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Abstract 
In this paper, we performed an investigation of the dissipative solitons of 
the two-dimensional (2D) Complex Swift-Hohenberg equation (CSHE). 
Stationary to pulsating soliton bifurcation analysis of the 2D CSHE is dis-
played. The approach is based on the semi-analytical method of collective 
coordinate approach. This method is constructed on a reduction from an infi-
nite-dimensional dynamical dissipative system to a finite-dimensional model. 
The reduced model helps to obtain approximately the boundaries between 
the stationary and pulsating solutions. We analyzed the dynamics and cha-
racteristics of the pulsating solitons. Then we obtained the bifurcation dia-
gram for a definite range of the saturation of the Kerr nonlinearity values. 
This diagram reveals the effect of the saturation of the Kerr nonlinearity on 
the period pulsations. The results show that when the parameter of the satu-
ration of the Kerr nonlinearity increases, one period pulsating soliton solu-
tion bifurcates to double period pulsations. 
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1. Introduction 

The complex Swift-Hohenberg equation (CSHE) was first suggested by Swift and 
Hohenberg [1] as a simple model for the Rayleigh-Bénard instability of roll 
waves. This equation models pattern formation arising from an oscillatory insta-
bility [2] [3] with a finite wave number at onset and, as such, it admits solutions 
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in the form of traveling waves. The CSHE has been widely studied both analyti-
cally and numerically [4] [5]. It describes the dynamics of wide-aperture lasers of 
class A and C close to the peak gain [6]. Besides lasers, the CSHE has been used 
as a model for other nonlinear optical systems. For instance, photorefractive os-
cillator, Ker medium, semiconductor laser, and passively mode-locked lasers 
that allow the generation of self-shaped ultra-short pulses in laser systems [7] are 
well described by the Complex Swift-Hohenberg order parameter equation. The 
CSHE is useful to describe solitons propagation in optical systems with linear 
and nonlinear gain, and spectral filtering such as nonlinear polarization rotation 
in fiber lasers or communication links including lumped fast absorbers [5]. It 
seems clear that the generation of more complex impulse can be extremely de-
scribed by the higher order of the spectral filter. 

Initially, one of the generic equations to analyze the dynamics of the dissipa-
tive soliton formation in laser systems with a fast saturable absorber is the com-
plex Cubic-quintic Ginzburg-Landau equation (CGLE) model [8] [9]. Neverthe-
less, the spectral filter of this model is restricted to the second-order term and 
can only describe a spectral response with a single maximum, which is not the 
case in many experiments. Indeed, the gain spectrum is usually wide and can 
have multiple peaks. Thus, in order to make the model more realistic, we need to 
add other terms of higher-order spectral filtering to the CGLE, leading to the 
complex Swift-Hohenberg equation [9]. The formation of dissipative soliton in 
these models has been widely studied in nonlinear dissipative optics. Their 
properties and conditions of existence have been investigated extensively, from 
fundamental point of view and due to the clear physical meaning in particular 
applications [8] [10] [11]. 

Nonetheless, these studies use purely numerical approaches. Despite the fact 
that some families of exact solution of the CSHE [12] can be obtained analyti-
cally, it is apparent that the CSHE can mainly be analyzed only using computer 
simulations. Numerical analysis of the CSHE [6] reveals a great variety of pat-
terns and structures such as traveling waves, spiral waves, segregation and com-
petition between stable solutions. In [13] the authors check numerically the va-
lidity of the complex Swift-Hohenberg equation for the lasers. However, solving 
numerically the complex Swift-Hohenberg equation for the two-dimensional so-
litons, for a given set of parameters and a given initial condition, is an extremely 
lengthy procedure. To overcome this difficulty, semi-analytical methods based 
on various physical backgrounds were developed [14]. For instance, in [15] the 
authors applied the semi-analytical method to investigate soliton propagation 
and generation of stable moving pulses in one dimension and stable vortex soli-
tons in two dimensions. These alternative theoretical semi-analytical tools can 
perceive soliton solutions more efficiently in specific domains of the system pa-
rameters [9] [14] [16] [17]. 

Using the collective variable approach, we have expanded the regions of coex-
istence of 3D dissipative stationary and pulsating solitons in the complex Ginz-
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burg-Landau equation with the cubic-quintic nonlinearity [18]. Recently, with 
the same approach, we have demonstrated the stationary dissipative solutions of 
the 2D complex Swift-Hohenberg equation. Particularly, we mapped the regions 
of existence of stationary dissipative soliton in the ( ),ν ε  and ( )2,β γ  planes 
[5]. 

Here, our main purpose is to investigate the pulsating solution of the 2D 
CSHE using a variational formulation. On the fact that the dynamics of the dis-
sipative solutions are much more complex, and the numerical simulations are 
extremely tedious tasks, the variational approach is useful to study the ground 
state since it depends on a trial function and a good set of parameters. 

The rest of the paper is organized as follows. We remind in section 2 the col-
lective variable approach and our procedure of determination of the stability 
domains of the pulsating solutions. Section 3 is devoted to the findings of the 2D 
pulsating CSHE solutions. We illustrate the bifurcation behavior and show that 
they can be stable over a wide range of parameter values. Finally, we summarize 
with our conclusions in section 4. 

2. Stability Studies by Collective Coordinates Theory 

In this study, we address the complex Swift-Hohenberg equation in two dimen-
sions. It is helpful to describe soliton propagation in optical systems with linear 
and nonlinear gain and spectral filtering. As well, the CSHE relates quantitative-
ly as qualitatively many nonlinear effects, which occur during the propagation. 
This equation is also useful for communication links with lumped fast saturable 
absorbers or fiber lasers with additive-pulse mode-locking or nonlinear polariza-
tion rotation. The CSHE higher order of the spectral filter is extremely essential 
to analyze the generation of more complex impulse, which makes it preferable in 
certain situations to the CGLE. The CSHE can be read in this normalized form 
[8] [19]: 

2 4

2 4
2

2 2z tt rr

tt ttt

iD i i iψ ψ ψ γ ψ ψ ν ψ ψ

δψ ε ψ ψ βψ µ ψ ψ γ ψ

− − − −

= + + + +
             (1) 

Without the additive term 2 tttγ ψ  this equation is the same as the CGLE one, 
and here the coefficients 2, , , , , ,Dµ δ β ν γ γ  and ε  are real constants. The 
right-hand-side of Equation (1) contains the dissipative terms: 2γ  represents 
the higher-order spectral filter term. , ,δ ε β  and µ  are the coefficients for 
linear loss (if negative), nonlinear gain (if positive), spectral filtering (if positive) 
and saturation of the nonlinear gain (if negative), respectively. The left-hand 
side holds the conservative terms: namely, ( )1 1D = + −  which is for the ano-
malous (normal) dispersion propagation regime and ν  which represents, if 
negative, the saturation coefficient of the Kerr nonlinearity. γ  stands for Kerr 
nonlinearity coefficient. In this present study, the dispersion is anomalous, and 
ν  is kept relatively small. 

It is clear that the physical meaning of each term of the Equation (1) depends 
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on the real problem which must be examined. In optics, when applied to the 
propagation of the pulses in a laser system, as is the case in our study, 

( ), ,r t zψ ψ=  represents the normalized optical envelope and is a complex 
function of three real variables. The optical envelope describes not only the pulse 
as a collective entity localized in time and space but also all other localized or 
non-localized excitations, such as noise, which are always present in the real 
system. 

The retarded time in the frame moving with the pulse is given by t, and z is the 
propagation distance or the cavity round-trip number. Finally ( )2 2r r x y= +  
represents the transverse coordinate, taking account of the spatial diffraction ef-
fects. 

The dynamics of light pulses described by Equation (1) can be stationary [5] 
and many other types of soliton solutions [20]. In addition, it is a painstaking 
work to find and classify the different types of the 2D CSHE’s solutions. As well, 
transitions between the solutions occur in the form of sequences of bifurcations 
[9]. In fact, to the best of our knowledge, there is no analytical solution for the 
2D complex Swift-Hohenberg equation. Indeed, researches conducted to date, 
use namely direct numerical simulations and they fail to reveal more dynamics 
that are complex. The main and tedious problem is the mapping between the 
type of solutions and the set of parameters of the equation. To overcome this 
critical constraint, one option is to use the master equation approach to a certain 
extent. 

We have proved in our previous work [5] the stationary solutions of the 2D 
CSHE using the collective variable method. We have explained the suitability of 
this procedure for a systematic search of stability domains for different types of 
solitons. Here we use the same approach to examine the pulsating soliton of the 
2D complex Swift-Hohenberg equation; this has not been done previously as far 
as we know. Rigorously, we provide an approximate mapping of the regions of 
existence of stable pulsating solutions in the parameter space of the equation (1), 
and their dynamics. 

In reference to our work [5] [9] [18], we use the Collective variable theory [21] 
to identify the different types of solutions. The main idea of this approach is to 
associate collective variables with the pulse parameters of interest for which equ-
ations of motion may be derived. To this end, one can decompose the optical 
field ( ), ,r t zψ  in the following way: 

( ) ( ) ( )1 2, , , , , , ,nr t z f x x x t q z tψ = +                 (2) 

where f the ansatz function is a function of the collective variables ( nx ) and is 
chosen to draw, at best, the configuration of the optical pulse ψ . The choice of 
the ansatz function that introduces the collective variables in the theory is crucial 
for obtaining solutions with the desired properties and important for the success 
of the technique. The component q is a residual field that represents all other ex-
citations in the system (noise, radiation, dressing field, etc.). 

Subsequently, by neglecting the residual field, one can consider the fact that 
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the pulse propagation can be completely characterized by the ansatz function. 
This approximation is called the bare approximation [21]. As is the case in 
most practical studies, we use the fact that soliton solutions remain localized 
and that the exact pulse field is completely characterized by the trial function 

( )( ), ,r t z fψ = . Therefore, we assume that all the pulses are purely Gaussian 
with spatial and temporal chirp and we do not consider other forms of pulses. 
This way, we take the following Gaussian function as ansatz function to the suc-
cess of our approach: 

2 2
2 2

2 2exp
2 2t r

t r

t r i if A c t c r ip
w w

 
= − − + + + 

                 
 (3) 

here the collective variables ,, , ,t r t rA w w c c  and p represent respectively the 
amplitude, the temporal and spatial widths of the pulse, the chirp along t axis, 
the spatial chirp and p the global phase. The collective variables evolve along the 
propagation direction z and the dynamic of the dissipative soliton. In these dy-
namic and evolutions, the chirps are highly important. 

Using the bare approximation to the 2D CSHE (see all the details in [5] [9] [18] 
[21]) we get the six collective variables that evolve according to the following set 
of six coupled ordinary differential equations: 

3 5 2 2 4
22 4

3 2 5 32 3 2 ,
4 9 t r t t t

t t

A A A A A Ac D Ac c w c A
w w

δ ε β µ γ
 

= + − + − − + − + 
 

  

( ) ( )2 4 4 2 8 4
23

1 2 2 122 1 1 ,
4 9t t t t t t t t t

t t

w w c D w A A w w c w c
w w
β

ε µ γ= − − + − + −  

2 41 24 ,
4 9r r r r rw w c w A A wε µ= − −  

2 2 4 2
24 2 2 2 4

1 8 1 4 12 48 ,
2 9t t t t t

t t t t t

c c D c A A c c
w w w w w

β γ ν γ
   

= − − − − + +   
   

  

2 2 4
2 4 2

1 4 44 ,
2 9r r

r r r

c c A A
w w w

γ ν= − − + −  

2 4 2 2
22 2 2

3 2 5 12 12
4 9t t t t

t r t

Dp c A A c w c
w w w

β γ ν γ
 

= + − − + − − 
 

          (4) 

We observe that the CSHE, Equation (1) is reduced to an ordinary differential 
equation given by the soliton parameters ,, , ,t r t rA w w c c  and p. It is clear that 
these equations give no explicit information with regard to the different solu-
tions of the Equation (1) and their stability. They simply reveal in detail the in-
fluence of each parameter of equation CSHE (1) under soliton parameters. In 
addition, they give us the first idea on the dynamic of the light pulse. 

The trial function is suitable for its simplicity, and it makes the procedure of 
derivation of the variational equations relatively easy. This approach provides 
the basic parameters of the fixed points (FPs), and a mapping of different types 
of solutions. The FPs of the system are found by imposing the left-hand side of 
Equation (4) to be zero ( 0X =  with , , ,, ,t r t rX A w w c c p= ) [22]. The relation 
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2sε δµ≈  can estimate the threshold of existence of FPs. If sε ε> , we have in 
general both stable and unstable FPs. The stability of FPs is determined by the 
analysis of the eigenvalues [22] ( ),, , , ,j t r t rj A w w c c pλ =  of the matrix 

ij i jM X X= ∂ ∂ . 

If the real part of at least one of the eigenvalues ( jλ ) is positive, the corres-
ponding FP is unstable. The unstable fixed points correspond to the pulsating 
and non-stationary solutions of the 2D CSHE Equation (1). 

If the real parts of all the eigenvalues of the matrix ijM  are negative, the cor-
responding FPs are stable. The stable fixed points correspond to stationary solu-
tions of the 2D CSHE Equation (1). Using the initial condition, 

( )
2 2

, ,0 2.86exp
0.7 1.36
t rr tψ

 
= − − 

 
                 (5) 

and investigating the parameter regions situated in the neighbourhood of the 
parameters 1D γ= = , 0.3β = − , 0.5δ = − , 0.1µ = −  and 2 0.05γ = , we have 
highlighted the stationary and pulsating solutions in the ( ),ν ε  plane. For a 
given set of ν  and ε  the use of the Newton-Raphson allows finding the cor-
responding fixed point before determining its stability. The mapping Figure 1 
illustrates the result of this rigorous analysis for the range of selected values. 

Figure 1 shows the cartography of the solution of the Equation (1). The blue 
region matches to the fixed points, which represent the stationary solution of the  

 

 
Figure 1. Cartography of the solutions of the 2D complex Swift-Hohenberg equation in 
the ( ),ν ε  plane. The stable fixed points regions in blue represent the domain of statio-

nary solitons. The bottom region, between the blue region and the red line corresponds to 
pulsating solutions. Other CSHE parameters are 1D γ= = , 0.3β = − , 0.5δ = − , 

0.1µ = −  and 2 0.05γ = . 
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2D complex Swift-Hohenberg equation. We studied intensively the distinguish-
ing feature of the stationary solution of the 2D CSHE in [5]. Besides the statio-
nary domain, we have unstable fixed points, which can be divided in two catego-
ries: the limit-cycle attractor and the unstable solutions. The limit-cycles region, 
between the blue region and the red line correspond to pulsating solutions. In-
deed close to boundaries of the existence domains of stationary solitons solu-
tions, there is more often an intermediate region in which pulsating solutions 
can be found. Hereafter we investigate the dynamic of the pulse in the lim-
it-cycle attractor area; the pulsating solutions. 

3. Analysis of the Pulsating Solitons 

The nonlinear dissipative systems are more dynamics than complicated because 
they include energy exchange with external sources. Besides, they admit pulsating 
solitons, in contrast to Hamiltonian systems. In [20] Akhmediev and his group 
presented pulsating solitons of the CGLE and regions of their existence in the 
five-dimensional parameter space. They also studied the bifurcations within a de-
finite parameter ranges. The authors in [23] carried out pulsating solitons in the 
existing regions of the CGLE. These results are based on numerical simulations 
and this problem is not simple as there are several parameters of the CGLE. Ex-
cept the simulation solutions, some variational formulations have been reported 
[14]. Recently we addressed the pulsating solitons according to collective variable 
approach. The existence of pulsating solutions is indeed a general feature of most 
nonlinear dissipative systems. This behaviour of pulsating soliton can be attri-
buted of limit-cycle attractor; it then possesses inherent stability the same way as 
stationary stable solutions do. 

In order to investigate pulsating soliton in the 2D CSHE, we fix the parameters 
of the equation as 1D γ= = , 0.3β = − , 0.5δ = − , 0.1µ = −  and 2 0.05γ = . 
Afterwards, we choose one point between the blue region and the red line (Figure 
1) corresponding to pulsating solutions. The related solution to this point is iden-
tified by the value of nonlinear gain, 50ε =  and the saturation of the Kerr 
nonlinearity, 0.247ν = − . The dynamic of this pulsating soliton is summarized 
on the Figure 2. Figure 2(a) shows the evolution of the soliton parameters: am-
plitude (in red), temporal width (in black) and spatial width (in blue) in the z 
direction. In addition, Figure 2(b) and Figure 2(c) are the enlarged views of 
these parameters. One can clearly notice that the dynamics begin with a transi-
tional phase (according to the initial condition), characterized by small oscilla-
tions due to the adjustment of the initial condition. The onset of oscillations is 
followed by a permanent dynamics that run between two fixed values. The soli-
ton changes its amplitude and widths periodically in the propagation direction, 
and one pulsation makes one period (see Figure 2). We observe that the soli-
ton periodically changes mostly its widths, while keeping almost constant its 
peak amplitude. The temporal and spatial widths oscillations can be seen from 
the evolution plot in the Figure 2(b). We see that the peak amplitude largely  

https://doi.org/10.4236/jamp.2018.610179


A. Kamagaté, A.-B. Moubissi 
 

 

DOI: 10.4236/jamp.2018.610179 2134 Journal of Applied Mathematics and Physics 
 

 
Figure 2. Evolution of pulsating soliton parameters: amplitude (in red), temporal width 
(in black) and spatial width (in blue), with the use of the collective variable approach and 
the trial function. Enlarged views of those pulsations are plotted in (b) and (c). The re-
lated solution to this point has the value of nonlinear gain to 50ε =  and the saturation 
of the Kerr nonlinearity to 0.247ν = − . 

 
changes periodically rather than the widths. They have the same period, but we 
can see that the temporal width quickly evolved with respect to the spatial width. 
The two dynamics are also in opposition of phase. It clearly shows a difference 
characteristic and oscillation between the temporal and the transverse widths of 
the 2D complex Swift-Hohenberg equation. 

When the value of the saturation of the Kerr nonlinearity changes from 
0.247ν = −  to 0.240ν = −  for the same value of nonlinear gain 50ε = , the 

period of pulsating soliton doubles, that is, the amplitude repeats itself after two 
pulsations, as shown in Figure 3. The temporal and spatial widths have always 
presented qualitatively the same behaviors as those in Figure 2. 

However, we notice that the number of pulsations decreases when the value of 
the saturation of the Kerr nonlinearity goes from 0.247ν = −  to 0.240ν = − . 
In addition, the amplitude of the oscillations increases. 

The analysis of these two figures (Figure 2 and Figure 3) reveals that the sa-
turation of the Kerr nonlinearity plays an important part in the internal dynamic 
of the 2D complex Swift-Hohenberg equation pulsating soliton. 

The parameter ν  influences both qualitatively and quantitatively the pulsa-
tions of the soliton. As well, the saturation of the Kerr nonlinearity plays a key 
role by changing a single periodic pulsating soliton to a double period pulsat-
ing soliton. Figure 4 shows clearly the evolution of the pulsating soliton para-
meters for a given set of parameters corresponding to the pulsating domain. We 
change the nonlinear gain from 50ε =  to 54ε =  and the saturation of the Kerr  
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Figure 3. Evolution of pulsating soliton parameters: amplitude (in red), temporal width 
(in black) and spatial width (in blue), with the use of the collective variable approach and 
the trial function. Enlarged views of those pulsations are plotted in (b) and (c). The re-
lated solution to this point has the value of nonlinear gain to 50ε =  and the saturation 
of the Kerr nonlinearity to 0.240ν = − . 

 

 
Figure 4. Evolution of pulsating soliton parameters: amplitude (in red), temporal width 
(in black) and spatial width (in blue), with the use of the collective variable approach and 
the trial function. Enlarged views of those pulsations are plotted in (b) and (c). The re-
lated solution to this point has the value of nonlinear gain to 54ε =  and the saturation 
of the Kerr nonlinearity to 0.196ν = − . 

https://doi.org/10.4236/jamp.2018.610179


A. Kamagaté, A.-B. Moubissi 
 

 

DOI: 10.4236/jamp.2018.610179 2136 Journal of Applied Mathematics and Physics 
 

nonlinearity from 0.240ν = −  to 0.196ν = − . Figure 4(a) shows the evolution 
of the soliton parameters: amplitude (in red), temporal width (in black) and spa-
tial width (in blue) in the z direction, and Figure 4(b) and Figure 4(c) are the 
enlarged views of these parameters. For these values of the nonlinear gain and 
the saturation of the Kerr nonlinearity, we observe that the number of pulsations 
of the widths and the amplitudes decreases considerably. At the same time, their 
amplitudes of the oscillations increase. 

The total energy plays a whole role in the study of the complex dissipative 
systems. Here it gives us the main information about the soliton dynamics. It is 
not conserved but evolves in accordance with the so-called balance equation. 
When a pulsating solution is reached, the total energy is an oscillating function 
of the propagation distance. Thus, all the solitons parameters (amplitude, widths, 
chirp ...) stay pulsating throughout propagation, as has been seen in Figure 2, 
Figure 3 and Figure 4. The total energy of the system also has the same dynamic, 
which does not change at all, during propagation for these values considered. In 
order to highlight the action of the energy of the pulsating solitons, we observed 
its evolution upon propagation. 

We plotted the dynamics of the energy for 50ε =  and 0.240ν = −  (Figure 
5), for 54ε =  and 0.196ν = −  (Figure 6), the other parameters remain con-
stant. It clearly appears that the group dynamics are mostly similar to those of 
the evolution of the pulsating wave parameters (amplitude and widths). The 
pulsating properties of double period oscillation can be seen obviously. For larg-
er values of parameters ( ε  from 50 to 54, and ν  from −0.240 to −0.196) the  

 

 
Figure 5. Evolution of the total pulse energy, enlarged view of this pulsation is plotted 
bottom with 1D γ= = , 0.3β = − , 0.5δ = − , 0.1µ = − , 2 0.05γ = , 50ε =  and 

0.240ν = − . 

https://doi.org/10.4236/jamp.2018.610179


A. Kamagaté, A.-B. Moubissi 
 

 

DOI: 10.4236/jamp.2018.610179 2137 Journal of Applied Mathematics and Physics 
 

pulse wave remain pulsating, but the pulse energy is much higher (Figure 6) 
than before (Figure 5). On the other hand, this fact greatly affects the quality 
and the period of oscillations. The results show that an increase of the nonlinear 
gain and the saturation of the Kerr nonlinearity induce pulsating solitons with 
significant amounts of energy. As shown below in Figure 7 the temporal profile  

 

 
Figure 6. Evolution of the total pulse energy, enlarged view of this pulsation is plotted 
bottom with 1D γ= = , 0.3β = − , 0.5δ = − , 0.1µ = − , 2 0.05γ = , 54ε =  and 

0.196ν = − . 
 

 
Figure 7. The temporal profiles of the total pulse pulsating solitons. In blue for 54ε =  
and 0.196ν = − , in red 50ε =  and 0.240ν = − . Other CSHE parameters are 

1D γ= = , 0.3β = − , 0.5δ = − , 0.1µ = −  and 2 0.05γ = . 

https://doi.org/10.4236/jamp.2018.610179


A. Kamagaté, A.-B. Moubissi 
 

 

DOI: 10.4236/jamp.2018.610179 2138 Journal of Applied Mathematics and Physics 
 

also becomes more important, a characteristic sign of a larger impulse. 
During this present study, it distinctly appeared that the saturation of the Kerr 

nonlinearity ν  has a real impact on the dynamics of the pulsating solitons. 
Changing this parameter and keeping the other parameters constant, the statio-
nary soliton becomes pulsating with one period, and then the pulsating soliton 
bifurcates to double period pulsations. To illustrate this phenomenon, we plot in 
the Figure 8 a bifurcation diagram obtained when varying the saturation of the 
Kerr nonlinearity ν  from −0.26 to −0.235, while keeping the rest of parameters 
(see Figure 8) fixed. 

 

 
Figure 8. Bifurcation diagram of the dissipative pulsating solitons. Other CSHE parame-
ters are 1D γ= = , 0.3β = − , 0.5δ = − , 0.1µ = − , 50ε =  and 2 0.05γ = . 

 

 
Figure 9. Evolution of pulsating soliton for 52ε =  and 0.213ν = − . Other CSHE parameters are 1D γ= = , 0.3β = − , 

0.5δ = − , 0.1µ = −  and 2 0.05γ = . 
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For a given set of the saturation of the Kerr nonlinearity, the curve (Figure 8) 
represents a local maximum or minimum of the total energy. We observe that 
the total energy leads to a pulsation mode whose spectrum contains two main 
frequencies. When the value of parameter ν  is smaller −0.25 the total energy 
of the soliton has a single value (maximum equal to minimum), which corres-
ponds to stationary soliton. When the saturation of the Kerr nonlinearity ν  
changes from −0.25 to −0.245 a first bifurcation occurs, which is related to the 
onset of pulsations with single frequency, the soliton presents a single period 
pulsating solution, and oscillates between one maximum and one minimum. 
The corresponding profile of such pulsating soliton is shown in Figure 9 to 
resume the dynamic. For the values of the parameter ν  greater than −0.245 a 
second bifurcation occurs again. Thereafter the pulsating soliton oscillates with 
two frequencies, presents double periods and changes between two maximum 
and two minimum. 

4. Conclusion 

We have carried out the dynamical behavior of pulsating solitons in the 
two-dimensional Complex Swift-Hohenberg equation. Thanks to collective va-
riable approach, the regions of coexistence of pulsating dissipative solitons are 
obtained. This semi-analytical method is a useful tool to predict pulsating solu-
tions when a suitable trial function is chosen in physical systems of high dimen-
sion. The detailed analysis shows that the nonlinear gain and the saturation of 
the Kerr nonlinearity influence both qualitatively and quantitatively the pulsa-
tions of the pulsating solitons. The complete bifurcation diagram has been ob-
tained for a definite range of the saturation of the Kerr nonlinearity values. The 
diagram reveals that when the saturation of the Kerr nonlinearity increases, one 
period pulsating solution bifurcates to double period pulsations. This study re-
veals the rich dynamics of the pulsating solutions in the 2D CSHE and could be 
completed by the analysis of their properties. It can also help to describe specific 
aspects that occur in wide-aperture laser cavity. 
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