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Abstract 

The Kolmogorov flow (k-flow) is generated by a stationary sinusoidal force 
that varies in space. This flow is rather academic since generating such a pe-
riodic forcing in an unbounded flow is difficult to appear in nature. Never-
theless, it allows for simple experimental measurements and for a fairly de-
tailed analytical treatment. Although simple, the k-flow makes a good test 
case for investigating simultaneously inhomogeneous, sheared, and aniso-
tropic features in a flow, and several studies concerning the stability, transi-
tion, and turbulence of the k-flow have been published. The present article 
reviews the most important published works incorporating the k-flow as a 
test-bed for studying fluid mechanics, testing numerical or experimental me-
thods, or even studying the properties of the k-flow itself. 
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1. Introduction 

Near the end of the 1950s, A.N. Kolmogorov shifted his focus towards the study 
of the two-dimensional incompressible flows using a specific high wavenumber 
forcing and created the so-called Kolmogorov flow (k-flow). The Kolmogorov 
flow can be defined as a two dimensional and unidirectional shear flow with a 
specific sinusoidal mean velocity profile (U = sinz), which should always be 
maintained by any form of external forcing inside a viscous fluid. In U = sinz, z 
stands for the cross-stream coordinate. Using U = sinz, Kolmogorov’s basic in-
tent was to study and understand the transitions and complexities of turbulence 
in addition to the energy cascading process. 

In most of the studies on turbulence, the meaning and intent of Kolmogorov’s 
ideas are widely recognized. Since his pioneering ideas on locally isotropic tur-
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bulence, a lot of studies have been published on this specific problem. Moreover, 
a number of measurements have also been made in terms of assessing the cha-
racteristics of turbulence while using different forms of the natural media in-
cluding the atmosphere, large wind tunnels, the ocean, etc. [1] [2]. These mea-
surements have been effective in confirming the different predictions of the 
multidimensional theory that was proposed by Kolmogorov [3]. Since then, the 
k-flow has been attracting a lot of attention and considerable progress and ad-
vancements have been made, both in the experimental and the theoretical as-
pects of the flow. Referring to the review article presented by Obukhov [4] and 
the studies conducted by Meshalkin and Sinai [5], it can be said that the k-flow 
belongs to a more diverse class of large-scale fluid instabilities. The Kolmogorov 
flow is more often defined as a form of sinusoidal flow whether the fluid being 
investigated is viscous or not. It is because of its simplicity, effectiveness, and 
accessibility in terms of analysis that Kolmogorov termed this flow optimal for 
being investigated in either theoretical or laboratory settings. The flow is also 
appropriate for conducting an investigation on fluid instability together with the 
transition towards turbulence [6]. Furthermore, different electrolytic fluids, soap 
films and other materials have been helpful in offering experimental measure-
ments and realizations of this flow [3]. The k-flow has also been investigated and 
studied extensively in the field of magnetohydrodynamics (MHD) because suit-
ably placed electric and magnetic fields can reproduce the k-flow fairly easy. It is 
used for the study of the varying dynamics of all types of electrically conductive 
fluids, electrolytes, different liquid metals, and plasmas. MHD turbulence and 
turbulent k-flow share common dynamical features, like the quasi-2D basic 
flow pattern and the inverse kinetic energy cascade and, thus, the k-flow has 
offered the test-bed for studies on fluid dynamics and flows in the field of 
MHD [7]. 

2. Studying Fluid Mechanics & Turbulence 

2.1. Characterization of Turbulent Flows 

Surely turbulence is a most complex concepts and phenomenon, due to which it 
has been the subject of a large number of studies. It can be said that there is a lot 
more that needs to be done for grasping the complexities of turbulence. Re-
searchers reaffirm that the study of turbulence is not easy because it demands a 
firm grip on the concepts of mathematics and physics. Despite the endless num-
ber of hypotheses that have been proposed in this regard, only a few of them 
have been able to generate definite predictions in terms of the ubiquitous nature 
of turbulence. It is also evident that there is no single universal theory of turbu-
lence that has managed to provide accurate and deterministic predictions and 
applications of turbulence. Thus, it can be said that the true nature, cause, and 
mechanisms of turbulence need to be assessed and explored for shaping the fu-
ture of fluid dynamics. In the first few decades of the 20th century, Richardson 
[8] and Kolmogorov [6] formulated a theory of turbulence using the concept of 
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energy cascade. The kinetic energy is dissipated at a high constant rate from the 
large-size eddies towards the small eddies until the point at which the viscous 
action effectively dissipates the kinetic energy (KE). For the different incompres-
sible Newtonian fluids, the following formula can be used for understanding the 
kinetic energy dissipation [9]: 

( )2 ij ijS Sε ν=                            (2) 

where Sij is the rate of the strain tensor and v is the kinematic viscosity coeffi-
cient. 

After having performed an analysis of the Navier-Stokes equations, it can be 
said that there are a number of rigorous limits on the rate of energy dissipation 
for variable incompressible flows [9]. It has also been demonstrated that in the 
case of unbounded turbulence, the rate of energy dissipation is influenced by the 
shape of the forcing. The upper bound approach method that was adopted from 
the in depth analysis of Doering & Constantin [9] [10] revealed a dependence on 
a number of variable k-flow. 

Firstly, all turbulent flows happen to be highly irregular. This is the reason for 
which most of the turbulence problems are dealt and studied in a statistical 
manner. Furthermore, turbulent flows are highly chaotic. However, it is impor-
tant to consider here that not all chaotic flows can be classified as turbulent. 
There are always readily available supplies of energy that lead to an increased 
and rapid homogenization of the variable fluid mixtures. Turbulent flows are 
marked for having an intense and strong three-dimensional vortex generation 
principle or mechanism. This phenomenon is commonly referred to as vortex 
stretching. In order to sustain the turbulent flow, there is always a need of hav-
ing a persistent supply of energy. The main reason is that turbulence always dis-
sipates in an agile manner, as the resulting kinetic energy is continuously con-
verted into internal energy. 

Turbulent fluid flow has always been classified as one of the most complex 
and fundamental problems in physics. Additionally, it also holds great impor-
tance on predictions regarding heat transfer, the weather, ocean currents, etc. In 
the field of fluid dynamics, turbulence is defined as a flow regime marked by a 
number of chaotic changes and variations in properties. It includes a lower mo-
mentum diffusion, rapid variations in pressure and momentum [3]. In the case 
of the turbulent flows, a number of unsteady vortices seem to appear on the dif-
ferent scales while interacting with each other. At the same time, both the struc-
ture and the location of the boundary layer change, leading to a lower or reduced 
overall drag. In order to understand turbulent flows in two-dimensional and 
three-dimensional k-flow regimes, the aforementioned features need to be eva-
luated [11]. Thus, turbulence is the most complicated unsolved problem in the 
field of classical physics [12]. 

Kolmogorov’s seminal studies and papers can be seen as empirical departures 
from the different scaling predictions that he presented. Thus, it is now con-
firmed that the turbulent scales cannot be termed self-similar and that they 
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gradually become more intermittent as the size of the scale decreases. The cha-
racterization and visualization of these deviations are yet another contribution of 
Kolmogorov. The modern theories and explanations on fluid turbulence can be 
seen as going beyond the Kolmogorov Theory. During the past 50 years, a num-
ber of sophisticated and theoretical descriptions regarding fluid turbulence were 
presented; these also include the seminal contributions of Robert Kraichnan [13] 
[14] [15]. However, a number of researchers agree that his works on statistical 
field theory are based on the assumptions and insights offered by Nikolai Kol-
mogorov [16]. 

There have been a wealth of publications from researchers that attempted to 
characterize k-flow and turbulence during the last century. Most of this research 
can be summarized into recently published review papers. Two review papers 
initially presented at the Royal Society summarize a large part of the progress 
that had been made on the understanding of turbulence up to that point of time 
[17]. Frisch [18] summarized the progress that had been made on the scaling in 
fully developed turbulence, discussing the work of those that focused their re-
search on this matter and noting that even though turbulence remains an un-
solved problem, the actual problem is that there is no consensus on how the 
problem of turbulence should be formulated. The review of Hunt and Vassilicos 
[19] was focused on the research that has been performed on small-scale turbu-
lence until that point of time. After summarizing all the research that has been 
done on the topic, the authors presented some extensions and applications based 
on Kolmogorov’s hypotheses. They pointed out that the most widespread prac-
tical application of Kolmogorov’s model has been for calculating the effects of 
turbulence, yet there is a very long list of other possible applications, such as 
sound production, transmission of light, mixing of species and fluctuating 
forces. 

A third review paper was presented in the same publication [17] by Bray and 
Cant [20], summarizing the advancements that the research on Kolmogorov’s 
turbulence had offered in the field of combustion. Bray and Cant summarized 
the research that had been performed with the particular application in mind, 
focusing on the insight gained by research that performed direct numerical si-
mulations. They also identified the unresolved problems and, based on the data 
from previous numerical simulations, a new theoretical model for the mean 
flame stretch factor was developed. A more recent attempt aiming to improve 
our understanding of turbulence has been performed in 2014 by Suri et al. [21]. 
Via simulations using a 2D model and experimental realization of a qua-
si-two-dimensional flow, the authors derived an equation for the vertical profile 
of the horizontal velocity field for Kolmogorov-like and unidirectional flows. 
The effects of viscosity, magnetic field and layer thickness on the coefficients of 
the equation are also being discussed. 

2.2. Kolmogorov’s Studies on Turbulence 

To begin with, the two-thirds law should be analyzed in order to develop a better 
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understanding of the theory. The law states that the mean square difference of 
the different velocities along two points in turbulent flow is inherently propor-
tional to the specific distance between the two observational points raised in the 
power 2/3 in the area or regions of the different intermediate scales. With the 
modern development and formulation of new and more sophisticated measure-
ment techniques, it is possible to gain new insights about the subtle structures 
and components of turbulence. Kolmogorov is also remembered for his contri-
bution of giving a theoretical estimate in relation to the corresponding scale 
[22]. 

Kolmogorov was primarily concerned with the fluid mechanics and other re-
lated problems with relevance to the turbulent disturbances. These disturbances 
arise due to the hydrodynamic instability or inconsistencies in the flows of fluids 
that happen to have a small viscosity. Now here, the corresponding mathemati-
cal viewpoint or theory is highly complicated. In order to develop a better un-
derstanding of this phenomenon, Kolmogorov was of the view that a simple 
model should be used. He suggested that the model of the two-dimensional 
movement or motion of any viscous fluid caused by a periodic external source or 
force field can be used in this regard. And effective solution in terms of the 
problem of stability of the k-flow was presented by Lilly [23]. The model which 
was put forward was termed a convenient benchmark or object for furthering 
the theoretical investigations. No one had thought at that time that the model 
might be realized and used physically under the varying laboratory conditions. A 
number of other studies and references will be quoted later in order to offer a 
detailed idea about the k-flow and the mathematics behind its functionality [3]. 

The theories and works of Kolmogorov can be classified as the primary 
benchmarks for studying various natural phenomena such as turbulence. More 
specifically, Kolmogorov formulated a number of basic principles explaining the 
local structure of developed and complex turbulent flows. Moreover, these prin-
ciples and concepts are based on a specific cascade model encompassing a large 
number of levels. There is also a sequence of scales ranging from large to small 
size. The large scales can be compared with the characteristic size of the entire 
system while the small scales can be seen as related to the order of the internal 
scale [24]. Making use of the available experimental data, Kolmogorov drew in-
teresting conclusions: 1) all laminar solutions become unstable with the decrease 
in viscosity, and 2) with the viscosity approaching zero, the inherent smoothness 
of the observed solutions tends to decline in a very strong manner. It is impor-
tant to note that the order of energy dissipation is determined based on the cha-
racteristic velocity as well as length, but is totally independent of the viscosity 
[24]. 

Based on these different conclusions, it was proposed that a turbulent solution 
is always present at low viscosity. In order to examine the problem in a more 
detailed manner, Kolmogorov proposed a simplistic model. It was referred to as 
the two-dimensional viscous flow that was caused by an external periodic force. 
The problems related to the stability of the flows were solved using the same ap-
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proach. Moreover, it was shown that the observed laminar flow happened to be 
unstable in relation to the long wavelength perturbations and disturbances [24]. 
However, there was not any kind of turbulent flow regime to be found. In short, 
a number of studies asserted that no turbulent flow regime could be obtained in 
two-dimensional cases. In order to understand turbulence and the various flow 
regimes, a third coordinate should be used. It has also been reported that the 
mechanism responsible for the onset of turbulence is marked for having a 
three-dimensional nature. Moreover, turbulence can also be studied using the 
numerical simulation of k-flow inside a compressible shear layer [24]. Compre-
hending the fully matured or developed turbulence is important for a number of 
applications of geophysical flows. The k-flow has long been studied in the do-
mains of geophysical fluid dynamics in relevance to the finite amplitude Rossby 
waves with the atmosphere as the setting [1] [2]. 

One of the primary notions of turbulence is that any turbulent flow is always 
composed of a number of eddies of varying sizes. These sizes help in defining the 
characteristic length scales for all the different eddies which in turn are characte-
rized by velocity and time scales. In this case, the large size eddies are always un-
stable and eventually break up into a number of smaller eddies. At the same 
time, the kinetic energy of the large eddy is eventually distributed into several 
smaller sized eddies. These smaller eddies also go through the same process re-
sulting in even smaller eddies. In this manner, the energy is passed down from 
the large to the small scales until reaching the point at which the kinetic energy 
is dissipated into internal energy due to the viscous action of the fluid [11]. It is 
clear that a turbulent flow is unique for having a hierarchy of different scales of 
different sizes due to which an energy cascade is formed. The dissipation of the 
kinetic energy scales with an order of Kolmogorov length (η). Moreover, it is al-
so important to note that the energy input for the cascade occurs due to the de-
cay of the large size scales having an order L. The large scales can also differ 
from each other due to the order of their magnitude at relatively high Reynolds 
numbers. There are also a number of scales that are formed in between [25]. 
These scales happen to be very large in comparison to the Kolmogorov length, 
but smaller in comparison to the large scale of the flow. The mechanism and 
functions of these scales and turbulence have been explained in a number of stu-
dies and hypotheses proposed by Kolmogorov [6]. 

In his original works, Kolmogorov clearly postulated that for high Reynolds 
numbers, all small-scale turbulent flows and motions could be seen as statisti-
cally isotropic (meaning that no spatial direction or point can be discerned). 
However, not all of the large size scales in a flow can be termed isotropic primar-
ily because they are influenced and determined on the basis of the specific geo-
metrical features and characteristics of the boundaries. Yet another main idea of 
Kolmogorov was that this form of geometrical as well as directional information 
is decreased or lost inside Richardson’s energy cascade. At the same time, the 
scale is also decreased or reduced so that the inherent statistics of the different 
small scales might come to have a universal character. In other words, the statis-
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tics for all small scales are the same when the Reynolds number is effectively 
high [6]. These findings were the source of a number of theoretical studies that 
were focused on the derivation of Reynolds number for accessing the onset of 
the fluid instability in different forms of unstrained k-flows. These studies also 
extended into unstable regimes using various forms of numerical simulations 
[3]. The results indicate that different small-scale instabilities result in a negative 
viscosity that in turn seeds a cascade of energy in relation to the injection scale. 
A number of researchers agree that the insights offered by Kolmogorov were 
useful in providing simplistic visualizations of the ingredients involved in 
two-dimensional turbulence. Kolmogorov further assumed that this cascading 
process occurs in a remarkably self-similar manner [7]. In other words, the ed-
dies that share a given size behave in the same or similar manner in comparison 
with the ones having a different size. This assumption, combined with the 4/5 
law, helped in formulating general scaling predictions that are used in the nu-
merical simulations of turbulence [3]. 

Different modifications of the Kolmogorov model have also been used in the 
past few decades. It is asserted that in order to have a more precise description of 
the different thin layers inside a fluid, a modified version of the k-flow can be 
used. These different forms of the k-flow also take into account the external fric-
tion, which is the friction at the wall. It should be considered here that the ex-
ternal friction is extremely crucial for having a correct estimate of the Reynolds 
number, which is of the order 103. Various versions and modifications of the 
k-flow, like the generation of different 2D turbulence, large-scale formations of 
these disturbances and all forms of vortex merging have been extensively applied 
in laboratory and natural settings. In addition, Kolmogorov’s theories and works 
have also been applied in the simulation of hydrodynamic flows [16]. 

3. Recent Studies on the Properties of the K-Flow 

3.1. Stability & Bifurcation 

3.1.1. The Early Experimental Background 
The two-dimensional flows are considered powerful tools for conducting a 
theoretical study on the transition of turbulence. These forms of theoretical in-
vestigations demand less analytic and computational power in relevance to the 
three-dimensional flows and also allow for the creation of different forms of sta-
tionary two-dimensional flows using the principles and concepts of magnetohy-
drodynamics. At the same time, it is also critical to consider that spatially peri-
odic flows play an important role in terms of two-dimensional flows primarily 
due to their high levels of degrees of symmetry. 

There are three classes (or types) of these flows that have distinct and unique 
symmetry properties. As the instability of these spatially periodic flows happens 
to be a major theoretical problem, there is a need for conducting detailed and 
comprehensive investigations of the phenomenon. One of the first theoretical 
studies in this regard was conducted by Meshalkin and Sinai [5]. Most of the 
studies in this regard are based on the ideal assumption that is based on an un-
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bounded fluid. Furthermore, the governing mechanism behind these studies is 
the Navier-Stokes equation. The parallel flows were also reported to be unstable 
against the various perturbations that used a very large scale in comparison to 
the periodicity length and other related features of the basic flow. In addition, 
this form of instability, which is also referred to as the negative viscosity instabil-
ity, has also been found in a number of rhombic as well as square eddy lattices. 
However, no form of large-scale instability was detected in terms of triangular 
vortices. Instead, there was a form of oscillation reported for a specific form of 
vortex lattices. For about ten years now, the studies conducted on the topic in 
the field of magnetohydrodynamics have empowered us to generate periodic 
two-dimensional flows in all forms of laboratory experiments. One of the first 
successful attempts in this regard was made by Bondarenko et al. [26]. They ob-
served the k-flow inside a specific electrically conducting fluid that was driven by 
an electromagnetic field. The indications and results of the studies conducted on 
square and triangular vortex arrays have been unable to conform to the different 
theoretical predictions [27]. 

At the same time, the specific Reynolds number in addition to the predicted 
large-scale instability was not observed. It was also reported by Bondarenko and 
a number of other researchers that the friction inside the layers of fluids is highly 
crucial for the instability and for comprehending the dynamics of the fluid flow 
[26]. Moreover, the observed instabilities that were observed were dependent 
heavily on the varying number of spatial periods. In other words, these instabili-
ties were influenced by the degree of confinement present in the system. Despite 
an increasing number of studies that were focused on the confinement and wall 
friction factor, a detailed and comprehensive quantitative approach was always 
lacking [27]. 

3.1.2. Stability Analysis & Drag Reduction 
Few of the many early studies on the hydrodynamics of non-Newtonian fluids 
contained analytic results and, even then, the results were obtained only for ex-
ceedingly simplified problems. In the early 1990’s, Brutyan and Krapivskii [28] 
published one of the first studies to provide a thorough analysis and investigated 
the stability of k-flow in an incompressible viscoelastic fluid. The authors ma-
thematically determined the critical Reynolds number and obtained the first 
known analytic result in the theory of stability of non-Newtonian liquids at the 
time of their study. Around the same period, Andr’e Thess [29] also performed 
an extensive study of the instabilities in two-dimensional spatially periodic 
flows. His work was divided into three published parts; in part I Thess examined 
the linear stability of parallel two-dimensional flows (i.e. Kolmogorov flow). In 
part II, he modifies his study to arrays of vortices with square symmetry [30]. 
Finally, in part III he further extended his study to a third symmetry, assuming 
triangular alternating vortices [31]. Through these papers, Thess proposed a re-
consideration of the linear stability of two-dimensional periodic flows in light of 
experimental results. For Kolmogorov flows, Thess calculated the precise critical 
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values of parameters at which instability sets-in for both bounded and un-
bounded flows, which he then tried to verify experimentally. The experimental 
results, however, demonstrated that the instability threshold is strongly overes-
timated, suggesting that this was due to magnetohydrodynamic parameters dis-
cussed in [32] and [33], but the wave number was in good agreement with the 
study’s theoretical results. In the second part of his work, Thess attempted to 
bridge the gap between theoretical and experimental studies via three major 
methods paying attention to the case of high/infinite Reynolds numbers, study-
ing the influence of lateral confinement and revealing the spatial structure of 
unstable modes. Finally, in the third part of his study, Thess extended his prior 
studies by investigating an inviscid flow with hexagonal symmetry. Although the 
study displayed a good replication of previous experimental results in electro-
magnetically driven flows, the author suggests that other specific aspects, in-
cluding magnetohydrodynamical, would have to be considered in relevant stu-
dies. In another paper published soon afterward, Thess examined the inviscid 
instabilities in two-dimensional periodic flows [34]. Although largely based on 
the previous publications, this paper presented new theoretical results on the 
stability of non-parallel flows driven by a Lorentz force, displaying that waves 
propagating along the symmetry directions occur in the triangular lattice. The 
results were in good agreement with previous experimental studies, developing a 
theory that could reproduce the experimental values for the instability threshold 
in a triangular lattice. 

Dubrulle and Frisch also published their findings on flow instability in the 
early 1990’s. In their work, the authors embraced a general formalism to deter-
mine eddy viscosities for the incompressible flow of arbitrary dimensionality 
subject to periodic forcing in space and time [35]. A section of their manuscript 
is devoted to layered flow, with detailed results for time-independent parallel 
flows, including variants of the k-flow. However, the authors noted that flow re-
gimes presenting negative viscosity instabilities cannot be examined using the 
restricted framework assumed for this study, noting that a correct theory should 
also include dissipative and nonlinear terms. In a companion paper, however, 
Henon and Scholl used the numerical observations of Dubrulle and Frisch and, 
performing simulations made with a lattice-gas algorithm, predicted a 
non-transverse instability for a modified k-flow [36]. 

Several years later, Frisch et al. [37] published their work regarding large-scale 
dynamics of the k-flow near its threshold of instability in the presence of the beta 
effect (Rossby waves). The paper was centered on a single-dimensional “toy 
model” for studying an instance of the interaction of turbulence and waves. The 
paper is divided between results specific to the β-Cahn-Hilliard equation [38] 
and results that may apply to a broad class of problems involving resonant wave 
interactions. 

Wang et al. [39] studied turbulence as well, although their work took a differ-
ent, quantitative approach. The fundamental hypotheses underlying Kolmogo-
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rov-Obukhov turbulence theory, also known as the “K62” theory, were quantita-
tively examined [40]. The authors performed direct Navier-Stokes simulations 
(DNS) at 5123 resolution with Taylor microscale Reynolds number up to 195. 
Three very different types of flow were considered: free-decaying turbulence, 
stationary turbulence forced at a few large scales, and a 2563 large-eddy simula-
tion (LES) flow field. Both the forced DNS and LES flow fields showed realistic 
inertial-subrange dynamics. While their results were limited to moderate turbu-
lence Reynolds numbers, the authors advised the readers not to draw definite 
conclusions based on the DNS results available at the time and noted that their 
results were supportive evidence of the K62 theory. Three years later, the authors 
published a paper on the same subject [41]. Using direct numerical simulations 
(DNS) and large-eddy simulations (LES) of velocity and passive scalar in iso-
tropic turbulence (up to 5123 grid points), they quantitatively examined the re-
fined similarity hypotheses as applied to passive scalar fields (RSHP) with 
Prandtl number of order one. For the first time, the exact energy and scalar dis-
sipation rated have been used and scaling exponents were quantified as a func-
tion of the local Reynolds number. Their study demonstrated that the velocity 
increments depend on the locally averaged dissipation rate and enstrophy, while 
the scalar increments depend on the local average dissipation rates alone. The 
results of the study compared well with those of other numerical and experi-
mental studies. The authors specifically mention an interesting outcome of their 
study; the fact that the small-scale features of the scalar field and those of the ve-
locity field share both differences and similarities. 

Another study concerning the stability of k-flow investigated the critical Rey-
nolds number while examining the instability of the flow in soap films [42]. The 
study declares that the idealized theoretical model, which is based on a linear 
stability analysis, predicts a critical Reynolds number nearly fifty times lower 
than the critical value derived from a soap film experiment. The study suggested 
a model with two-dimensional motion equations that provides better agreement 
with the experimental results than previously suggested models; however, as 
stated by the authors, the model still has inadequacies and only a full 
three-dimensional analysis of the system would fully describe the actual 
three-fluid flow mechanism. 

The viscous dissipation also is an important aspect of turbulent flow and, 
therefore, the bounds associated with it are of great importance. The elementary 
bounds on various aspects of the viscous dissipation rate in Navier-Stokes flow 
with Kolmogorov forcing have been examined in the early 2000’s by Childress et 
al. [43]. The study revealed that the bounds are rather generic and, thus, any 
improvements must capture key features that typify the turbulent flow response. 

In 2002, Chen and Price [44] performed an instability analysis of liquid-metal 
Kolmogorov flow in a straight duct. After a thorough analysis of the proposed 
mathematical theorem, the authors performed numerical experiments to deter-
mine the instability thresholds of metal fluid flow. The results of this analysis 
were a good match with those of Thess [29] and Kolesnikov [45]. Oparina and 
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Troshkin [46] performed an analytical study to determine the stability of the 
k-flow in a channel with rigid walls. Their study displays that k-flows with short 
periods will remain stable inside a channel with rigid walls. The study was based 
on theorems that describe the bifurcation of the solution into a new flow regime, 
either steady-state or self-oscillating, when the Reynolds number attains a cer-
tain critical value. A few years later, in 2005, the authors also published a paper 
on the secondary electromagnetically driven flows [47]. The main motivation 
behind the second paper was to show the qualitative differences between ele-
mentary (N = 1) and extended (N > 1) wall-bounded flows. Based on similar 
numerical experiments as those of their previous work, the authors offered in-
sight on the predicted development of secondary flows in a duct, concluding 
with a numerical model that can approximate such flows in bifurcating 
steady-state solutions. 

The instability observed in the k-flow has also managed to generate a large in-
terest in the domain of mathematics and other related fields. This flow is able to 
show a large-scale instability in terms of the negative viscosity type. For most of 
the super critical conditions, it is important to note that the inverse cascade 
happens to be a distinctive feature of for the different two-dimensional flows. 
Initially, we should consider the two-dimensional flow of any incompressible 
fluid that is being governed by a specific dimensionless equation. The mathe-
matical treatment for the instability equation is determined by taking into ac-
count the type of system i.e. whether it is bounded or not. It is also expressed on 
the basis of some proper boundary conditions [27]. It is because of this behavior 
that the small-scale forcing can be termed an effective mechanism or means of 
generating a large-scale two-dimensional turbulence. It should also be noted that 
the linear stability in relevance to large-scale perturbations has also been inves-
tigated by making use of multiple scale analysis. Flow instabilities have remained 
a classical subject in the field of fluid dynamics. Moreover, the theoretical studies 
about their presence and occurrence in most polymer solutions are of para-
mount importance in a number of industrial applications. A satisfactory under-
standing of these flows involves a consideration of the viscoelastic behavior of 
these fluids, which is the main reason why the subject of stability in relation to 
k-flow has been investigated in a number of studies and experiments [27]. When 
considering the linear stability of the parallel k-flow, it is important to consider 
the viscosity, the confinement, and the linear friction. These computations help 
in the provision of different neutral instability curves in terms of the parameter 
space together with the wave numbers and speeds. A great deal of evidence sug-
gests that all stability parameters are dependent on confinement in a 
non-uniform manner. It has also been shown that all forms of weak transverse 
confinement decrease the resulting longitudinal wavelength of the perturbations 
at the onset of the instability. Moreover, strong confinement helps in changing 
the character or nature of the instability into the one having an oscillatory in-
stead of an exponential nature [27]. 

Boffetta et al. [27] also performed numerical simulations to determine the 
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drag reduction in turbulent k-flow [27]. Using a linear viscoelastic model, the 
authors examined the three-dimensional turbulent k-flow and demonstrated 
that drag reduction does take place above a critical Reynolds number. In their 
study, an expression for the dependence of the critical Reynolds number on po-
lymer elasticity and diffusivity was proposed. They concluded that the drag coef-
ficient can be expressed as a function of the rescaled Reynolds number only, that 
this function is universal with respect to the fluid characteristics, and that its 
shape can be derived by simple phenomenological arguments. However, the 
numerical verification of these expressions and conclusions using nonlinear 
models has not been addressed in their work. 

The nonlinear dynamics of viscoelastic k-flow have been examined by Bistag-
nino et al. [48], both analytically and numerically. The authors specifically noted 
that the physical reason for their study was that, even though there are no phys-
ical boundaries, this flow has several analogies with channel flows and is one of 
the few known solutions of the Oldroyd-B model [49]. The study concludes that 
the weakly nonlinear dynamics are described by equations that resemble those 
introduced by Cahn-Hilliard [38]. However, the equations contain a fifth-order 
nonlinearity and with coefficients that depend on the Deborah number. They 
also performed a study on drag reduction, displaying that the injection of poly-
mers induces an increase of the mean flow and reduces the drag coefficient. The 
main qualitative conclusion of their study is that drag reduction appears to be a 
phenomenon coupling large and small scales. Another study based on numerical 
simulations that investigated the dynamics of the two-dimensional periodic 
k-flow of a viscoelastic fluid, described by the Oldroyd-B model, has been pre-
sented two years later by Berti and Boffetta [50]. The authors investigated the 
destabilization of the k-flow induced by the elastic forces associated with the 
dynamics of polymer molecules in the solution. The study revealed that above a 
critical Weissenberg number (Wic ≈ 10), a transition to new dynamical states 
was observed. The authors noted also that the establishment of mixing features 
is possible in that state. 

Mishra et al. [51] recently performed numerical simulations on two-dimensional 
Kolmogorov flows, studying and identifying all of the possible flow regimes and 
their bifurcations, yet focusing on the reversal and condensate regimes. The pa-
rametric study was mainly performed for a varying Rh, which represents the ra-
tio of the inertial and viscous terms, revealing that its increase would render the 
flow unstable, following a series of transitions thoroughly described in the study. 
The results of this study were in good agreement with both other similar nu-
merical studies and with experimental observations. Finally, the study includes 
the analysis of the energy transfers among Fourier modes and displayed the 
symmetry of flow reversals in Kolmogorov flows. 

3.1.3. Stability of the Beta Plane Kolmogorov Flow 
The consequences and outcomes for the varying geophysical Beta effect will 
need to be explored. It can be shown that even in the limit β→0, the Reynolds 
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number can be reduced in response to the generic effect of beta. The stability of 
the Beta plane of geophysical k-flows has been studied by a number of research-
ers and authors. Lorenz [52] and Gill [53] evaluated the stability of this flow at α 
= 0 using an inviscid case. In terms of a viscous case, Frisch et al. [37] took a dif-
ferent value for the a. An analysis of these studies has revealed that different val-
ues of alpha have been used in this regard [54]. 

3.1.4. Stability of an Oscillating Kolmogorov Flow 
For oscillating flows, there is a need for considering the time and traverse direc-
tion. This issue can be reduced to an infinite algebraic problem. By using a 
number of recurring fractions, it can be proved that the time-independent flows 
are quite unstable to the different perturbation modes. It should be noted here 
that these modes do not possess the periodicity of the basic flows when consi-
dered in traverse directions. Instability has also been identified for a number of 
inviscid cases even when the different perturbation modes had the same peri-
odicity [55]. 

It is important to consider that the stability of k-flow has been studied using a 
number of different materials and fluids. A number of studies have been carried 
out using the ordinary viscosity and the lateral walls. In terms of the strongly 
confined systems encompassing only a single period of the k-flow, a form of os-
cillatory instability was identified. On the other hand, the instability of the flow 
without any boundaries has also been evaluated using various quasi-periodic 
perturbations. This specific viewpoint has helped in understanding the stability 
of the flow while using the confined systems. It can be said that the future stu-
dies should be dedicated to exploring these instabilities in more detail [56]. 

3.1.5. Bifurcation Analysis 
The studies in this regard have shown that with the increasing strength of the 
variable force, the system exhibits a number of different forms of bifurcations in 
response to steady states. In addition, the traveling waves, torus solutions and all 
other related factors also come to influence these bifurcations. Different types of 
bifurcation analysis techniques have also been used for exploring the topic in 
detail [56]. 

In 1991, Platt et al. [57] performed a numerical investigation of chaotic 
k-flows, focused on defining transition states for a range of the bifurcation pa-
rameter Reynolds number (Re). The authors determined that there were two 
main regimes of flow, small and large-scale structures, with each corresponding 
to different ranges of Re, and described the sequence of bifurcations that takes 
place in each of these two flow regimes. 

In his Ph.D. thesis, Philip Love [58] computed the bifurcation structure of 
Kolmogorov and Taylor-Vortex flows. The author used the numerical Recursive 
Projection Method to calculate many branches of both Kolmogorov and Tay-
lor-Vortex flows. The results were validated via comparisons of steady state flow 
calculations to turbulence calculations. The author also concluded that turbulent 
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flow originates from k-flow, through a series of bifurcations. By following bifur-
cating branches, the author observed the existence of worm-like structures, 
which may transform into the similar formations present in turbulent flow. 

Legras et al. [59] published a perturbation theory, based on numerical simula-
tions. Their work showed that the inverse cascade of kink/anti-kink annihila-
tions, which are a characteristic of k-flow in the slightly supercritical Reynolds 
number regime, can be halted by the dispersive action of Ross by waves in the 
β-plane approximation. The main result of their theory was the following equa-
tion: 
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The equation gives the minimum value of |β| capable of stabilizing a solution 
of period Λ = L/N, with Ν > 1. 

Several years later, the same authors also examined the large scale instabilities 
of generalized turbulent Kolmogorov flows [60]. The authors used the 
Clark-Smagorinsky model [11] to investigate instabilities in Kolmogorov flows 
for which the molecular viscosity has been replaced by a parametric eddy viscos-
ity. Their analytical study concluded that such instability is obtained for para-
meterized large eddy simulation equations, as soon as the filtering length of the 
simulation is smaller than a threshold. 

By examining the bifurcation curves of solutions to the k-flow, Matsuda and 
Miyatake [61] performed an analytic study and presented the mathematical 
formulas for the second derivatives of their components concerning the Rey-
nolds number at bifurcation points. Their work mathematically proved that nu-
merical computation is possible by choosing finite numbers of points. 

The recent paper from Tithof et al. [62] presented a combined experimental 
and theoretical study on the instabilities of k-flows meant to compare the validi-
ty of a numerical model to real-world results. This also is the first k-flow study to 
provide a quantitative analysis of the secondary instability that generates a 
time-dependent pattern of vortices. The authors performed physical experi-
ments using electromagnetic forcing to drive a quasi-two-dimensional shear 
flow in a thin layer of electrolyte suspended on a thin lubricating layer of a di-
electric fluid. Their theoretical study was based on the 2D model from one of 
their previous works [21] and, according to the authors, the numerical model 
predicts the modulated flow pattern with fairly reasonable accuracy. It was indi-
cated, however, that the accuracy of the numerical predictions does decrease as 
the Reynolds number increases. 

3.2. Stratification and Heat Transfer 

On the subject of stratification and heat transfer, k-flows can be assessed and 
investigated by using a weakly stratified two-dimensional fluid flow. Firstly, the 
amplitude equations and measures for the whole system will need to be derived. 
Both high, as well as low Peclet numbers, will be used in this regard. To begin 
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with, it is important to note that the stability of the viscous sheer flows is a com-
paratively difficult problem. For decades now, the problem has continued to in-
terest and influence scientists and researchers from all over the world. Without 
taking into consideration the effects of stratification together with compressibil-
ity, the linear theoretical analysis of the problem might not be easy. It should be 
noted that this analysis is primarily based on providing the solution for the 
famous Orr-Sommerfeld equation. It is also important to consider that only a 
few generalized results and solutions have been obtained for this specific equa-
tion. As mentioned earlier, deriving the critical Reynolds number is crucial for 
understanding the occurrence of stratification and heat transfer in k-flows. More 
specifically, the resulting instability can be measured more effectively using dif-
ferent values of the Reynolds number. In an effort to grasp the nature and func-
tions of stratification, a number of studies used this approach. 

Stratification and heat transfer can be assessed using gravity. More appro-
priately, gravity is used in a direction that happens to be transverse to the k-flow. 
This strategy can be used to explore all forms of weak stratification. It can also 
be deployed for modifying the basic versions of linear instabilities in addition to 
the nonlinear development. As the stratification exerts a strong stabilization ef-
fect, an inverse cascade effect can be anticipated. Yet again, there are a number 
of geophysical motivations that play an important role in this regard. For this 
reason, it is also important to measure (and, in some ways, control) these moti-
vations. One such motivation is the stability of the different vertical shear flows 
generated by the atmosphere [63]. Moreover, the internal gravity waves that 
possess finite amplitude can also be classified as one of these geophysical moti-
vations. The phenomenon of stratification and heat transfer in k-flow has also 
been investigated in the laboratory settings. However, the direct application of 
these experiments will not be considered here. The focus is primarily to offer a 
description of the mechanical problem [1] [2]. 

In order to successfully formulate an assessment, it is imperative to start out 
with the factors of vorticity as well as heat equations for the two-dimensional 
stratified flows. This flow is defined using the x-z plane while measuring the 
gravity along the z coordinate. Secondly, it is crucial to exploit the incompressi-
bility of the flow in order to express the different components of velocity in 
terms of the different stream functions. At the same time, the Kolmogorov shear 
flow that is present in the background is measured and characterized by Ψ0 = 
U0 l cos (z = l), where U0 is the amplitude. In the formulation and construction 
of the equations, it is important to keep a number of things in mind: 1. the equa-
tions are dimensionless, and 2. these equations will be used for recovering the 
unstratified k-flow [1]. The studies conducted by Balmforth and Young [1] have 
confirmed that the introduction of varying forms of stratification can be helpful 
in suppressing the observed instabilities. The second instability in this regard 
happens to be a conductive one that operates primarily through the creation of a 
wide scale thermal diffusion. This specific instability is reported to arise with a 
much stronger form of stratification. It also leads to the generation of prominent 
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staircases in relevance to the buoyancy field. The different steps seen in the 
staircase are marked for having their own nonlinear dynamics. These steps have 
also been reported to show coarsening during the various phases of the stratifi-
cation process. In the second study conducted by Balmforth and Young [2], the 
available configurations and parameters were such that only viscous instability 
had been present due to which there was no evidence that could confirm the 
layering [1]. A further study based on [1] and [2] by Sarris et al. [64] examined 
the laminar convection flow in enclosures driven both by a nonuniform Lorentz 
force of Kolmogorov forcing type and by a buoyancy force. The researchers 
found that a proper combination of the magnetic and gravitational forces may 
enhance heat transfer up to 40% over the usual natural convection heat transfer 
rates. 

The stratified shear flows also arise in a number of astrophysical fluids. One of 
the core issues in this context is realizing the manner in which the unsteady eddy 
motions result from the different forms of steady forcing. Furthermore, it is cru-
cial to know how the motion is able to rearrange as well as transport all of the 
fluid properties. The k-flow has also been rationalized as a mechanism for un-
derstanding the unstratified flow dynamics and transition of turbulence. Nu-
merous laboratory experiments and studies have reported the generation of dif-
ferent staircases separated by sharp interfaces. In most of the laboratory settings, 
these staircases have been created using dragging bars or grids from inside the 
salt-stratified water [65]. The turbulent environment of the ocean and other re-
lated settings are believed to cause the same effect on the flows. 

Thermal convection and other similar measures have also been used for gain-
ing a deeper understanding of the heat transfer in combination with stratifica-
tion [2]. Although the phenomenon has not been proved empirically, it has been 
assumed that the turbulent field is the primary ingredient for accessing the 
layering problem. In other words, the process of layering offers a number of in-
sights about the stratification process. Based on the same premise, a number of 
mathematicians and researchers have tried to produce simple models for eva-
luating turbulent stratified flows. However, it should be noted that most of these 
models tend to rely on simplistic and empirical parameters of different forms of 
turbulent transport. The prevailing notion in this regard is that the point at 
where the flux decreases together with the gradient, the observed stratification is 
quite unstable. It has also been reported that the staircases can also be seen for 
lower values of the Reynolds number. An analysis of this process gives rise to a 
number of key questions for studying stratification in terms of k-flows. Moreo-
ver, it leads to the need for more detailed and analytical explorations using the 
principles and concepts of fluid mechanics [2]. 

The instabilities that are catalyzed by the different viscosities have also been 
measured and investigated in a number of other contexts. Researchers also re-
port a temptation of rationalizing the prevailing instabilities as analogies. Fur-
thermore, a number of different indications have been reported in current theo-
ries and principles that are being used for understanding stratification. A recent 
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paper from Ponetti et al. [66] describes the transitions in a stratified Kolmogorov 
flow, with the researchers performing a numerical study to examine the transi-
tions that lead the flow to chaotic states, identifying that the flow reaches chaotic 
configurations through two different routes: one involving drifting states and 
one involving a gluing bifurcation. 

Turbulent Mixing in Stratified Flows 
The range of the different mixing efficiencies and turbulent diffusion happens to 
be very large. For this reason, a proper parameterization of the geophysical flows 
is important. There are a number of experimental settings and procedures that 
have been used in this regard, such as grid-generated turbulence and air bubble 
turbulence. There are also a number of other studies in which basic instabilities 
have been investigated using density fluctuations and stratified flows. The me-
chanism through which the process is achieved is based on constantly changing 
the parameters. The effect of changing these parameters in an uncalculated 
manner affects the results negatively. For this reason, it is imperative that the 
process should be completed in a rather careful manner. Another important 
point to consider is the flow visualization that is integral in terms of stratifica-
tion. Among the different fluctuation measurements, it is seen that there is a re-
gion with an intermediate Ri that allows for a higher and direct transport of the 
unmixed fluids and materials through the interface [67]. At the same time, expe-
riments conducted using bubble generated mechanisms exhibit rather different 
forms of mixing efficiencies. An analysis of these studies and investigations has 
shown that a decrease in the different mixing efficiencies can be seen only for the 
stronger density interfaces. It can also be argued that for higher values of Ri, a 
longer time span is needed. During this time, the interface is also able to offer 
support for the internal waves possessing higher frequency and buoyancy. 
Moreover, the mixing values and measures prove to be of much help in terms of 
analyzing the different parametric ranges [68]. 

It is also important to consider that turbulence and stratification are one of 
the primary features of environmental flows. It is due to their interactions that a 
number of flow phenomena have generated a lot of interest in the domain of 
fluid dynamics. There are several categories of the turbulent flows that should be 
classified and investigated for the purpose of understanding stratification, tur-
bulence and heat transfer in a more effective manner [69]. In his review article, 
H. Fernando [69] presented a short review of turbulent mixing in stably strati-
fied fluids. The study concludes that, up to the year that the manuscript was 
published, there was little consensus among researchers regarding various issues.  

A recent study explored the formation of coherent structures in a weakly 
stratified Kolmogorov flow under the effect of minor linear drag [70]. The model 
used for this study was based on the core Kolmogorov model with the effects of 
linear vertical density stratification and drag taken into account. The bifurcation 
diagram was computed for a Reynolds number of up to 100 and the formation of 
three coherent structures was observed. The authors conclude that future studies 
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using higher Reynolds number values are necessary to reveal the effects of strati-
fication and drag on these coherent structures. 

3.3. Hydrodynamic Fluctuations in Kolmogorov Flow 

Bena et al. studied the hydrodynamic fluctuations in the k-flow in both the linear 
[71] and non-linear [72] regimes. Their work was based on Landau-Lifshitz [73] 
fluctuating hydrodynamics, mainly because, as the authors proclaim, of its rela-
tive simplicity. The main purpose of the articles was the study of the statistical 
properties of k-flow via numerical calculations. The first study [71], focusing on 
the linear regime, presented that the validity of the incompressibility assumption 
is flawed, leading to unsatisfactory results; however, the problem becomes too 
complex if compressible hydrodynamic equations are used, due to the boundary 
value problem. By basing their theory on the relative simplicity of the k-flow, the 
authors managed to display that, in the long time limit and for linearized fluc-
tuating hydrodynamic equations, the flow behaves as an incompressible fluid ir-
respectively of the Reynolds number. In their second published paper [71], 
which explored the nonlinear regime, the authors verified that the incompressi-
bility assumption leads to a wrong form of static correlation functions, except 
near the instability threshold. They used a perturbation technique to find the 
limits of where the macroscopic behavior of the fluid is not affected, displaying 
that the stochastic dynamics of the system is governed by two coupled nonlinear 
Langevin equations in Fourier space when the system is close to the instability 
threshold. 

Mansour et al. also [74] performed particle simulations of the k-flow and ana-
lyzed them by the Landau-Lifshitz fluctuating hydrodynamics. The authors con-
cluded that a spurious diffusion of the center of the mass has no effect on the 
average macroscopic behavior of the system, yet corrupts the statistical proper-
ties of the flow and is an issue for microscopic simulations. Their study provides 
an analytical expression for the corresponding diffusion coefficient. Several years 
later, a molecular dynamics simulation of spheres was performed in order to 
study the behavior of k-flows in granular matter [75]. The spheres interacted via 
elastic collisions and a force mimicking the effect of capillary bridges. It is noted 
that the instability of the flow is present even in dry granular matter, where par-
ticle interactions are limited to inelastic collisions. 

The advection of passive particles in the k-flow has been studied by Beyer and 
Benkadda for two different regimes of the flow [76]. The regimes were 
cross-checked based on the same parameters used in Platt’s study of chaotic 
k-flow [57]. Their study displays that the advection of particles is different with-
in different regimes, even though the asymptotic diffusion remains normal in all 
cases. The authors concluded that time characteristics alone are inadequate to 
define anomalous transport, which requires both time and space characteristics 
to be simultaneously present. Mitchell and Grigoriev [77] presented a numerical 
study, investigating the change of the mixing properties associated with the tran-
sition from laminar to turbulent regime in a two-dimensional k-flow. The au-
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thors concluded that the mixing efficiency improves as the forcing is increased, 
i.e. steady flows are the worst mixers and turbulent flows the best. However, 
neither the complexity of the flow or the mixing efficiency increase monotoni-
cally. It was noted that the mixed area fraction of a class of time-periodic and 
quasi-periodic flows can be accurately described by a perturbative approach, al-
though the flows considered in the study cannot be considered weakly per-
turbed. 

4. Recent Numerical and Experimental Research on 
Kolmogorov Flow 

A number of experimental studies and investigations have been carried out in 
order to understand the nature and functions of k-flow. We will begin this sec-
tion by presenting the most widely accepted and used modeling and simulation 
methods, highlighting their primary advantages and limitations. The section will 
continue with the presentation of the experimental studies that have been per-
formed on Kolmogorov flows, summarizing their purpose and outcomes. 

4.1. Modeling and Simulation Methods 

Mathematical and all other forms of modeling are useful methods for the analy-
sis of complex systems. Modeling is also used at times when it is not feasible to 
conduct experiments with the real systems. Provided that models offer adequate 
descriptions of the different casual relationships, conducting experiments with 
them using computer aided mechanisms is one of the most effective and efficient 
measures. In terms of k-flows, there is a number of modeling and simulation 
techniques that can be used, including conceptual, functional, constraints, dec-
larative, and multi-model designs [78]. 

4.1.1. Conceptual Models 
Conceptual models are used for making systems that are easier to assess and use. 
However, the techniques that are used in terms of these models design might not 
be good enough to understand and grasp the complexities and difficulties of the 
k-flow. A detailed conceptualization process can formulate and evaluate the 
model. During the entire process, it is also expected that new principles and 
concepts will be formed. The techniques that are used in this regard have been 
primarily formalized for being used with the most simplistic models. One of the 
main advantages of the design is that it helps in formulating systems that are 
simple to use. However, it can also be taken as a disadvantage because the 
process limits the functions of the resulting systems [79]. 

4.1.2. Declarative Models 
A model can be termed declarative if it is successful in determining and analyz-
ing the actions of different agents and the manner in which these states can be 
changed. More specifically, these models are used for specifying the reactions to 
states. Moreover, these models allow for adding qualitative facets and considera-
tions without any compromise on the accuracy. It can also be said that declara-
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tive modeling is based on developing a model in a diagrammatic manner. It 
should also be pondered that the term points out towards the use of a procedural 
approach. Moreover, the model is represented in the form of facts that are true. 
In other words, these facts are used for defining the model [79]. 

4.1.3. Functional Models 
Functional models help to determine the mode of the functions and operations 
in the system. A functional model always contains a number of functional enti-
ties. It can also be defined as a way of defining the functional aspects and fea-
tures of a system. It is due to the wide scale benefits and comprehensiveness of 
the model that it has been used constantly in a large number of engineering ap-
plications. One of the prime advantages of the design is that it records all of the 
important phases and segments of the modeling process. Moreover, the systems 
with a number of functionally designed segments and parts can be modified eas-
ily. At the same time, the functional modules can also be used more easily using 
this modeling approach [79]. 

4.1.4. Constraint Models 
The different entities in declarative models are defined in terms of constraints 
that determine their nature as well as the relationship. The program code is pre-
ferably kept separate from the specific modeling description that has been used. 
In order to develop a model from the constraints, it is imperative to modify its 
description using the natural language. The success of the model is based on us-
ing the right constraints and modeling techniques [80]. 

4.1.5. Multi-Models 
This form of modeling can be seen as an extension of the object-oriented designs 
and techniques. One of the major contributions of these modeling techniques 
and methodologies is that they allow for different forms of mapping between the 
real and digital worlds. Furthermore, this form of mapping allows for a more 
realistic view of the design. The process of generalization and aggregation is used 
in order to form a number of hierarchical structures. More specifically, these 
models are created using a number of constructing objects and then connecting 
them. It can be said that the resulting models share the advantages and benefits 
of the different modeling procedures and designs. It has also been observed that 
some levels might be functional or declarative, while others might be marked for 
possessing the features of other modeling designs [79]. 

One of the first numerical simulations related to k-flows has been performed 
to investigate the stochasticity properties of dynamical systems [81]. Although 
stochasticity is defined in a qualitative way, the proposed method allowed for the 
definition of a quantitative parameter, the “entropy-like quantity”, which is re-
lated to the Kolmogorov entropy for associated flow. 

4.2. Simulation Techniques for Kolmogorov Flows 

The primary purpose of a simulation is to gather the maximum possible infor-

https://doi.org/10.4236/jamp.2018.611187


E. D. Fylladitakis 
 

 

DOI: 10.4236/jamp.2018.611187 2247 Journal of Applied Mathematics and Physics 

 

mation about a system using the most convenient measures and strategies [79]. 
However, the use of different models and simulation techniques for under-
standing the Kolmogorov flows has been subject to a number of controversies. 
Although a wide range of studies and researches has been conducted in this re-
gard, there are a number of drawbacks and complexities that need to be ameli-
orated. 

Kalis and Kolesnikov [82] performed a numerical study of the k-flow in a 
strong magnetic field. The authors proposed that instead of two linear electrodes 
located perpendicular to the field, the linear electrodes should be positioned pe-
riodically along the x axis, through which a DC current I is periodically applied. 
It has been suggested that this approach allows for the formation of k-flow in a 
channel with non-conductive walls. In 1997, Posch and Hoover [83] suggested 
an alternative method for the simulation of hydrodynamic flows, which has been 
applied on a two-dimensional k-flow. The method was based on Smooth Particle 
Applied Mechanics and, thus, the authors baptized it SPAM. The two-dimensional 
k-flow that the method was applied on had the fluid at the top and bottom half 
of a tube accelerated in opposite directions. They concluded that their method 
reproduces the transition from a laminar to secondary stationary flow, albeit qu-
alitatively. If the Reynolds number is increased and the secondary flow is no 
longer characterized by an array of stationary vortices, SPAM can determine the 
transition to fully developed turbulence. However, the authors could not deter-
mine the Reynolds number in the unstable flow regimes. 

As mentioned earlier, k-flow arises when fluid is subject to an artificial and 
sinusoidal force. The resultant flow happens to be periodic as well as similar to 
common shear flows observed in different forms of modeling and simulation 
techniques. A number of researchers and mathematicians have studied multidi-
mensional simulations of k-flows. Firstly, the flow was analyzed in 
two-dimensional numerical simulations. Shebalin and Woodruff performed a 
three-dimensional simulation of the flow using different forms of viscous stress 
[84]. Moreover, three-dimensional simulations using the measures of hypervis-
cosity were carried out by Borue and Orszag [85]. Now the question about al-
ternative grid size dependencies using the Smagorinsky model can be ap-
proached using two different approaches and methods. Firstly, a detailed prior 
analysis is to be performed using direct numerical simulation (DNS) on the 
available data sets. Later onwards, the resulting velocity field is filtered out using 
a number of filter widths. For each of these filter widths, the Reynolds stress, as 
well as the Smagorinsky formula, are evaluated. On the other hand, a second 
approach can also be used. This method employs the use of the LES experimen-
tation. For the different numerical resolutions, a number of simulations are ad-
ministered using different or varying values of the Smagorinsky constant [86]. 

The value that leads to the best resolution helps in determining the grid size 
dependence. It is important to consider that both of these approaches lead to 
similar results and conclusions in terms of grid size dependence. An interme-
diate range of wave numbers has also been reported for grid size dependencies. 
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It is imperative to have an enhanced grid size dependence where the low wave 
numbers are observed. At the same time, satisfactory and reliable results have 
also been achieved using low resolutions, especially when an appropriate grid 
size was used. However, a deterioration was seen in terms of the different pre-
dictions as well as in the turbulent shear stress. A number of papers and studies 
confirm the idea of alternating the grid size dependence in order to offer a com-
pensation for all forms of limited under resolution, but still a lot more needs to 
be done in order to reduce the problems and complexities encountered in simu-
lation and modeling techniques. The goal can be achieved more efficiently and 
effectively using a specific Smagorinsky constant that can provide the best re-
sults. The most appropriate value of the Smagorinsky constant may be assessed 
by a number of sophisticated approaches. Moreover, another major trend in this 
regard is measuring and assessing the usefulness of the LES [86]. 

The results of the study conducted by Woodruff Seiner et al. [87] indicate that 
most of the low-resolution simulations are able to reproduce the resulting kinet-
ic energy. Furthermore, these simulations are also able to reproduce almost all of 
the statistical quantities. However, the low-level resolutions failed to determine 
the correlation coefficient Cxz. It is evident that the low-resolution simulations 
are the most recommended under similar circumstances in order to provide for 
optimal and reliable results. The results also reported no form of sensitivity in 
terms of the correlation coefficient and the changing values of the Smagorinsky 
constant. Thus, it is clear that the simulations that were performed using the 
Smagorinsky constant failed to determine the exact value of the correlation coef-
ficient. For this reason, it is clear that no simple tuning method of the constant is 
good enough to determine the correct value for the correlation coefficient. In 
simple words, it can be said that a more drastic adjustment and restructuring of 
the model is needed for more appropriate measurements and calculations of the 
coefficient [86]. 

Simulation of turbulent flows is also attracting a great deal of attention these 
days. Modeling and simulation of k-flow can be analyzed through large eddy 
simulations (LES). The core idea behind any form of large eddy simulation is 
that almost all of the largest turbulent scales can be resolved in a numerical 
manner. At the same time, it also asserts that only the smallest, as well as 
self-similar scales, might be helpful in the modeling process. If one could resolve 
all scales in terms of large and small scales of the inertial range, the developed 
model would be relatively basic and effectively computable. One such model is 
the Smagorinsky model that, despite its faults and drawbacks, has been used 
successfully until now for carrying out large eddy simulations. However, it is a 
reality that this concept can be used with complete accuracy for the simplest 
models. For the more complex models, the available computational techniques 
and resources only allow for a resolution into two transitional regions: the iner-
tial and energy containing ranges [87]. 

The complex and fastest computational machines will be able to make a small 
dent in the problem. We can use these computational devices and methodologies 
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for the solution of complex flows. An important question in this regard is to ask 
what might be the consequences and outcomes of making use of these inade-
quate resolution methods and what measures should be taken for their ameliora-
tion. It is also evident that there is a need to look for alternative and more effec-
tive simulation and modeling techniques. It is also important to ask whether an 
alternative non-grid size dependence and measure be used for improving LES of 
k-flow. The possibility of having different alternatives in terms of grid size de-
pendencies has been raised by a number of researchers and experts. With this 
said, it is possible to make use of alternative grid size dependencies of the Sma-
gorinsky model in relevance of the LES of k-flow [87]. 

In addition to having a number of computational and numerical advantages, 
the k-flow also offers a mechanism for testing different turbulence and simula-
tion models. Using this approach, almost all of the turbulent flow features can be 
assessed and measured in a detailed and effective manner. A number of ap-
proaches have been proposed for the development and formulation of 
time-dependent models and techniques in relation to non-equilibrium flows 
[86]. This analysis of the different modeling and simulation techniques yielded 
two primary questions. Firstly, under what conditions and circumstances a 
steady-state model can be used for assessing the non-equilibrium turbulent 
flows. The second question is whether or not the simulation and modeling tech-
niques specified above can help in improving the drawbacks and de-merits of 
the Smagorinsky model. It has also been observed that the agreement between 
the LES measures and DNS techniques decreases with the increase in the wave 
numbers of the forcing. Thus, it is now evident that Smagorinsky model and all 
other modeling techniques lag behind in terms of generating satisfactory results 
for the non-equilibrium turbulent flows. 

Mainly due to the explosive rate at which computing power increased, most of 
the numerical simulation studies took place during the last decade. The expo-
nentially increasing processing power of modern computers was also the herald 
of more detailed, complex numerical models. In order to formulate more de-
tailed and comprehensive models of turbulence, there is a need for performing 
accurate predictions and estimates of the dissipation factor. Furthermore, the 
values of the Reynolds numbers will also need to be evaluated in this regard. The 
study of turbulence driven by a number of Kolmogorov forces using different 
single number profiles was conducted by Borue & Orszag [85]. Since then, a 
number of attempts have been made for understanding the force shape depen-
dence in terms of turbulence [9]. 

By using direct numerical simulations, Schaefer et al. [88] tested the model 
equations for the mean dissipation using a k-flow. The authors compared the 
standard model [89] and a transformed Menter’s k – φ model [90], which in-
cluded a cross diffusion and second production terms, against the results of di-
rect numerical simulations. Due to the second production term, the transformed 
model displayed superior behavior than the standard model; however, the 
cross-diffusion term held no importance for obtaining a steady solution. Zhang 
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and Fan [91] simulated two-dimensional k-flow via the direct Monte Carlo me-
thod. Their simulations have been performed for a Knudsen number of 0.005 
and the authors observed two main regimes, with each of them corresponding to 
different ranges of the Reynolds number. The results of their simulations were 
consistent with those obtained by solving the incompressible viscous Navi-
er-Stokes equations. 

Sarris et al. [92] studied the Kolmogorov flow generated by a stationary 
one-dimensional forcing varying sinusoidally in space using direct numerical 
simulations with periodic boundary conditions. The study aimed to display the 
effect that computational box size has on the calculation of the properties of the 
Kolmogorov flow. The study concluded that turbulence statistics are heavily de-
pendent on the boundary conditions that have been chosen, observing that some 
symmetries compatible with both the boundary condition and the forcing are 
broken in the statistical sense. The authors suggested that Kolmogorov flow 
could thus be considered as an appropriate test case for assessing large-eddy si-
mulation of inhomogeneous, anisotropic, and sheared turbulent flow, without 
having to deal with the problem of wall modeling. 

The energy-enstrophy method, a nonlinear stability method, was introduced 
in 2008 by Tsang and Young [93]. The proposed method was specialized for 
two-dimensional hydrodynamics and developed from a nonlinear stability anal-
ysis of the k-flow. The study was focused on the limit in which drag is much 
stronger than viscosity, motivated by the possibility of applying the technique of 
Doering and Constantin [10] [94] to two-dimensional turbulence, where it is es-
sential to take into account the enstrophy conservation. In an attempt to simplify 
the great computing power required to model large complex flow systems, 
Kramar et al. [95] presented an analysis of Kolmogorov flow and Rayleigh-Benard 
convection using persistent homology as a data reduction method. Two Kolmo-
gorov flow regimes are studied: chaotic dynamics from the appearance of unstable 
fixed point and a periodic flow that displays drift in the direction of symmetry. The 
authors took a general approach in order to maximize the applicability of their me-
thod on open problems that exhibit complex spatiotemporal behavior. According 
to the results of the study, persistent homology is an effective method both for quo-
tienting out symmetries in families of solutions and for identifying multiscale re-
current dynamics. The authors concluded that persistent homology is a method 
robust to noise and sensitive to complicated dynamics, appropriate for studying 
experimentally acquired data sets. 

4.3. Experimental Studies 

4.3.1. Experimental Study of Kolmogorov Flows Using Cylindrical  
Surface 

In this experiment, a laboratory model of the k-flow was investigated using a cy-
lindrical surface. The different number of half periods in terms of the external 
force was varied from 2 to 22. It was shown that the specific type of secondary 
flows is determined and dependent on the number of half periods in relation to 
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the basic flow. The half periods include the traveling wave for all of the odd 
number of periods, a self-oscillating regime and a quasi-steady vortex structure. 
This form of theoretical analysis has been based on the Galerkin approximation. 
Moreover, the system of equations that were obtained was solved numerically in 
direct conjunction with the analysis [96]. The different experiments that have 
been carried out in the laboratory settings have shown that there is a specific in-
terval marked for its super-criticality in relevance to the secondary flows. One 
reason can be the friction of the fluid generated with the channel bottom due to 
which the stability curve is modified. The confinement of the observed flow with 
the sidewalls also leads to similar results [90]. The results of the study showed 
that some of the most dangerous disturbances are marked for having wave 
numbers close to 0.3l. It is an indication that the number of vortices formed 
alongside the x-axis happen to be independent of the channel width. At the same 
time, the nature of the fluid motion in terms of the super critical regime is de-
termined based on the imaginary part. In terms of the supercritical regime, three 
different solutions were observed. It was also reported that the behavior of the 
observed flow in the supercritical regime was confirmed with the numerical in-
tegration of the system being investigated [96]. 

An experimental apparatus with mechanical periodic (but not sinusoidal) 
forcing has been presented, which the authors used to investigate the instability 
of k-flows in a soap film [42]. The results of the experimental study were used 
for comparison against the numerical models of older studies, which displayed 
virtually no convergence with the experimental results. 

For the purpose of an undergraduate laboratory experiment, Kelley and Ouel-
lette have constructed an apparatus to create a quasi-two-dimensional flow, us-
ing electromagnetically driven thin-layer flow [97]. The authors noted that this 
approach has been selected over soap films because of its simplicity, as the stu-
dents will be called to setup the experiment. The paper summarizes the most 
important, basic theory regarding the k-flow, places focus on the experimental 
setup and data acquisition procedures and, finally, discusses the pedagogical as-
pects of the project. 

By using the experimental setup suggested by Rivera and Ecke [98], Suri et al. 
[21] investigated the velocity profiles in two-dimensional k-flow. The authors 
confined their comparisons between theoretical and experimental results to the 
laminar flow because, as they proclaim, they sought closed form expressions for 
the coefficients in the 2D vorticity equation, in order to gain insight into how 
they depend on various experimental parameters. Within these parameters, their 
study displayed excellent agreement between experimental measurements and 
analytical predictions, while the authors also concluded that increasing the vis-
cosity of the electrolyte relative to that of the dielectric would improve the un-
iformity of the flow. 

4.3.2. Lamination and Mixing in Laminar Flows Using Lorentz Body 
Forces 

In this experimental investigation, a relatively newer approach was demonstrat-
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ed for the designing of different mixtures. The approach is centered on using a 
sequence of different tailored flows in combination with a new procedure for 
quantifying varying levels of striation. The process, referred to as lamination, 
can be seen as translating to the specific distance over which different forms of 
molecular diffusion will need to act. In situ, the process of mixing was also 
achieved using a tailored sequencing of different flows. The degree of mixing 
that was observed showed an exponential growth before the saturation was 
achieved. This form of saturation is seen when the thickness of the striations 
happens to be smaller than the length scale [99]. 

It should be noted that without the molecular diffusion, the thickness of the 
striations would have been smaller in comparison to the size of the atom. The 
results of the study showed that 3 minutes are enough for mixing the species 
with low levels of diffusivities. Moreover, the stretching, as well as the lamina-
tion, showed an exponential growth. For each of the forcing periods, the lengths 
of the line in combination to its lamination were multiplied with 23. After a 
timing gap of three minutes, the average lamination was reported to be 3000 
with the striation thickness being about 3.3 μm. It was also shown that the in situ 
mixer did not demand a mean flow inside the pipe for efficient mixing. The 
primary mechanism for the mixing process was the control of two local jets. It 
should also be considered that such flows can be designed using a number of 
other devices. The study also pointed out the need of using green mixing so that 
it might consume lower amounts of energy [99]. 

4.3.3. Numerical and Experimental Study of a Circular Shear Layer 
The experiment by Chomaz et al. [100] showed that the dynamical behavior of 
the observed flow was dependent on the aspect ratios of the cell. In terms of the 
larger cells, the transition from the mode having a lower number of vortices to-
wards a mode with higher number of vortices is determined using a number of 
localized processes. The transition is seen to occur after a series of different bi-
furcations that happen to be in correspondence with the successive breaking of 
the different symmetries of the flow being studied. The results of the study 
showed that a two-dimensional simulation of the flow is sufficient for recovering 
the varying dynamical processes of the experimental flow. The rational variance 
was visible during the different phases of the experiment. In the experiment, 
there was no sort of translational variance reported. It was also shown that for 
the different velocities, a number of specific forces could be easily neglected. It 
was due to this that the rotating frames were undistinguishable just like the Ga-
lilean frames. A distinction between the convective and absolute instabilities was 
also observed. The case is important for having a spatially periodic flow as re-
ported by the researchers who performed the experiment. The numerical simu-
lations observed also happened to be similar to the simulation of linear shear 
flows. The researchers reported that the experiment was seen to be lagging in 
were some dimensions and domains. However, the study managed to provide a 
number of new insights about the experimental investigations of k-flow [100]. 
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4.3.4. An analysis of Forced Periodic Flows and Their Spatio-Temporal 
Dynamics 

The work reported in [99] showed that spatiotemporal chaos could be caused 
due to the competition between the varying unstable modes. The instabilities 
and dynamics of a specific localized vortex were analyzed using different expe-
rimental procedures. A double bifurcation was seen in addition to a new period-
ic state. The results showed that the instability threshold was in close accordance 
with the experimental one. The findings of this experiment were in close relev-
ance with the previous studies and investigations that were carried out in this 
regard. Moreover, this study pointed out to the need of more future studies for 
evaluating the forced periodic flows in more detail [101]. 

4.3.5. Experimental Investigation of the Quasi-Two Dimensional Shear 
Flows 

In the experimental study reported in [100], forced shear flows were investigated 
in a thin layer using an in-viscous fluid. In order to obtain the stream function of 
the observed vertical flow, a number of streak photographs were taken. Different 
flow characteristics were determined by investigating these flows. For the pur-
pose of evaluation, the experimental flow was observed using a MHD apparatus. 
Moreover, a magnetic field was also created using circular magnets. In order to 
generate a shear flow, a number of cylindrical electrodes were utilized. The 
Kolmogorov flow was generated using a number of different devices and in-
struments [102]. 

The mean velocity, vorticity and Reynolds stress were also measured in [100] 
and a harmonic analysis of the resulting disturbances was performed keeping in 
view the dynamics of the system. The conclusions of the experiment showed a 
verification of quasi-two-dimensional approximation for thin-layered fluids. The 
results also gave an indication about the applicability of Q2D approximations. At 
the same time, the possibility of reconstructing Q2D shear motions was also in-
vestigated. Correct behavior was determined for both of the profiles being inves-
tigated. The force profiles were analyzed in relevance to these approximations. 
Another important result of the experiment was that Q2D flows could also be 
applied to the varying atmospheric flows. However, it should be noted that the 
specific method being proposed here could not be applied directly to the at-
mosphere, with the main reason being the need for a complete resolution of the 
observed vertical structure. Keeping in view the data obtained from the horizon-
tal fields at varying altitude levels, this specific procedure can be generalized for 
different forms of reconstruction using the vorticity transformation equation 
reported in [102]. 

4.3.6. Turbulence of Shallow Water Flows Modeling 
The most recent modeling study using the Kolmogorov approach was performed 
by Pu [103], who explored the turbulence of shallow water flows. To that end, 
the author combined a model of shallow water equations with Kolmogorov’s k − 
E turbulence model and verified the simulations by comparing them to experi-
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mental data. He also compared the results of both the newly developed model 
and the validation experiments to previous studies, mainly focusing on compar-
isons with the Boussinesq model [104]. According to the author’s conclusion, 
the newly developed model reproduced the flow characteristics of mul-
tiple-obstructions induced flow reasonably well. The author also notes that the 
Kolmogorov scaling model should be given more attention by future studies as 
an achievable approach to resolve computationally demanding flow turbulence. 

4.3.7. Simulations on Turbulent Kolmogorov Flow without Boundaries 
Musacchio and Boffetta published the results of numerical simulations of turbu-
lent Kolmogorov flow without boundaries [105]. The main aim of the study was 
to examine the dependence of turbulent drag on the Reynolds number, but the 
researchers also presented a detailed analysis of the scale-by-scale energy balance 
that shows how the kinetic energy is redistributed among different regions and 
scales. The study derives a prediction for the spatial transport of kinetic energy, 
describing how it is redistributed among different regions of the flow. The au-
thors conclude that the Kolmogorov flow is the ideal framework to investigate 
the properties of spatial transfer of kinetic energy in nonhomogeneous, turbu-
lent sheared flows. 

4.3.8. Spatiotemporal Dynamics in Two-Dimensional Kolmogorov Flow 
Lucas and Kerswell [106] studied the spatiotemporal dynamics in two-dimensional 
Kolmogorov flow over large domains. The numerical study was aiming to ex-
amine the 2D Kolmogorov flow over an extended domain that would display 
spatially localized chaotic flows, i.e. points that would approach 2D turbulence. 
The results displayed rich spatiotemporal behavior once larger domains are con-
sidered, focusing on the existence of localized flow structures. However, the au-
thors conclude that the disparity between the large domains used for the means 
of their study and the spatial extent of the localized chaos that exists is a major 
challenge, requiring the development of more efficient recurrent flow analysis 
strategies. 

4.3.9. Transition to Turbulence in the Three-Dimensional Kolmogorov 
Flow 

One of the few studies that examine three-dimensional Kolmogorov flows is the 
recently published paper of Veen and Goto [107], in which they examine the 
transition from a three-dimensional Kolmogorov flow to turbulence via numer-
ical simulations. The authors study the subcritical transition process assuming 
the “simplest possible circumstances” of a flow on a triply periodic domain with 
aspect ratios equal to unity and forcing with the smallest wave number in one 
direction only. Their work reveals the presence of an equilibrium state close to 
the laminar flow with no drift in the streamwise or spanwise directions. 

5. Conclusions 

The research works of Andrei Nikolai Kolmogorov have aided science in terms 
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of getting the answers and solutions for some of the most perplexing phenomena 
including turbulence, shear flows, fluidic behaviors, and probabilities. The study 
of two-dimensional flows that was initiated by Kolmogorov was continued by 
future researchers and mathematicians, and the analysis of magnetohydrody-
namics and the mathematics behind them clearly indicate that the Kolmogorov 
flows (k-flows) are a major subject of investigation. Numerical simulations and 
investigations have helped a lot in advancing our understanding of these flows. 
As specified in this review paper, it is evident that a number of efforts have been 
made in terms of understanding the laboratory measurements and realizations 
of these flows. The contributions of Kolmogorov in the field of fluid dynamics 
cannot be undermined at any level. It was due to this works that we are now able 
to better understand the velocity fields in a number of intermediate scales, chao-
tic flows, and the inertial shear range. In addition, his 5/3 law has also remained 
a major landmark in this field, which was used by a number of researchers and 
scientists have put forward revolutionary theories on fluid dynamics. 

It can be concluded that the study of these flows has helped in assessing the 
stability of the viscous shear flows and the different behaviors that are exhibited 
by fluids. At the same time, the phenomenon of turbulence has been studied in 
detail using the principles and concepts put forward by Kolmogorov. It is also 
evident that we are still too far from grasping a number of randomized and 
chaotic behaviors that are exhibited by fluids. The Reynolds number has also 
been critical in terms of these investigations. All the studies and researchers cited 
above used different values of the Reynolds number in order to gain a deeper 
understanding of the stability and instability of k-flows. The studies have ex-
plored whether the different small-scale forces, such as the baroclinic instability 
cascade, combine to form different planetary flows. Thus, it can be said that 
these studies have described two physical effects that may be asserted as applica-
tions of k-flows. These two effects are the beta effect and bottom friction. The 
analysis has also reported that vorticity and turbulence have remained a central 
topic in the domain of magnetohydrodynamics. 

Kolmogorov was able to present his concepts and studies in a clear way. The 
dimensional analyses he performed are still being used as the basis for a number 
of experimental studies. However, there are some weak points that cannot be 
ignored. Despite the total success of the theory in terms of describing a number 
of crude features of fully developed turbulence, a number of facets and aspects of 
his propositions do not fit well with the actual turbulence. Turbulence is indeed 
a complex phenomenon due to which it is difficult to entirely access and eva-
luate its nature. Moreover, it is indeed a difficult challenge to formulate a ful-
ly-fledged theory of turbulence without any sort of limitation. There are always 
limitations even in some of the best and most comprehensive theories known. 

Future research and studies should be dedicated towards the applications of 
the concepts and studies of Kolmogorov for investigating new domains and 
frontiers. In other words, the focus of the researchers and mathematicians 
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should be to use Kolmogorov’s works in something that will help science. The 
applications of k-flows in the domain of engineering and all other related fields 
are numerous due to which special attention should be paid to understanding 
them in detail. The contributions of Kolmogorov are not limited to fluid dy-
namics, mechanics, magnetohydrodynamics and mathematics. It was one of his 
major interests to apply statistical theories and principles to real life settings. For 
those who do not know, k-flow has also been extensively applied in the field of 
economics [108], biology [109] and even data encryption [110]. More specifical-
ly, some studies are concerned with the applications of his equations in the si-
mulation of financial activities. In simple words, his works have been applied in 
financial simulation modeling. His equations and works have been used for for-
malizing comprehensive mathematical models. The behavior of turbulent eddies 
is now more thoroughly understood, the credit for which directly goes to the 
works of Kolmogorov. Modern methods and techniques of computerized com-
putational are also somewhat based on the insights and solutions that were de-
rived from the works of Kolmogorov. Whether it is turbulence, heat transfer, 
stability of shear flows, bifurcation, stratification or simulation, the applications 
of k-flow can be seen in all these domains. 

As a recommendation, it is suggested that future studies should be dedicated 
to limiting the intricacies and complexities of turbulence and shear flows. These 
studies should not only focus on understanding the theory put forward by Kol-
mogorov, but also on its applications in different fields. In addition, it is also 
right to say that more detailed and perfect turbulence models can be formulated 
using the work of Kolmogorov. Scientists and mathematicians have been inter-
ested in applying the concepts of turbulence to complex flows. That is not all, as 
Kolmogorov’s ideas have also been used in the formulation of algebraic turbu-
lence models. In short, the field of magnetohydrodynamics can excel through 
understanding and applying the works and studies of Kolmogorov. 
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