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Abstract 

Paper is devoted to problem of acoustical visibility reduction and gives brief 
description of alternative approach to active control. This approach allows sa-
tisfy jointly the four conditions: a) effective suppression of acoustical radia-
tion and scattering caused by elastic body immersed in compressible medium 
(water); b) cloacking at any important temporal frequencies of observant 
sound waves; c) cloacking at any important spatial frequencies or at any ob-
servation directions; (d) thickness of the masking shell is much smaller than 
the length of suppressed waves. Technological development gives more and 
more fast and miniature control elements and fast, accurate calculations. On 
the other hand, the lengths of waves to be damped are constant due to the 
constant conditions of their far propagation. The approach suggested uses 
operations of high space-time resolution for long waves controlling. Because 
the joint fulfillment of the conditions of acoustic support absence and the 
thinness of the shell and also the causality of control lead to the need to oper-
ate at frequencies of much higher than frequencies of waves to be damped. It 
is assumed that the incident waves are represented by a discrete set of plane 
waves of finite duration. Also it is assumed only that the characteristic spatial 
scale of the distribution of normal velocities on the surface of the protected 
body is limited from below. The boundary value problem with initial condi-
tions is considered. 
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1. Introduction 

Modern results [1] in the field of cloacking correlate with the famous article [2]. 
In this paper, an analytical solution is obtained in the case when the incident 
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wave is flat and monochromatic, and the body has a spherical shape. The solu-
tion of this problem is tangentially homogeneous radial distribution of medium 
parameters in the outer spherical layer (that is the time-constant distribution of 
the passive parameters of the medium in the masking shell). Thus, the distribu-
tion of parameters required for the masking inside the protective layer depends 
on the frequency of the incident wave and does not depend on the direction of 
arrival of the incident wave. The need to adjust the spatial structure of the 
masking shell to a nonplanar form and the given direction of the incident wave 
(or to the non–spherical shape of the body) even in the monochromatic case, 
makes the practical application of the solution extremely complicated. Moreover 
the dynamic range of mechanical vibrations of the elements of the masking shell 
can be significantly exceeded, since all the power of the incident wave through 
the cross section of the protected body must tangentially pass inside the shell, 
the thickness of which we seek to reduce (see abstract, (d)). In addition, the 
above-described shell is not designed to suppress the radiation of the protected 
body. We will consider below the possibilities of radiation and scattering sup-
pressing for all directions of observation and for all directions of the incident 
waves in the ranges min maxω ω ω≤ ≤  and  

max min max min2 / 2 /c cπ ω λ λ λ π ω= ≤ ≤ =  of frequencies and wavelengths (where 

minω , maxω , minλ , maxλ  sound damping range boundaries, c–sound speed in 
outside compressible medium) under the broadband min maxω ω<< , 

min/ 1λΞ >> , and max/ 1λΞ << , where Ξ –characteristic linear dimension of 
body protected with convex smooth surface BS ) and small thickness 2 h of the 
active shell (coating between inner and outer surfaces BS  and S) of the pro-
tected body in comparison with the lengths of quenched waves, i.e. min2h λ<< . 
And the forced condition of inflexibility of surface BS  for spatial scales 

min min / 2λ>>  on any frequency ω . 

2. Radiation Suppression 

In the most general formulation, we need to create on the active shell surface S a 
predetermined distribution ( , )U t• r  ( S∈r ) of the normal displacements of 
particles, despite the action of unknown sources of vibrations inside the surface 

BS . In particular, to suppress radiation, we need to create ( , ) 0U t• =r , i.e. no 
incident waves. 

2.1. Shock Molding of Desired Boundary Form 

Let us consider briefly the memory of a compressible or elastic linear medium 
about impact action, or, in other words, the formulation of a problem maximally 
different from a monochromatic case [2]. For a longitudinal impact to the free 
end 0x =  of a semi-infinite elastic rod ( 0 x≤ < ∞ , one dimensional problem, 
Figure 1(a)), the depth 1

#0
( ) ( )FY c F t dt

τ
ρ −= ∫  (where ρ –mass density of elas-

tic rod, c–speed of longitudinal sound in the rod) of imprint of the rod end re-
mains in time infinitely (imprint life-time #τ = ∞ ) after the switching off the  
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Figure 1. 1D impact (a). 2D-3D flat impact: structure of a flat impact imprint of one piston (b) and its spreading (space-time 
conversion) of the flat impact imprint of one piston (c). 
 

shock force (pressure) # ( )F t , that acts during the time interval 0 Ft τ< ≤  
( # 0F =  at 0t <  and Ft τ> ). Such an ideal plasticity [3] of boundary 0x =  
is possible because the region (of thickness FQ cτ= ) of elastic deformation runs 
to the right with sound speed c. 

Linearity is guaranteed by the condition Y Q<< . Further, instead of the 
free end of the elastic rod, we consider the free plane boundary of a semi-infinite 
area ( ,y z−∞ < < +∞ , 0x ≥ ) filled with a compressible medium with the same 
ρ  and c ( 0x <  is vacuum). We divide the plane 0x =  into a set of regions in 
the form of infinite parallel strips: ( / 2) / 2y L n L− < , z−∞ < < +∞  or “pis-
tons” numbered by 0, 1, 2, 3,...n = ± ± ± . Suppose that we need to create a δ –like 
distribution of normal displacements ( , )U y t  that satisfies the condition  

( /2)

( /2)
( , ) / ( )

nL L

nL L
U y mT dy L nεδ

+

−
=∫ , where 0,1,2,3,...m = , 1δ =  for 0n = , 0δ =   

for 0n ≠ . Thus at initial condition ( ,0) 0U y = , / ( ,0) 0tU y =  we need to apply 
the first impact of pressure # / FF cLερ τ=  to the strip / 2y L< . This pressure 
pulse (acting on the interval 0 /Ft L cτ< < << ) gives us the almost rectangular 
imprint of depth ε  (deformation of boundary 0x = ). Due to the spreading of 
the imprint, its lifetime # ~ /L cτ  is finite (Figure 1(b), Figure 1(c)). There-
fore, the imprint must be supported by appropriate shock pumping (in time in-
tervals FmT t mT τ< < + , 1,2,3,...m = ) of all the pistons with a time period T. 
There is the fact of fundamental importance that (due to the finite lifetime 

# ~ /L cτ  of the print) pumping requires impacts which amplitude is the only a 
small part /cT Lγ≤ =  of the first impact. The total background of pumping 
impacts is a small part / (1 )γ γ≤ −  of the magnitude of the first strike. We call a 
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combination Y Q L<< <<  a linear flat blow condition. Now (as in all linear 
problems), if we can form an almost constant time δ –like distribution 

( , )U y t•  ( S∈r ) of normal displacements, then we can also form an arbitrary 
given distribution with spatial resolution ~L and the scale max~ 2 / Tπ ω >>  of 
temporal variability. Now we give a generalized definition of the piston as an 
element of an active shell on an arbitrary convex smooth closed surface S. Tan-
gentially (Figure 3(a)) the active shell (spaced between the surfaces BS  and S) 
is lumped into a set of plane pistons with contours of convex polygons. Each 
piston (of characteristic linear scale ~L) corresponds to some area ˆSσ  of the 
surface BS  (or S), as well as the coordinate 1

ˆ
ˆ( ) ( )

S
S Sd

σ
σ σ−

∈
= ∫rR r r  of the 

center (where 
ˆ

ˆ ( )
S

S Sd
σ

σ σ
∈

= ∫r r  is piston square) to which all control and 
measuring signals are addressed. Under the needed ( , )nU t• R  and actual 
(measured) ( , )nU t⊗ R  normal displacements of the piston (the center of which 
is at the point R ) we mean the quantities averaged over the area ˆSσ  of the 
piston. Above we assumed that for the impacts creation we have some unlimited 
source of mechanical impulse or support (vibrostat). Below we show that it is 
possible to synthesize a needed distribution ( , )U t• r  of the normal displace-
ments of the surface S without mechanical support too. 

2.2. Transparent Supportless Unidirectional Sources 

Let’s consider the piezoelectric plane layer 0h x− < ≤  with the same (for sim-
plicity) ρ  and c as at x h≤ −  and at 0x > . Pulse of voltage ( )tϕ  with du-
ration /F h cτ <<  creates two normal displacement pulses (of mutually oppo-
site polarity and of the length h) running to the left and to the right (see Figure 
2(a)). Piezoelectric forces #F±  and #F  of compression (tension) are mu-
tually balanced and need not mechanical support. Next we consider two piezoe-
lectric layers 2h x h− < ≤ −  and 0h x− < ≤  excited by voltage pulses ( )tϕ  
and ( )tϕ  (Figure 2(b)) of the same duration but separated in time from each 
other by the delay /h c  and with mutually opposite polarity. It is easy to see 
(Figure 2(c)) that at 2x h≤ −  pulses of normal displacement created by voltage 
pulses (applied to above layers) are mutually compensated. But at 0x >  these 
pulses of normal displacement form the bipolar wavelet with duration 3 /h c  
and pause of duration /h c  between pulses. This wavelet is created also without 
any mechanical support [3]. 

If the impact duration ( F Tτ << ) is negligible, then we can write the wavelet 
( )ξΨ  ( x ctξ = − , running to right) of single-direction radiation in the follow-

ing  for m:  ( ) { [ ] [ (1 / 2) ]} { [ ] [ (3 / 2) ]}I I T I T I Tξ ξ ξ ξ ξΨ = − − − − − − ,  where 
2 /T h c= , ( ) 1I ξ =  at 0ξ > , ( ) 0I ξ =  at 0ξ ≤ . Summarizing these wave-

lets with amplitudes nY  and shifted with respect to each other by time distance 
2 /T h c= , we can form a sequence of hooked wave with duration 3 /h c  of 

each: 0 1 2( ) ( ) ( 2 )Y t Y t T Y t TΨ + Ψ − + Ψ − +  (Figure 2(d)). In this case we ob-
tain a sequence of pulses with periodic pauses of duration /h c . Therefore, to 
create a needed normal displacement ( , )U t• R  of the piston at the n-th step,  
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Figure 2. Supportless flat impact. Formation of a normal displacement pulse (instant spatial distributions at different moments of 
time). Single-layer piezoelectric (a). Voltage excitation pulses ( )tϕ , ( )tϕ  of a two-layer piezoelectric (b). Two-layer 
piezoelectric dynamics (c). Summarizing the wavelets in time at boundary 0x =  (d). 
 

the amplitude of the wavelet must be double, in order to provide, on average, the de-
sired value of the normal displacement on the period 2 /T h c= . Thus, we obtain 
the following expression (control algorithm) of the current amplitude nY  of the 
wavelet through via amplitude 1nY −  of the previous and measured displacement 

1( , )nU t⊗ −R  of the piston, as well as the required displacement ( , )nU t• R  value 

1 1 0 1 2 12[ ( , ) ( , ; , , ,..., )]n n n n nY Y U t U t Y Y Y Y− • ⊗ − −= + −R R ,         (1) 

where nt nT= , 0,1, 2,...n =  The above-mentioned spreading of the imprints of 
the blows (for compensation of which is necessary the impact pumping) is con-
tained in the measured quantity 1 0 1 2 1( , ; , , ,..., )n nU t Y Y Y Y⊗ − −R . Note that an at-
tempt to synthesize a desired value ( , )U t• R  using bipolar wavelets ( )tΨ  
means that the amplitude nY  of the wavelets is proportional to the integral of 
the quantity 1( , ) ( , )n nU t U t• ⊗ −−R R . Thus, neither the measured displacement 

( , )U t⊗ R  nor the desired value ( , )U t• R  should contain time-constant com-
ponents. To maintain stability, it is necessary to exclude the constant component 
of the signals ( , )U t⊗ R  and ( , )U t• R , i.e. pass them through a non-distorting 
differential filter with a time scale max /d cτ λ>> . Now we must note that slow 
desired trajectory ( , )U t• R  of piston in time (with time scale max max / 2cτ λ= ) 
requires significant value of wavelet magnitude at some maximum amplitude 

maxA  of particle displacement in the waves to be damped. So the condition of 
linear flat impact becomes the following: max max( / ) FT A c cT Lτ τ<< << << . 

2.3. Measuring 

Figure 3 presents the structure of active shall. Tangential structure of active shall is 
presented in Figure 3(a). Transversally (Figure 3(b)) each piston is presented by 
two piezoelectric layers. It is necessary very quickly and accurately estimate 
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Figure 3. Tangential (a) and transverse (b) structure of active shell. 

 
(between piezoelectric impacts) the current average piston (with the center in 
the point S∈R ) area ˆS Sσ∈ ⊂r  particle displacement  

( , ) ( , ) ( , ) ( , )BU t U t U t U t⊗ = + +  R R R R , where ( , )BU tR –slow displacement of 
surface BS , where 1

ˆ

ˆ{ ( , ), ( , )} ( ) { ( , ), ( , )} ( )
S

SU t U t d t d t d
σ

σ σ−= ∫ 


 
 R R r r r  are in-

stant spatial average in the area ˆSσ∈r  of the thicknesses ( , )d t r , ( , )d t

 r  of 
the metallized layers of the piezoelectric. The smoothness of the distribution of 
displacements of the surface BS  in space is guaranteed by the condition 

min L>> , where max  is maximum spatial scale of displacement distribution 
on the surface BS ). Therefore, ( , )BU tR  can be used without spatial averaging 
over the piston pad. Then we need to measure the instant capacitances ( )C t  
and ( )C t  of the flat capacitors (dielectric layers) with varying thicknesses  

~ ~{ ( , ), ( , )} { ( , ), ( , )}d t d t h d t d t= + 

   r r r r  (where the variable components are rela-
tively small, i.e. ~d h<< , ~d h<<

 ) of the dielectric (piezoelectric) layers: 
1

0
ˆ

ˆ{ ( ), ( )} ( ) ( ) / { ( , ), ( , )}
S

SC t C t d d t d t
σ

ε ε σ−

∈

= ∫ 

  

r

r r r , where 0ε —dielectric constant 
of vacuum, ε —relative permittivity of piezoelectric. Now we write down the 
needed quantities 0 0{ ( , ), ( , )} [{ ( ), ( )} ] /U t U t h C t C t C C= − −

  R R , where  

0 0/ ( )SC hσ ε ε= . These spatial averaging electric operations can be performed 
almost instantaneously. Inertial accelerometer with output signal ( )BU t  (i.e. 
the 2-nd derivative of normal displacement ( )BU t  of body surface) is placed 
immediately under the center R  of piston. In the end, we write down the re-
maining component 

0 0

ˆ( , ) ( )
t

B BU t d LUL d
ξ

ξ η η= ∫ ∫ R , where L̂  means 3-fold 
processing by differentiating chain with time scale max /d cτ λ>> . 

3. Scattering Suppression 

Suppose that body’s radiation is already suppressed by the system described in 
Section 2. Further suppose that in area of compressible medium (with mass 
density ρ  and sound speed c, identical with outer medium) delineated by 
surface S we know the particle displacement field ( , )I tU r  created by the 
incident waves. Scattering field does not arise if we create on the outer surface of 
active shell the distribution ( , ) ( ) ( , )IU t t• =r n r U r  of normal displacements 

( , )U t• r  ( ( )n r  is the outer normal to the surface S in its point S∈r , ( ) 1=n r ) 
which coincides with normal component of particle displacement in the incident 
waves field. 
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3.1. Incident Waves 

Further we assume that incident wave field 1( , ) ( , )IN
I n InP t P t== Σr r  of pressure 

represents the finite set of 1IN ≥  planar waves 1( , ) [ ( , ) ]In In nP t t c−= Θ −r w r , 
with vectors nw  ( 1n =w ) of propagation direction and profiles ( )In ξΘ  with 
leading edges: this means that there is a point nξ , for which the following condi-
tion is satisfied: ( ) 0In ξΘ =  at any nξ ξ< , ( ) 0In ξΘ ≠  at min( / 4)n nξ ξ ξ λ< < + , 
where minλ  is the minimum length of the wave to be damped. 

3.3. Spacing of Microphones 

All the microphones are placed in points •=r r  ( •r  means the coordinate of 
any microphone). In addition, all microphones are placed by pairs in points 

• =r R  (farer to S and called “title microphone”) and • +=r R  (nearer to S and 
called “reference microphone”) on the normal ( )=n n R  to a smooth convex 
surface S with distance D between them (see 1An , 1Bn , 1Cn  in Figure 4(a)). So 
vector + −R R  is parallel to normal ( )=n n R  and ( )D+ = −R R n R . Distance 
between reference microphone (in the point • +=r R ) and surface S we will de-
note ( ) ,H H h D+= >>R . Points R  presents the vertices of some convex po-
lyhedron. Further, we will not designate microphones with specific numbers to 
simplify the presentation. At some initial moment, the leading edges of all the 
incident waves have not yet reached any title microphone. Note that all micro-
phones should be insensitive to pressure fluctuations at a very high frequencies 

2 / Tπ≥  corresponding to the surface S flat impacts (Section 2). 

3.3. Arrival of 1-st Incident Wave 

Radiation of internal sources within surface BS  is assumed suppressed by the  
 

 
Figure 4. The geometry of scattering suppression problem (a), space-time event of threshold level crossing by leading edge of 
incident wave (b). 
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means described in Section 2. All microphones are waiting for the first incident 
wave arrival from unknown direction 1w  (output pressure signals of all 
microphones are denoted by 1[ , ]P t•r ). Leading edge of some plane incident 
wave (we will call this wave the 1-st incident wave with direction vector ) 
achieves some microphone spaced the in the point 1A• =r R  at some moment 

1At t= . This is some space-time node (or event A1): module 1 1( , )AP tR  of 
output signal of microphone spaced in the point 1ARr =•  sound pressure 

1 1[ , ]AP tR  crosses at the first time some level q from 1 1[ , ]AP t q<R  to 

1 1[ , ]AP t q>R  at the moment 1At t= . We notice a similar event B1 later on 
some microphone with coordinate 1B• =r R  at some moment 1 1B At t t= ≥ : 
module of pressure 1 1[ , ]BP tR  crosses at the first time some level q from 

1 1[ , ]BP t q<R  to 1 1[ , ]BP t q>R  at the moment 1Bt t= . And the next similar 
event C1 in the point 1C• =r R  at some moment 1 1C Bt t t= ≥ : module of 
pressure 1 1[ , ]CP tR  crosses at the first time some level q from 1 1[ , ]CP t q<R  to 

1 1[ , ]CP t q>R  at the moment 1Ct t= . Assuming below the ratio Ip q σ>> >>  
(where Ip  is the characteristic amplitude of the pressure in the incident wave, 
and σ –the mean square deviation of background noise signal, see Figure 4(b)), 
we obtain the propagation vector 1 1( 1, 1; 1)A B C=w w  of the 1-st incident wave 
from system of equations 1 1 1 1 1( ) ( )B A B Ac t t− = −R R w  and  

1 1 1 1 1( ) ( )B A B Ac t t− = −R R w . Usually incident wave is sufficiantly powerful 
because one need to detect scattered wave at a large distance from the body. 
Now for stability of the active system we need to form signal of the incident 
wave pressure, insensitive (simplest spatial filtration) to waves scattered by the 
surface S due to possible violation of the condition ( , ) ( ) ( , )S S Iu t t=r n r U r . To 
do this, we will form фa leading pair of microphones or a combination 

1 1 1 1 1
ˆ ˆ( ) [ , ] [ , ]A Ag t LP t LP t τ+= − −R R  of signals 1 1[ , ]AP tR  and 1 1[ , ]AP t τ+ −R  

two microphones (in points 1AR  (title microphone) and  

1 1 1( )A A AD+ = −R R n R  (reference microphone) with cardioid directivity pattern 
having zero in the direction to the surface S (see Figure 4(a)). Here /D cτ =
–delay, L̂ –linear filter, undistorting signals at frequencies min maxω ω ω≤ ≤  
( ˆ

I ILP P= ) and opaque for frequencies min0 ω ω< << , max2 /Tω π ω> >> . 
Under the condition max2 /D cπ ω<<  we obtain 1 1 1

ˆ( ) ( / ){ [ , ]}Ag t t LP R tτ= ∂ ∂ , 
and for 1 1 1 1[ , ] [ , ]A I AP t P t=R R  (1-st incident wave) we obtain  

1

1 1
1 1 1 1 1 1 1 1[ , ] [ , ] [1 ( )] ( )

C

t
I A C A A t

P t P t g dτ ξ ξ− −= + − ∫R R n w  (note that we have  

1 1( ) 0A <n w  for any incident plane wave). Knowing the pressure field 1IP  of 
the first incident plane wave at a point 1AR  at time 1At t> , we can determine 
the pressure field at any point r  (satisfying the condition 1 1( ) 0A− >r R w ) at 
time 1At t> . In addition, we can determine the normal displacement ( , )Su tr  of 
the surface S under which the condition 1( , ) ( ) ( , )S S Iu t t=r n r U r  will be 
satisfied (the displacement field 1( , )I tU r  in the first incident plane wave in 
infinite homogeneous compressible medium) and scattering will not arise. More 
precisely, we will establish a normal average over the area ˆSσ  of the piston 
(with the center at the point R  of the surface S) displacement 
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1 1 1 1( , ) ( , ) [ , ]I AU t T U t P tδ α• •+ = + −R R R               (2) 

(correcting it for a period of duration T, i.e. pressure-velocity-displacement), 
where 1 1( / )( ( ))T cδ ρ= w n R , 1 1 1( ) /A cα = −w R R . After inserting (2) into (1), 
where nt T t+ = , the scattering does not occur, then the field of the first incident 
wave 1[ , ]IP tr  passes without distortion through the region of space occupied by 
the body and bounded by the surface S. And this means that the pressure field of 
the first incident wave 2[ , ]IP t•r  (for 1Ct t> ) can be subtracted from the signals 
of all microphones except for the leading pair (at points 1AR  and 1A +R ) of the 
first incident wave. The sound pressure on the microphones at the points 

1 1,A A• +≠r R R  will now be denoted as 2 1 1 1 1[ , ] [ , ] [ , ]I AP t P t P t β• •= − −r r R , where 

1 1 1( ) /A cβ •= −w r R . Thus, we prepared the system for capturing a second plane 
incident wave, with respect to which we will assume that for the first points of 
contact of the leading edge with the microphones there will be points 

1 1,A A• += ≠r R R R  of placement of the title microphones. The microphones at 
the points 1 1,A A• +≠r R R  became deaf (insensitive) to the first incident wave. 
Therefore, one can apply the logical procedure described above to the signals 

2[ , ]P t•r  (three events A2 ( 2At , 2AR ), B2 ( 2Bt , 2BR ), C2 ( 2Ct , 2CAR )). And so 
on. Below we give briefly a sequence of next functional steps. 

3.4. Arrival of 2-nd Incident Wave 

Event A2: 2At t= ; 2A• =r R ; crossing 2 2P q P q< ⇒ > . Event B2: 2Bt t= ; 

2B• =r R ; crossing 2 2P q P q< ⇒ > . Event C2: 2Ct t= ; 2C• =r R ; crossing 
2 2P q P q< ⇒ > . 

2 2 2 2 2( ) ( )B A B Ac t t− = −R R w , 2 2 2 2 2( ) ( )B A B Ac t t− = −R R w ,  

2 2 ( 2, 2, 2)A B C=w w , 2 2 2 2 2
ˆ ˆ( ) [ , ] [ , ]A Ag t LP t LP t τ+= − −R R ,  

2 2( / )( ( ))T cδ ρ= w n R , 2 2 2( ) /A cα = −w R R , 

2

1 1
2 2 1 2 2 2 2 2[ , ] [ , ] [1 ( )] ( )

C

t
I A A C A t

P t P t g dτ ξ ξ− −= + − ∫R R n w , 2 2 2( ) /A cβ •= −w r R ,  

1 1 1 1 2 2 2 2( , ) ( , ) [ , ] [ , ]I A I AU t T U t P t P tδ α δ α• •+ = + − + −R R R R , 

3 3 1 1 1 2 2 2[ , ] [ , ] [ , ] [ , ]I A I AP t P t P t P tβ β• •= − − − −r r R R , for n  

1 1 2 2, , ,A A A A• + +≠r R R R R . 

3.5. Arrival of 3-rd Incident Wave 

Event A3: 3At t= ; 3A• =r R ; crossing 3 3P q P q< ⇒ > . Event B3: 3Bt t= ; 

3B• =r R ; crossing 3 3P q P q< ⇒ > . Event C3: 3Ct t= ; 3C• =r R ; crossing 

3 3P q P q< ⇒ > . 

3 3 3 3 3( ) ( )B A B Ac t t− = −R R w ,  

3 3 3 3 3 3 3( ) ( ) ( 3, 3, 3)B A B Ac t t A B C− = − ⇒ =R R w w w , 

3 3 3 3 3
ˆ ˆ( ) [ , ] [ , ]A Ag t LP t LP t τ+= − −R R , 3 3( / )( ( ))T cδ ρ= w n R ,  

3 3 3( ) /A cα = −w R R , 
3

1 1
3 3 3 3 3 3 3 3[ , ] [ , ] [1 ( )] ( )

C

t
I A A C A t

P t P t g dτ ξ ξ− −= + − ∫R R n w ,  

3 3 3( ) /A cβ •= −w r R , 

1 1 1 1 2 2 2 2 3 3 3 3( , ) ( , ) [ , ] [ , ] [ , ]I A I A I AU t T U t P t P t P tδ α δ α δ α• •+ = + − + − + −R R R R R , 
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4 3 1 1 1 2 2 2 3 3 3[ , ] [ , ] [ , ] [ , ] [ , ]I A I A I AP t P t P t P t P tβ β β• •= − − − − − −r r R R R , for  

1 1 2 2 3 3, , , , ,A A A A A A• + + +≠r R R R R R R . 

4. Conclusion 

The main results of this work are the following: 1) transparent supportless un-
idirectional sources of acoustical wavelets (Section 2), 2) causal sequence of op-
erations to reconcile the normal displacements of the protected surface with the 
incident waves (Section 3). The presented results are a consequence of the problem 
formulation with initial conditions and could not be obtained in the widespread 
stationary monochromatic mathematical model of the problem with complex am-
plitudes (magnitude A, frequency ω , phase ϕ , i.e. exp[ ( )]A i tω ϕ+ ) of the 
fields (like in [2] for instance). The monochromatic representation leaves out of 
view some important situations, such as spatio-temporal labyrinths, where the 
control algorithm (like “Maxwell’s demon”) operates extremely quickly on the 
spatial microscales, and this leads to macroscopic results for long slow waves [3]. 
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