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Abstract 

This paper presents the methodology, properties and processing of the 
time-frequency techniques for non-stationary signals, which are frequently 
used in biomedical, communication and image processing fields. Two classes 
of time-frequency analysis techniques are chosen for this study. One is 
short-time Fourier Transform (STFT) technique from linear time-frequency 
analysis and the other is the Wigner-Ville Distribution (WVD) from Qua-
dratic time-frequency analysis technique. Algorithms for both these tech-
niques are developed and implemented on non-stationary signals for spec-
trum analysis. The results of this study revealed that the WVD and its classes 
are most suitable for time-frequency analysis. 
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1. Introduction 

In nature, most of the signals are non-stationary and time-varying signals. Fur-
ther, the classical and modern methods are widely used to process the stationary 
signals in which they transform the signals from time-domain to frequen-
cy-domain and vice versa. The stationary signals do not change in their statistic-
al properties over the length of the analysis time. Many signals of biological ori-
gin are varying in a random manner called non-stationary signals and are 
changing their properties over the length of the analysis time. The basic idea of 
time-frequency analysis is to design a joint function, which can describe the 
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characteristics of signals on a time-frequency plan. Time-frequency transforms 
map a one-dimensional function of time x(t) into a two-dimensional function of 
time and frequency x(t, f) [1]. 

In order to process such non-stationary signals, time-frequency analysis and 
processing methods are required. Generally, they fall into one of the two catego-
ries of time-frequency distributions (TFDs), the linear time-frequency distribu-
tions and the quadratic time-frequency distributions (QTFDs). The TFDs give 
useful information about frequency changes over time. The signal component 
could be considered as energy continuity in time without abrupt changes in fre-
quency [2]. 

Non-stationary signals comprise of mono component or multi-component. 
Linear TFDs, such as short-time Fourier transform (STFT), which is often used 
as a first choice of tool in time-frequency analysis, due to their simplicity in 
usage, well-established algorithm and analysis technique [3]. In order to get en-
hanced time-frequency resolution QTFDs have been introduced. QTFD classes 
are non-linear methods in which Wigner-Ville Distribution (WVD) is the pri-
mary distributions of QTFD class, from which so many classes called Cohen’s 
TFDs, have been introduced for various non-stationary signal-processing appli-
cations. Consequently, studies on the TFRs have been applied to analyze, modify 
and synthesize non-stationary signals or time-varying signals. In this paper, two 
types of time-frequency representation techniques are considered; Linear Time 
frequency distribution and quadratic time frequency distribution and their prin-
ciple properties are investigated. The realization of this distribution for hardware 
and software platforms requires a discrete version. As a result, algorithms were 
developed for discrete time-frequency STFT and WVD techniques and were 
tested on non-stationary signals for joint time-frequency analysis.  

2. Short-Time Fourier Transformation 

STFT is one of the linear time-frequency representations based on the 
straightforward approach of slicing the waveform of interest into a number of 
short segments and performing the analysis on each of these segments, using 
standard Fourier transform. A window function is applied to segment the data, 
which effectively isolates the segment from the overall signal data, since the 
segment within the window is assumed as stationary and provides time localiza-
tion. Then, Fourier Transform is applied to the windowed data and the spectrum 
or spectrogram could be calculated from the estimated Fourier coefficients. 

The STFT of the signal x(t) is given by [4] 

( ) ( ) ( )2 2π
2

, e d
t j f
t

X t f x w t
τ τ
τ

τ τ τ
+ −

−
= −∫                 (1) 

where ( )w t τ−  is a window function and τ  is the variable that slides the 
window across the signal, x(t). 

The discrete version of STFT of the signal x(n) is given by 

( ) ( ) ( )1, eN j kn N
nX m k x n w n k ω−
=

  = −∑               (2) 
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where n is the time index, k is the frequency index and ( )w n k−  is the analysis 
window that selectively determines the portion of x(n) for analysis. X(m, k) can 
be expressed as convolution of the signal ( )e j kn Nx n ω−  with the window func-
tion ( )w n k− . The spectrogram is the square of the magnitude of the STFT ob-
tained in (2) 

( ) ( ) 2
, ,PSD t X m kω =                        (3) 

Upon selection of discrete STFT, the next step is to select an appropriate win-
dow and its size where two closest sinusoids can be distinguished using Equation 
(3). However, non-stationary signals may involve a large number of sinusoids in 
close proximity. This results in a very small Δf and consequently a large window 
is required. This makes the STFT very similar to the Fourier transform and will 
hamper temporal resolution. In order to select an appropriate window size a 
novel empirical model is proposed in [5] [6], which adaptively selects a window 
size and is given by 

3 s sB fW
µ

=                             (4) 

where fs is the sampling frequency and μ = 386.3 for 
3

f µ
∆ = . For rectangular  

window, Bs = 2, Hanning/Hamming window Bs = 4 and for Blackman window Bs 
= 6. 

3. Wigner and Wigner-Ville Distributions 

All Quadratic Time-Frequency representations should satisfy the time and fre-
quency shift invariance belong to general class of distributions introduced by 
Cohen and are given by the following expression [7] 

( ) ( ) *1, e e e , d d d
2π 2 2

j t j j uw t f x u x u uθ τω θ τ τ
θ τ τ θ− − −    = ∅ + −   

   ∫∫∫      (5) 

where x(u) is the time signal, x*(u) is its complex conjugate and ( ),θ τ∅  is an 
arbitrary function called the kernel. By choosing different kernels, different dis-
tributions are obtained. Wigner distribution is obtained by taking ( ), 1θ τ∅ = . 
Here, the range of all integrations is from −∞ to ∞.  

A real valued signal x(t) is used in WDF, which has positive and negative fre-
quency components and introduced aliasing or cross-terms between positive 
and negative frequencies in time-frequency domain. 

Wigner-Ville Distribution 

A simple approach to avoid aliasing is to use an analytic signal before computing 
the WDF. Ville (1948) proposed the use of the analytic signal in time-frequency 
representations of a real signal. An analytic signal is a complex signal that con-
tains both real and imaginary components. The advantage of using analytical 
signal is that in the frequency domain the amplitude of negative frequency 
components are zero. The imaginary part is obtained by Hilbert transform. The 
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analytic signal may be expressed by, [8] [9], 

( ) ( ) ( )z t x t jH x t= +                           (6) 

where H[x(t)] is the Hilbert transform, which is generated by the convolution of 
the impulse response h(t) of 90˚ phase shift as follows 

( ) ( ) ( )H x t x t h t= ∗                         (7) 

( )
2sin π

22 , 0
π

0, 0

t

h t t
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  
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
 =

 

The discrete form of the equation is given by, 

( ) ( ) ( )kH x n h n k x k∞

=−∞
= −   ∑                 (8) 

Substituting the kernel ( ), 1θ τ∅ =  in Equation (5), the continuous time 
WVD is obtained for continuous time signal 

( ) * 2π, e d
2 2

j fWx t f z t z t ττ τ
τ

∞ −

−∞

   = + −   
   ∫              (9) 

where t is time domain variable, f is frequency domain variable and z(t) is ana-
lytical associate of the real signal x(t) obtained from Hilbert Transform. The 
Wigner-Ville Distribution (WVD) is the most powerful and fundamental time 
frequency representation [10]. The superior properties of the WVD over the 
STFT technique make it ideal for signal processing in such diverse fields as radar, 
sonar, speech, seismic and biomedical analysis [11] [12]. For these applications, 
there is a need of a flexible Wigner-Ville Distribution for non-stationary signal 
analysis. 

The Discrete version of WVD of the signal x(n) is given by [13] [14]. 

( ) ( ) ( )
2π

*, 2 e
mn

N
kW n m z n k z n k

−∞

=−∞
= + −∑            (10) 

( ) ( ) ( )
2π

, e , ,
nm

N
xx k xxmw n m R n k FFT R n k

−∞

=−∞
= =   ∑        (11) 

where t = nTs and f = m/(NTs). 
The WVD uses a variation of autocorrelation, where time remains in the re-

sult. This is achieved by comparing the waveform with itself for all possible lags, 
i.e., the comparison is done for all possible values of time. This comparison gives 
rise to the defining equation called instantaneous auto-correlation function for 
continuous time signal 

( ) *,
2 2xxR t z t z tτ τ

τ    = + −   
   

                (12) 

Its discrete version is 

( ) ( ) ( )*,xxR n k z k n z k n= + −                 (13) 

where τ  and n are the time lags as in autocorrelation, and * represents the 
complex conjugate of the signal z. The instantaneous autocorrelation function 
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retains both lag and time. Some important properties examined shows that 
WVD is always real and satisfies time and frequency marginal characteristics. 

4. STFT Algorithm Implementation 

Fast Fourier Transform (FFT) is applied using straight forward approach using 
the separate function [B,t,f] coded in MATLAB. Here, B is a complex matrix 
containing the magnitude and phase of the STFT frequency spectrum with the 
rows encoding the time-axis and the column representing the frequency-axis 
and t and f are optional argument vectors that can be helpful in plotting. 

5. DWVD Algorithm Implementation 

The following are the steps involved to develop the algorithm: 
Step 1: Convert the real signal into analytical signal using Hilbert transform. 
Step 2: Compute the WVD using a separate function. The input function has 

arguments x and fs. 
Step 3: Compute the instantaneous autocorrelation using loop to construct an 

array. 
Step 4: Find the WVD magnitude using FFT. 

6. Spectrum Analysis of the Proposed Time-Frequency  
Distributions 

1) Two Sequential Sinusoid 
The proposed STFT and WVD techniques are tested over different inputs 

such as a two sequential sinusoid of 10 Hz and 50 Hz. The sinusoid is preceded 
and followed by a time gap of 0.5 sec. The simulated signals are shown in Figure 
1. 

The STFT magnitude spectrum and contour plot shown in Figure 2 and Fig-
ure 3 produces a time-frequency plot with the step change in frequency ap-
proximately at the correct time, but the step change of time and frequency are 
not defined very preciously. 

The lack of finite support in either time or frequency is evident from the ap-
pearance of energy slightly before 0.5 sec and after 0.5 sec and energy other than 
10 and 50 Hz as shown in Figure 3. Further, when the window length is in-
creased, the frequency resolution increases but there is a decreases in the time 
resolution. 

The DWVD magnitude spectrum and contour plot shown in Figure 4 and 
Figure 5 respectively, which generates a time-frequency plot with the step 
change in frequency approximately at the correct time but, the step change in 
time and frequency is defined very accurately. From this, it is inferred that the 
DWVD preserves the time and frequency properties, marginally. Further, it has 
finite support either in time or in frequency, which is obvious from the 
non-appearance of energy slightly before 0.5 sec and after 0.5 sec and energy 
other than 10 and 50 Hz. This is because the WVD not uses the window or  
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Figure 1. Two sequential sinusoids of 10 Hz and 50 Hz with a time gap of 0.5 sec.  

 

 
Figure 2. Magnitude spectrum of two sinusoids using STFT. 

 

 
Figure 3. Contour plot of two sinusoids using STFT. 
 
kernel function ( ), 1θ τ∅ = , which introduces the cross term due to instanta-
neous autocorrelation. 

2) Chirp Signal 
A sinusoid that has increases in frequency over time is called a chirp signal. 

This signal can be generated by multiplying the argument of a sine function by a  
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Figure 4. Magnitude spectrum of two sinusoids using DWVD. 

 

 
Figure 5. Contour plot of two sinusoids using DWVD. 

 
linearly increasing term. A linearly increasing sine wave that varies between 10 
and 200 Hz over a 1 sec period is generated as shown in Figure 6. 

The STFT magnitude spectrum and contour plots shown in Figure 7 and 
Figure 8 respectively exhibit a time-frequency plot with the step change in fre-
quency approximately at the correct time. Further, it shows the chirp signal is 
linear FM signal, which lead to the appearance of the step changes preciously 
both in time and frequency axes with no lag in the finite support. Similar to 
STFT, if there is an increase in window length; DWVD also increases the fre-
quency resolution and decreases the time resolution. 

In the DWVD magnitude spectrum and contour plots shown in Figure 9 and 
Figure 10 respectively, the DWVD produces a time-frequency plot with the step 
change in frequency approximately at the correct time, which shows that the 
chirp signal is a linear FM signal and so supports the step changes preciously 
both in time and frequency domains with finite support. The contour plot shows 
that the signal has low energy. In both the cases the marginal property of the 
signals are preserved. Hence, STFT and DWVD are suitable to analyse liner 
non-stationary signals. 

3) ECG Signal 
ECG signal is one of the non-linear multicomponent non-stationary signals. 

The ECG wave form discrete data is imported to MATLAB [15] and is shown in 
Figure 11. 
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Figure 6. Chirp signal. 

 

 
Figure 7. STFT magnitude spectrum of chirp signal. 

 

 
Figure 8. STFT-contour plot for chirp signal. 

 

 
Figure 9. DWVD magnitude spectrum of chirp signal. 

 
Table 1 shows the important parameter to design the window function. 
From the two STFT spectrums of the Arrhythmia ECG signal, the window 

width plays a predominant role; since the 128-point window unravels the high 
frequency components very well than the 32-point, even though there is a com-
promise in time resolution as shown in Figure 12 and Figure 13. Thus, the  
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Figure 10. DWVD-contour plot for chirp signal. 

 

 
Figure 11. Arrhythmia ECG signal with 10 sec time duration. 

 

 
Figure 12. STFT magnitude spectrum with N = 1024, nfft = 128 and overlap = 64 for the 
Arrhythmia ECG signal with 10 sec time duration. 
 
Table 1. Window parameter for STFT. 

Short Time Fourier 
Transformation 

Hanning Window Parameter 

No of points in the 
FFT (N) 

Window width 
(nfft) 

No of overlap 
(Overlap) 

1024 128 64 

512 64 32 

 
STFT not preserving the marginal property, due to the presence of low energy 
signals which lead to spectral leakage. 
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Figure 13. STFT magnitude spectrum with N = 512, nfft = 64 and overlap = 
32 for Arrhythmia ECG signal with 10 sec time duration. 

 

 
Figure 14. DWVD magnitude spectrum with N = 512 for Arrhythmia ECG sig-
nal with 10 sec time duration. 

 
Whereas in DWVD magnitude spectrum shown in Figure 14, the actual sig-

nals are found to be in short distances so that local oscillation takes place that 
introduces cross term between the two auto terms. When it is dominant enough, 
it could not able to provide good time and frequency resolution. From the above 
discussion, if the signals are multi component non-linear non-stationary signals, 
the DWVD is not suitable to analyze the signal until the cross term is eliminated. 

7. Conclusion 

In this work, two time-frequency analysis methods viz., discrete STFT and WVD 
algorithms were developed and compared with their performance for the pur-
pose of defining and applications of the time-frequency resolution of the 
non-stationary signals. The performance of these methods was tested in three 
different non-stationary signals and their merits and demerits were investigated. 
The results of this study revealed that the time-frequency resolution of the STFT 
technique is inversely related to the window length. Increasing the window 
length increases the frequency resolution, but at the cost of reduction in fre-
quency tracking capability. Conversely, WVD has several advantages over the 
STFT. It reduces the cross terms and sampling frequency by using an analytical 
signal. A DWVD also maintains some of the properties such as marginal and 
invariability of the non-stationary signals. It also produces a good spectrum of 
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time-frequency structure. In the DWVD, the kernel ( ), 1θ τ∅ =  introduces 
cross terms. These cross-terms will be reduced by introducing the window, ker-
nel and adaptive filters, which will make the DWVD a more suitable and po-
werful tool for non-stationary signal analysis. Since The Wigner Ville distribu-
tion preserves all the information, it will be used for two-dimensional signal 
processing like digital image processing. This work supports the need of using 
time-frequency distributions when dealing with non-stationary signals. 
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