechanics follow from symmetry transformations on the wave function such as 
displacements and rotations through angles in space. But we argue that symme-
tries tell us more than what we think of them in the conventional account of the 
theory. In this paper, we wish to invoke symmetry rules to explain why there is 
indeterminism in our world in the first place. This in turn automatically explains 
why non-local quantum jumps are deeply rooted in the theory. Symmetry prin-
ciple tells us that a quantum jump or collapse of the wave function is by its very 
nature instantaneous and that we cannot explain it in causal terms. Here we do 
not intend in the least to depart from the standard formulation of quantum me-
chanics but will try to make it clear that the role of symmetries in quantum me-
chanics is far more revealing than what is conventionally recognized. We will 
argue that in contrast to the traditional view the concept of probability is the 
prime ingredient of quantum mechanics that need not be imposed from outside 
as to give meaning to the wave function—it is rather the wave function which 
can be introduced into the picture as a mathematical tool to describe the intrin-
sic indeterminism resulting from symmetry. 

We begin our discussion with a brief discussion of the measurement problem 
in Section 2. In Section 3, we present our view about the role of symmetries in 
understanding the emergence of indeterminism and non-locality. In Section 4, 
we outline the main conclusions which can be derived from this paper. 

2. The Measurement Problem 

Starting with John von Neumann [12] the orthodox school (also commonly 
known as the Copenhagen School of thought for historical reasons), led by Neil 
Bohr, holds that a wavefunction (the quantum state), represented by a state vec-
tor ψ in a Hilbert space, evolves with time according to the deterministic 
Schrödinger equation when the quantum stateis not observed, and is in general 
given by a coherent superposition of various experimental results, i.e., i i

i
cψ φ= ∑ . 

Here jφ ’s represent the possible experimental results (eigenstates of an operator 
representing a dynamical variable that is being measured), and cj’s (in general 
complex) are the probability amplitudes for the various outcomes. The quantity 

2

jc  is postulated as representing the probability of finding the quantum sys-
tem in the state jφ . Moreover, since an immediately repeated measurement 
yields the same result, we are to assume that the act of measurement collapses 
the wavefunction ψ, as we say; in an instant the quantum system jumps into a 
definite state jφ  and all other possibilities simply cease to exist. For example, a 
particle’s existence is spread out over the entire space and appears only in a loca-
lized region of space when one measures its position—the probability of finding 
the particle at all other points drops to zero instantly. This instantaneous col-
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lapse (reduction) of the wavefunction, also referred to as non-locality1, proved a 
source of conceptual difficulties which has come to be known as the measure-
ment problem. The difficulties come about in the interpretation of the mechan-
ism by which a definite state is instantly singled out from amongst all possible 
outcomes. In this regard the orthodox school holds that the act of measurement 
is strictly outside the explanatory reach of quantum mechanics and that it re-
quires a separate axiom of measurement in addition to the formalism of quan-
tum mechanics. 

3. Emergence of Indeterminism from Symmetry 

In a celebrated correspondence with Clarke, a disciple of Newton, Leibniz de-
nied the independent existence of space and time [13] [14]. Leibniz described 
space as a relational notion that existed only as a relation between objects that 
had no independent existence apart from those objects; motions existed only as 
relations between those objects. Leibniz critiqued Newton’s idea of the absolute 
space in which all points were exactly identical and relative to which all motions 
took place, by claiming that such a situation would have presented God with an 
impossible decision, i.e., where precisely to put the contents of the universe; why 
here rather than there? He argued that even God must have enough reason for 
all His acts; the impossibility of finding any such reason for any placement 
demonstrated that the notion of an absolute space could not be correct. 

Yet one could offer a radically different description of the same kind of a 
problem which probably would have been far direr than what Leibniz might 
have thought, and which, in this author’s view, also contained the seeds for a 
non-deterministic mechanics. To proceed, we assume that a continuous 
(smoothed-out) Newtonian space pre-exists out there—this is what both classic-
al physics and the contemporary quantum theory rest on. In order to make the 
argument more explicit, we restrict our attention to a simplistic example of a 
one-dimensional circular space (that could be of any size with no preferable 
point—symmetry). Now, one is asked to put a point particle on the circle some-
how. The word “somehow” is used deliberately for it indicates the real 
trouble—as pointed out by Leibniz; since all the points in space are indistin-
guishable, we can by no causal reasoning explain the mechanism through which 
this placement would take place. Here, suddenly, all the rules of local determin-
ism which we are familiar with no longer hold. For a point particle to reside in 
such a naive place, where there is no preferable location, we will need a drastic 
revision of our fundamental concepts—a new kind of physical laws must be 
formulated in place of the traditional laws of classical mechanics. The only 
plausible way to accommodate the current theoretical problem is to postulate the 
following utterly unusual rules which have no classical counterparts: 

First, “since all points on the circle are equivalent, each point has to share with 
equal ‘weight’ the existence of the ‘whole’ particle”. A classical determinist would 
hardly be prepared to allow for this hypothesis because it abandons any notion 

 

 

1That is, physical distances, and so the limitation of the speed of light, don’t seem to exist. 
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that a particle could have a well-defined position. This fuzzy non-classical beha-
vior that the particle exhibits, i.e., having existence at all points on the circle at 
the same time, is what one might call as potential existence—a term which in its 
essence is no different from Heisenberg’s “potentia” [15]. We may express it as 
probabilities of experimental outcomes and must therefore be distinguished 
from the mere existence in space as for classical objects. One should, however, 
recognize that there is a strong difference between the concept of (quantum) 
probability introduced here and the one what it is in classical physics. 

The second, and probably more inexplicable, postulate is that, “when ‘pro-
jected’ into this space, the particle’s potential existence has to spread over the 
entire space instantly”. Note that this postulate, expressing non-locality of the 
theory, is certainly tied with the first one because otherwise the first postulate 
would be violated for the length of time, whatever, the particle takes to fill the 
available space with its potential existence. Remarkably, this instantaneous 
spread is the essence of discontinuous quantum jumps (i.e., the collapse pheno-
menon in which the particle picks up one observable value out of many) as will 
become even clearer when we formulate these postulates mathematically. Nota-
ble in all this approach is that the concept of probability and that of the discon-
tinuous quantum jumps are not the concepts to be endowed arbitrarily into the 
theory (as is done in the conventional approach) but rather are necessitated by 
the symmetry rules and are mutually consistent. It is thus the symmetry rule that 
dictates us to adapt ourselves to the counter-intuitive notions as potential exis-
tence and non-local abrupt jumps, and we cannot make this weirdness go away 
by explaining how it works. It is therefore not wise to search for any causal ex-
planation of the processes that are intrinsically probabilistic and non-local. 

Let us now attempt to find out an appropriate mathematical formulation that 
would fit the description of this manifestly probabilistic realm. First of all note 
that the probability density on the circle should be constant and positive defi-
nite. Merely a positive definite constant 

2
A  (where 𝐴𝐴 may be a complex con-

stant in general) would not do because the probability density should as well be 
expressed by a function of the angular variable φ and of any possible “uniform 
circular flow” of the probability density. Therefore, we choose a function 

)(
2

Af mϕ  to represent the constant and positive definite probability density. 
Now, in order for 

2
A  to represent the constant probability density the right 

choice (apart from an overall phase factor) for the function )(f mϕ  would be 
[ ]expA imϕ . A must be chosen such that the total probability [ ]

2
exp dA imϕ ϕ∫  

is unity. So, it naturally turns out that a point particle on a circle can be 
represented by a complex stationary circular wave ) [ ]( expA imψ ϕ ϕ= . De-
manding this function to be single-valued, m should be restricted to the values 0, 
±1, ±2, ... One of these values will be picked up by the particle while it interacts 
instantly with the circular space. Furthermore, note that for a large radius this 
circular wave function should reduce to a plane wave2. Thus, the reasoning pre-

 

 

2It is worth noting that identifying 𝑚𝑚 with the angular momentum it is straight forward to show 
that for a large circle the circular wave reduces to a plane wave with a single value of linear momen-
tum. 
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sented here naturally leads to the de Broglie’s hypothesis as well as Bohr’s dis-
crete stationary states.  

It is worth noting that the symmetry rules lead to the conclusion that the wave 
function and its probabilistic interpretation are intimately connected and, 
therefore, Born’s probability hypothesis [16] no longer seems to be an ad hoc 
one. Thus, once it is conceived that there is a wave function associated with a 
particle, the usual mathematical structure of the quantum theory can be recov-
ered.  

4. Conclusion 

We noted that symmetries are at the root of the indeterminism and non-local 
quantum jumps at the microscopic level. Quantum probability seems to be the 
primary ingredient of theory. Furthermore, the notions of probability and the 
wave function are interwoven together within the theory and do not require any 
axiomatic hypothesis from outside the theory. 
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