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Abstract 

The pair-wise forces in the SPH momentum equation guarantee the conser-
vation of momentum, but they cannot prevent particle clustering and wall 
penetration. Particle clustering may occur for several reasons. A fundamental 
issue is the tensile instability, which is caused by negative numerical pres-
sures. Clustering may also occur due to certain properties of the kernel gra-
dient. Discontinuities in the pressure and its gradient, due to surface tension 
and gravity, may cause particle instabilities near the interface between two 
fluids. Wall penetration is also a form of particle clustering. In this paper the 
particle collision concept is introduced to suppress particle clustering. Here, 
the use of kinematic conditions (motion) rather than dynamic conditions 
(forces) is explored. These kinematic conditions are obtained from kinetic 
collision theory. Conservation of momentum is maintained, and under elastic 
conditions conservation of energy as well. The particle collision model only 
becomes active when needed. It may be seen as a particle shifting method, in 
the sense that the velocities are changed, and as a consequence of that the 
particle positions change. It is demonstrated in several case studies that the 
particle collision model allows for realistic (low) viscosities. It was also found 
to stabilise the interface between two fluids up to high, realistic density ratios 
(1000:1) in typical liquid-gas applications. As such it can be used as a mul-
ti-fluid model. The concept allows for real wave speed ratios (and far 
beyond), which, as well as real viscosities, are essential in the modelling of 
heat transfer applications. The collisions with walls allow for no-slip condi-
tions at real viscosities while wall penetration is suppressed. In summary, the 
particle collision model makes SPH more robust for engineering. 
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1. Introduction 

Smoothed particle hydrodynamics (SPH) is a numerical, Lagrangian method to 
simulate fluid flows. It was invented by Gingold and Monaghan [1] and Lucy [2] 
to simulate astrophysical problems, but it is gaining popularity in engineering as 
well [3]. The key concept of SPH is that a function value at a specific point in the 
domain is estimated from surrounding points by means of a smoothing kernel. 
To that end, interpolation points are introduced that—owing to the Lagrangian 
nature of the method—move with the flow. The interpolation points also carry 
mass and other properties and are therefore called particles.  

The clustering of particles remains an issue in SPH that affects the stability, 
which is one of the grand challenges defined by the SPHERIC Steering Commit-
tee. Particle clustering reduces the resolution of the simulation, which—besides 
making it a waste of computational effort [4]—endangers the accuracy of the 
results. It is thus of great importance to reduce the numerical clustering of par-
ticles as much as possible. There is somewhat confusion about the cause of this 
phenomenon. This is due to the presence of two types of particle clustering. On 
the one hand there is the tensile instability [5] [6]; this instability can occur in 
simulations that allow for negative pressures. On the other hand, there is the 
pairing or clumping instability, which is caused by a vanishing repelling force for 
approaching particles. 

The vanishing repelling force is the result of the flat shape of most commonly 
used kernels for inter-particle distances close to zero. This implies that for very 
small distances the kernel gradient tends to zero and as a consequence the (re-
pulsive) pressure force vanishes. This makes that particles that happen to be 
close will stay close, unless some other force separates them. That is one of the 
reasons that artificial viscosity was introduced [7] [8]. Later on, algorithms were 
developed to introduce artificial viscosity around shocks only [9] [10] [11], this 
way reducing the amount of artificial viscosity in other areas of the flow. Mo-
naghan also introduced an inter-particle repulsive force similar to the Len-
nard-Jones force [5]. Remeshing as described by Chaniotis et al. [12] also pre-
vents particles from clustering, but it has disadvantages as well. It implies inter-
polation, which affects the accuracy and makes it computationally expensive. 
Moreover, with remeshing SPH loses one of its biggest advantages: not having a 
predefined mesh. Another remedy for the vanishing repelling force is a convex 
kernel function that does not have a flat central portion. Such kernels have been 
introduced by, e.g. Schussler and Schmitt [13]; Johnson and Beissel [14]; Read et 
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al. [15]; Korzilius et al. [16] and were reported to reduce the clustering of par-
ticles. Despite this property, convex kernels are rarely used in literature. This is 
mainly because, due to their different weight distribution, convex kernels per-
form worse in the density estimate [4] [16] [17]. 

Particle clustering may also occur at the interface between two fluids, due to 
changes in pressure (e.g. due to surface tension) and pressure gradient (due to 
gravity), the latter in particular at high density ratios. To deal with the particle 
instability at an interface, multi-fluid models are introduced by, e.g. Colagrossi 
et al. [18], Monaghan [19] and Kruisbrink et al. [20]. In the number density ap-
proach [18] the wave speed of the high density fluid must be chosen lower than 
that of the low density fluid to make the algorithm stable. The multi-fluid model 
of Monaghan [19] is based on a repulsive force between particles of different 
fluids. At high density ratios the wave speed of the low-density fluid is still a 
factor 5 to 7 higher than that of the high-density fluid. With the quasi-buoyancy 
model of Kruisbrink et al. [20] [21], much more realistic wave speed ratios (close 
to reality) can be applied in gravity dominated problems. Although the wave 
speeds may be artificial in many cases, correct and realistic wave speed ratios are 
essential in the modelling of heat transfer between two fluids. 

Particle clustering is also seen in incompressible SPH (ISPH). Particles move 
along streamlines when the pressure is solved accurately, which leads to stret-
ching and compressing [22], so that particle clustering (e.g. near stagnation 
points) cannot be avoided [23]. As a remedy, Xu et al. [22] introduced a particle 
shifting method, based on the anisotropy of the particle spacing, while the shift-
ing magnitude is based on coefficients. This approach is followed by Lind et al. 
[23] [24], who based the shifting however on Fick’s law of diffusion. Particles are 
shifted from regions of high concentration to regions of low concentration, 
based on a diffusion or shifting coefficient. In the concentration gradient a ten-
sile instability term is included, also based on coefficients. In their combined in-
compressible-compressible SPH approach, the particle shifting is applied to the 
incompressible phase, while artificial viscosity is used to stabilise the compressi-
ble phase. As such the particle shifting method is not a multi-fluid model for in-
terface stabilisation, nor is it used to allow for real (low) viscosities. Furthermore, 
the shifting algorithm violates the conservation of momentum in SPH [24]. 

Except for the remeshing and shifting algorithms, all above mentioned me-
thods are based on forces. Unfortunately, this cannot guarantee that particle 
clustering does not occur. In this paper we propose a kinematic concept based 
on particle collisions. The idea of collisions in SPH is not entirely new [25] [26], 
but to our knowledge has not been applied in the way we propose. The model is 
derived from kinetic collision theory, satisfying conservation of momentum (for 
inelastic and elastic collisions) and energy (for elastic collisions). The concept 
takes the form of a typical SPH viscosity model. It directly influences the ap-
proach velocities of particles and is therefore more robust than dynamic con-
cepts based on forces. 
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The paper is arranged as follows. In Section 2 the basic equations of our par-
ticle collision model are derived from kinetic collision theory. Both inter-particle 
collisions and particle collisions with walls are considered. In Section 3 the equa-
tions are applied within the SPH concept. Further the criteria are described un-
der which the particle collisions are applied. Also, an analogy between our colli-
sion model and existing SPH viscosity models is shown. In Section 4 an overview 
is given of the SPH models as used in the case studies. Our collision model is 
then applied and tested in Section 5, in four cases with their specific characteris-
tics. The first case, the Taylor-Green vortex, is a well-known case to study the 
decay of energy due to viscosity. The second case focuses on the interface stabi-
lisation of the stagnant flow in a reservoir with two fluids at high density ratios. 
The third case is a dam break, a classical SPH benchmark with high dynamics, 
here simulated as a multi-fluid flow. In the last case the focus is on wall boun-
dary treatments in the simulation of a jet impinging on a wall. Finally, in Section 6, 
a summary is given together with the main conclusions of our findings. 

2. Kinetic Collision Theory 

In this section the kinetic collision theory is described, which is applied to SPH 
in Section 3. Consider two colliding particles i and j. Denote the approach veloc-
ities of the particles by ,i av , ,j av  while ,i sv , ,j sv  are the separation velocities 
after the collision. 

2.1. Inter-Particle Collision 

Within kinetic collision theory a distinction is made between elastic and inelastic 
collisions. During an elastic collision no energy is dissipated, so that both the 
conservation of momentum and the conservation of energy are satisfied. This 
may be formulated as: 

, , , ,i i a j j a i i s j j sm m m m+ = +v v v v                   (1) 

and 

2 2 2 2
, , , ,

1 1 1 1 .
2 2 2 2i i a j j a i i s j j sm m m m+ = +v v v v               (2) 

Solving for ,i sv  gives: 

( ) , ,elastic
,

2i j i a j j a
i s

i j

m m m

m m

− +
=

+

v v
v                  (3) 

and a similar expression for elastic
,j sv . 

During an inelastic collision energy is dissipated, while in the limit case of a 
fully inelastic collision the separation velocities are equal. This may be formu-
lated as: 

( ), , ,i i a j j a i j sm m m m+ = +v v v                  (4) 
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with sv  the velocity of particles i and j. Thus, for the velocity of particle i after 
the collision we have: 

, ,inelastic
, ,i i a j j a

i s
i j

m m
m m
+

=
+

v v
v                       (5) 

with the same expression for inelastic
,j sv . 

Combining the results for an elastic and inelastic collision in Equations (3) 
and (5) yields: 

( )
( ) ( )R , R ,elastic inelastic

, R , R ,

1
1 ,i j i a j j a

i s i s i s
i j

m C m C m
C C

m m

− + +
= + − =

+

v v
v v v    (6) 

where RC  is the coefficient of restitution, representing the elasticity of the col-
lision. For an inelastic collision R 0C =  and for an elastic collision R 1C = . For 
the change of velocity of particle i due to the collision it follows after some ma-
nipulation that: 

( )
( ), ,

, , R1 ,j j a i a
i j i s i a

i j

m
C

m m→

−
∆ = − = +

+

v v
v v v              (7) 

where “→” should be read as “due to collision with”. This directly shows that the 
total change of momentum is zero, i.e. 0i i j jm m∆ + ∆ =v v . The above derivation 
can be extended to more than two particles. For an arbitrary number of colli-
sions, (7) becomes: 

( )( )R , ,
all , ,

1
,j j a i a

i j i s i a
i j

m C

m m→

+ −
∆ = − =

+
∑

∑
v v

v v v           (8) 

where jm∑  is the sum of masses of the particles with which particle i collides. 
The collision of more than two particles within a time step is rare, provided that 
the time step is chosen sufficiently small. However, if it occurs, it must be dealt 
with. The modelling of serial collisions is possible but computationally expensive, 
while the serial treatment does not fit within the pairwise treatment in SPH. 
Therefore the (rare) multiple collisions are assumed to take place simulta-
neously. 

2.2. Particle Collision with Wall 

The collision of a particle with a wall is very similar to that with another particle. 
The mass of the wall may be considered to be infinite and the wall velocity is ze-
ro, or non-zero for a moving wall. In that case Equation (8) reduces to 
( , wall,j j am →∞ =v v ): 

( )( )wall
wall , , R wall ,1 ,i i s i a i aC→∆ = − = + −v v v v v            (9) 

wall 0,i→∆ =v                          (10) 

where wall
RC  is the coefficient of restitution for collisions with a wall, which may 

differ from the coefficient of restitution for inter-particle collisions, RC . 
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3. Application to SPH 

3.1. Inter-Particle Collision 

The collision theory in the previous section is applied in the inter-particle direc-
tion only; the velocity components in the other directions remain unchanged. 
The relative approach velocity of particles i and j is given by: 

( ), , ,ij ij ij
i a j a i j ij ij

ij ijd d

 ⋅  − = − ⋅ = 
r v r

v v v v e e             (11) 

where :ij i j= −v v v  is the relative velocity vector of particle i and j, :ij i j= −r r r  
is the relative position vector, :ij ijd = r  is the distance between the particles 
and ije  is the unit vector in the direction of ijr , i.e. :ij ij ijd=e r . Substituting 
Equation (11) into Equation (8) leads to: 

( )all R
1 1 .ij ij ij

i j j
ji j ij ij

m C
m m d d→

 ⋅ ∆ = − +
+ ∑∑

r v r
v            (12) 

Simulations have shown that in most cases a particle will collide with only one 
particle, provided that the time step is sufficiently small. For a single collision 
(12) reduces to: 

( )R1 ,ij ijj ij
i j

i j ij ij

m
C

m m d d→

 ⋅ ∆ = − +
+

r v r
v                 (13) 

where i j→∆v  denotes the velocity change of particle i due to a collision with 
particle j. Equation (12) is introduced as the particle collision model, which is 
easy to implement within the SPH framework. It describes the total change of 
velocity of particle i due to collisions with its direct neighbours. Note that the 
duration of the collision is not described. The contact time may be very short, all 
we know is that it takes place within one time step. 

3.2. Particle Collision with a Wall 

The collision of fluid particles with walls is very similar to that with other par-
ticles. Walls can be modelled by ghost particles, wall particles or a continuous 
wall. Each concept needs a slightly different treatment. 

Collisions with ghost particles are similar to those with fluid particles, except 
that the (virtual) mass of ghost particles is assumed to be infinite, so that their 
velocity remains unchanged (i.e. zero or non-zero for a moving wall). It is as-
sumed that the distance between ghost particles is such that a fluid particle can 
collide with only one ghost particle at the same time. In that case Equation (13) 
reduces to: 

( )wall
R1 .ij ij ij

i j
ij ij

C
d d→

 ⋅ ∆ = − +
r v r

v                (14) 

For collisions with wall particles the approach velocity is no longer evaluated in 
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the inter-particle direction but in the direction normal to the wall, while the 
mass is again assumed to be infinite. In that case we obtain: 

( ) ( )wall
R wall wall wall1 ,i j iC→  ∆ = − + − ⋅ v v v n n            (15) 

where walln  is the unit vector normal to the wall. The same formulation holds 
for collisions with a continuous wall (virtual wall without particles). Note that 
the virtual mass is only applied within the particle collision concept, since ghost 
particles must have the same properties as fluid particles to allow for a proper 
density estimate. 

Particle collisions may help to ensure that wall boundary conditions are satis-
fied. To allow for a no-slip condition the velocity component parallel to the wall 
should equal the wall velocity. This is achieved in a fully inelastic collision 
( R 0C = ) when ghost particle are used to represent the wall. To allow for a 
free-slip condition the velocity component parallel to the wall should not be af-
fected. This is achieved in the case of wall particles or a continuous wall for any 
value of RC . 

3.3. Criteria for Particle Collision 

The particle collision concept should not affect the pressure and should only be 
applied outside the range of (minimum and maximum) real pressures. It is 
therefore only applied at high pressures, equivalent with small particle distances, 
and under compression. These conditions are described by: 

col and 0,ij ij ijd d< ⋅ <r v                    (16) 

where cold  is the collision distance at which particle collisions become active. It 
may be defined as col c nat:d dδ= , where natd  is the natural particle distance un-
der zero (reference) pressure conditions and cδ  is the collision distance para-
meter. To evaluate the collision distance, the pressures are related to particle 
distances via: 

0 0 0 0 min min
2

max 0 max max 0 nat0 max dim

,
p p V d

p p p V dp c
ρ ρ

ρρ
 

= ≈ = = =  
+ ∆ + ∆  

     (17) 

where V is the particle volume, c is the (artificial) wave speed, while the sub-
script 0 refers to reference values. The collision distance must be chosen smaller 
than the minimum particle distance mind  occurring at maximum pressure. This 
leads to: 

1 dim1 dim

col 0 0min
c 2

nat nat max 0 max

.
d d
d d p c

ρ ρ
δ

ρ ρ
  

= < = ≈   
+ ∆   

      (18) 

The collision distance depends on the (artificial) wave speed, and can be eva-
luated from an estimate of the real maximum pressure in each case. 

Furthermore, to allow for a shear flow, the collision distance should be smaller 
than the particle distance in the direction perpendicular to the flow. For a hex-
ahedral particle distribution this means that ( )col nat sin π 3d d< . 
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3.4. Analogy with SPH Viscosity Models 

To show the analogy with force-based concepts, we introduce the contact time 
during a collision, contactt∆ . It now follows from Equation (12) that: 

( )R

contact

1
.ij ijj iji

j i j ij ij

m C
t m m t d d

 ⋅+∆  ≈ −
∆ + ∆∑ ∑

r v rv           (19) 

This formulation allows for a comparison with viscous forces. The form of a 
typical SPH viscosity model is: 

( ),D
,

D
ij ij ijiji

j ij
j ij ij i

W h
m

t d d

 ⋅ ∂ = − Π
∂∑

r v rrv
r

            (20) 

where the viscosity term ijΠ  can be described in several ways. In the Monag-
han artificial viscosity model the linear term is [7] [27]: 

artificial ,ij ij
ij

ij

h cα
ρ

Π = −                      (21) 

where ( ): 1 2ij i jh h h= + , ( ): 1 2ij i jρ ρ ρ= +  and ( ): 1 2ij i jc c c= + . In the 

Monaghan real viscosity model this term is [27] [28]: 

real 16
.i j

ij
i j

ν ν
µ µ

Π = −
+

                      (22) 

Here, 1 8 hcν α=  and µ ρν=  (the factor 1/8 being valid in two dimensions).  

A comparison of Equations (19) and (20) learns that the formulation of the force 
due to a collision shows an analogy with a viscous force, although it does not 
depend on a smoothing kernel. In that sense the concept may be considered as a 
time dependent SPH viscosity model. However, the essential difference is that 
the repulsive force may become extremely high, since the collision may take 
place in a very short period, within a fraction of the SPH time step. The duration 
of the collision is not known (at least not within SPH), but its effect (i.e. the 
change of velocities) is easily described. 

4. SPH Model Equations 

In SPH, function values at particle positions are approximated by weighted sums 
over the function values of the surrounding particles: 

( ) ( ) ( ), .i j j ij
j

f f V W h=∑r r r                   (23) 

Here, jV  is the volume of particle j, which is usually substituted by j jm ρ , 
where ρ  represents the density. The sum is taken over all particles j, with 
masses jm , and ( ),ijW hr  is a smoothing kernel whose value depends on the 
distance between particles and the smoothing length h. Examples of smoothing 
kernels are the Gaussian kernel—originally used by Gingold and Monaghan [1]; 
Monaghan [29]—and the widely used cubic spline [27]. In this paper we use a 
kernel function derived by Wendland [30]: 

( )
4

d, 2 2 1 ,ij ij
ijW h

h h
α

   
   = − +
   
   

r r
r                 (24) 
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for 2ij h<r  and zero otherwise. In two dimensions, the normalisation factor 
equals ( )2

d 7 64πhα = . Spline functions and Wendland kernels have the ad-
vantage of compact support, reducing the computational expense. 

In weakly compressible SPH an incompressible fluid is considered to be 
slightly compressible. When the gradient of Equation (23) is applied to the ve-
locity, the resulting estimate can be substituted in the continuity equation. This 
gives an approximation for the density in the form of an evolution equation: 

( ) ( )D
, .

D
ji

i i j i ij
j j

m
W h

t
ρ

ρ
ρ

= − ⋅∇∑ v v r               (25) 

This SPH version of the continuity equation leads to better results than the 
summation density in case of free surface flows and (high density ratio) multi-
phase flows. When the densities are known, the pressures are obtained from the 
equation of state: 

2
0

0
0

1 ,i
i

cp p
γ

ρ ρ
γ ρ

  
 = + − 
   

                 (26) 

where γ  is the polytropic exponent. Equation (26) is often misquoted as the 
Tait equation, since it was already proposed in a similar form by Murnaghan 
[31], as also noted by Gilvarry [32] and MacDonald [33]. When the pressures are 
known, the pressure gradients are obtained from the discrete momentum equa-
tion. Various forms are available. In this paper we use: 

( )D
, .

D
i ji

j ij i ij
j i j

p p
m W h

t ρ ρ

 +
= − +Π ∇  

 
∑v r          (27) 

Here, ijΠ  is a viscosity term for which we use the formulation in Equation (22). 
Equations (25) and (27) form a consistent set of equations according to the vari-
ational principle [4]. For more details on the theory and equations of SPH we 
refer to [4] [29] [34]. 

5. Case Studies 

In this section the particle collision concept is explored in four case studies. In 
all cases we model either water ( water

0 1000ρ =  kg/m2), air ( air
0 1ρ =  kg/m2), or 

both. The following five cases are considered: The Taylor-Green vortex, a 
well-known case in the literature; the hydrostatic case of a reservoir with air on 
top of water, which allows us to focus on the interface between fluids at a high 
density ratio; the multi-fluid dam break problem, a classical SPH benchmark 
case; the jet impinging on a wall, in which wall collision concepts are explored. 

For convenience and readability we state here the parameters that have the 
same values in the case studies, unless mentioned otherwise. For both air and 
water we use the real viscosity term given in Equation (22), with values 

air 0.001 Pa sµ = ⋅  and water 0.01 Pa sµ = ⋅ . In the equation of state we use 
air 1.4γ =  and water 7γ = . We use the kernel function in Equation (24), with a 

constant smoothing length of nat1.5h d= . For time integration we use the Expli-
cit Euler method, which is stable if the time steps are sufficiently small. It is only 
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first order accurate, but it allows for a comparison with standard SPH (i.e. the 
model equations in Section 4) and that with the particle collision concept (de-
scribed in Section 3). The velocity change due to a collision in Equation (12), is 
applied together with the integration of the particle acceleration in Equation (27). 
In all simulations the initial particle distribution is hexahedral, which is the nat-
ural (most dense) distribution under stagnant flow conditions. 

5.1. Taylor-Green Vortex 

The Taylor-Green vortex is an unsteady flow of a decaying vortex, which has an 
exact solution of the incompressible Navier-Stokes equations. The benchmark 
case is used for testing and validation of SPH algorithms by e.g. Hu and Adams 
[35] [36]. In the two-dimensional case the velocity field may be described by: 

( )
( )

0

0

2π 2πcos sin e
,

,
, 2π 2πsin cos e

bt

bt

x yU
u t L L
v t x yU

L L

−

−

    −          =            
    

r
r

            (28) 

where 0U  is the velocity amplitude and L is the domain size, while the decay is 
represented by the exponent 28πb Re= . The Reynolds number is defined as 

0Re U Lρ µ= . The pressure field can be obtained by substituting the solution 
for the velocity field in the momentum equation. This yields: 

( )
2

20 4π 4π, cos cos e .
4

btU x yp t
L L

ρ −    = − +    
    

r           (29) 

We use air particles with air 20c =  m/s, nat4h d=  and air 1γ =  in the equation 
of state (26). The domain size is 1.0L =  m and the velocity amplitude 

0 1.0U =  m/s—so that Re 100= —which are the same values as used by Hu and 
Adams [36]. The above solution for the velocity and pressure field at 0t =  is 
used as initial condition in the SPH simulations. Figure 1 shows the initial con-
dition on a 30 30×  grid, so that the initial velocity field is clearly visible. 

The actual SPH simulations are performed on an (initial) hexahedral grid of 
60 60×  particles. The simulation with standard SPH, shown in Figure 2(a), 
shows large areas of particle clustering and layering, which are strongly reduced 
in the simulation with particle collisions (Figure 2(b)). 

For the Taylor-Green vortex analytical solution exist for the decay of kinetic 
energy and maximum fluid velocity in time. In Figure 3 the effect of the colli-
sion distance, represented by the collisions distance factor cδ , on the decay is 
shown versus the dimensionless time, while the restitution coefficient is kept 
constant at R 0C = . In all cases the decay of kinetic energy agrees reasonably 
well with theory, except for c 0.9δ = . Note that in this case ( )c sin π 3δ > , so 
that the criteria for particle collisions (see Section 3.3) are not satisfied. With 
standard SPH, the maximum velocity exceeds the theoretical one. In the begin-
ning of the simulation this is revealed by the peak value in the relative error 
(Figure 3(d)), which may fully be attributed to the particle clustering and  
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Figure 1. Taylor-Green vortex. Initial condition, 
shown here on a 30 30×  grid, so that the velocity 
field is clearly visible. 

 

 
(a)                                     (b) 

Figure 2. Taylor-Green vortex ( Re 100= ). Simulations are shown at 0 0.4tU L =  
without and with particle collision concept. In the latter case, c 0.8δ =  and R 0C = . (a) 
Standard SPH; (b) With particle collisions. 
 
layering seen immediately after the start of the simulation (Figure 2(a)). With 
particle collisions the relative errors are reduced as long as ( )c sin π 3δ < , while 
they are the smallest for c 0.8δ =  (less than about 2%). 

In Figure 4 the effect of the restitution coefficient RC  on the decay of kinetic 
energy and maximum velocity is shown, while the collision distance factor is 
kept constant at c 0.7δ = . Here, in all cases the decay of kinetic energy agrees 
well with theory, while the maximum velocity is slightly overestimated. Also 
here standard SPH shows a peak value in the relative error (Figure 4(d)), which 
does not appear with particle collisions. The relative errors are significantly re-
duced for all CR-values. The relative error in the maximal velocity (up to 4%) is 
slightly higher than that in the results of Hu and Adams [35] (up to 3%) at the 
same resolution. The latter results are obtained with ISPH, where a reference or 
background pressure is used, which is superimposed on the pressure to avoid 
stability problems due to negative pressures. 
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(a)                                                (b) 

 
(c)                                               (d) 

Figure 3. Taylor-Green vortex ( Re 100= ). Effect of the collision distance cδ  (at constant R 0C = ) and a 
comparison of standard SPH and particle collisions on the decay of total kinetic energy and maximum veloc-
ity. 0E  and 0,maxV  are the energy and maximum velocity at 0t = . (a) Kinetic energy; (b) Maximal velocity; 

(c) Relative error kinetic energy; (d) Relative error maximal velocity. 
 

 
(a)                                                         (b) 

 
(c)                                                (d) 

Figure 4. Taylor-Green vortex ( Re 100= ). Effect of the restitution coefficient RC  (at constant c 0.7δ = ) 
and a comparison of standard SPH and particle collisions on the decay of total kinetic energy and maximum 
velocity. 0E  and 0,maxV  are the energy and maximum velocity at 0t = . (a) Kinetic energy; (b) Maximal 

velocity; (c) Relative error kinetic energy; (d) Relative error maximal velocity. 
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Summarising, the particle collision concept suppresses particle clustering and 
layering. It reduces the relative errors in the decay of total kinetic energy and 
maximum velocity, as long as the collision distance satisfies the criterion 

( )col nat sin π 3d d<  (see Section 3.3). 

5.2. Stagnant Flow in a Reservoir 

The second case is a stagnant, multi-fluid flow under gravity. The lower half of a 
reservoir is filled with water, while the upper half consists of air. The bottom 
wall of the reservoir is represented by ghost particles which, apart from their 
fixed positions, act like fluid particles. The two vertical walls of the reservoir are 
modelled by periodic boundaries. The initial particle spacing is nat 1 25d = , 
which gives a total of approximately 800 particles. In our simulations we use a 
realistic wave speed ratio of 4, whereby it should be noted that the wave speed of 
water is chosen higher than that of air ( water airc c> ). Although this is physically 
correct, it is usually not done in SPH. In the number density approach [37] the 
wave speed ratio at a density ratio of 1000:1 is chosen as 1:14, so that the com-
pressibility of the two fluids is the same. This is necessary to stabilise the algo-
rithm. This is improved in the multi-fluid algorithm of Monaghan [19], but the 
wave speed of air is still a factor 5 to 7 higher than that of water. 

Some typical results are shown in Figure 5. Simulations are performed with-
out and with the particle collision concept, in the latter case with R 0C =  and 

c 0.85δ = . 
Without treatment the interface becomes unstable soon after the start of a si-

mulation, which is revealed by the clustering of particles (Figure 5(b)). With 
particle collisions the interface remains stable for a time scale that is at least one 
order of magnitude larger (Figure 5(c)). From other simulations it is concluded 
that the interface becomes slightly more unstable with increasing wave speed ra-
tio, as may be expected. However, it still remains intact, even at an (unrealistic) 
high wave speed ratio of 20. Note that in reality, like in our simulations, the wave 
speed ratio of water and air is about 4 ( water 1282c =  m/s and air 343c =  m/s at 
20˚C). 

Figure 6 shows the pressure distribution for the simulations in Figure 5. 
Without interface treatment, the pressure is fluctuating heavily around the 
physically correct pressure. With the collision concept, the pressures are much 
closer to the (initial) linear pressure distribution. In Figure 7 the results of a sta-
bility analysis are shown, where the evolution of total potential and kinetic 
energy of the water-air system is plotted in time. With standard SPH the poten-
tial energy immediately drops after the start of the simulation. Potential energy 
is converted into kinetic energy, indicating that the particles are moving and 
they keep moving. With particle collisions the initial drop of potential energy is 
much smaller and coupled with a slight increase of kinetic energy. This results in 
a slight move of the particles until the collisions prevent any further movement. 
The total kinetic energy then returns to zero.  
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(a)                                    (b)                                      (c) 

Figure 5. Stagnant flow in a reservoir. Gravity acts vertically downwards, with the lower half water and the upper half air. The 
wave speed ratio between the two fluids is 60:15. Static ghost particles are placed below the tank, while the top is left open. A 
comparison of standard SPH and particle collisions ( c 0.85δ = ). (a) Initial condition; (b) Standard SPH (t = 0.05 s); (c) With colli-
sions (t = 1.0 s). 

 

 
(a)                                                          (b) 

Figure 6. Stagnant flow in a reservoir. Average pressures as a function of particle height. Comparison of standard SPH and the 
particle collision model. (a) Full reservoir; (b) Top part of reservoir. 
 

 
(a)                                                          (b) 

Figure 7. Stagnant flow in a reservoir. Stability analysis with the evolution of total potential and kinetic energy of the water-air 
system in time. Comparison of standard SPH and the particle collision model. (a) Potential energy; (b) Kinetic energy. 
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5.3. Multi-Fluid Dam Break 

The two-dimensional dam break is a classical SPH benchmark case (e.g. [3] [37] 
[38] [39] [40]), which is usually simulated as a single phase flow. Here, we con-
sider a multi-fluid dam break with a density ratio of 1000:1. The setup is as in 
[37] [41], but with air particles surrounding the water. The domain boundary 
consists of ghost particles which have a constant density equal to the initial den-
sity of the water particles. The initial particle spacing is chosen such that we have 
approximately the same number of water particles as Antuono et al. [41]. In total 
we have over 38,200 particles. The wave speeds for water and air are 60 and 15 
m/s, respectively. 

Figure 8 shows the flow at 6t H g= . The water particles are depicted in 
blue, the air particles in grey. The red lines, shown in all panels, give the BEM 
solution given in [41]. Figure 8(a) shows the single-fluid simulation of Antuono 
et al. [41] without extra diffusive terms, to allow for a more honest comparison 
with our results. The simulation with standard SPH (Figure 8(b)) captures the 
free surface contour reasonably well. Note that we did not use any remedies, like 
diffusive terms, density re-initialisation, artificial viscosity terms, XSPH correc-
tion, control of interface sharpness or adapted state equations, as used by other 
researchers (e.g., Colagrossi and Landrini [37]), neither did we use a high-order 
time stepping scheme. Therefore the particle distribution itself is also very noisy. 
However, with collisions ( c 0.7δ =  and R 0.5C = , Figure 8(c)) the shape of the 
wave is captured quite well. Increasing the restitution to R 1C =  increases the 
dynamics, which has a negative effect on the particle distribution and leads to 
results similar to those without collisions. A larger collision distance keeps par-
ticles closer together, but also makes the flow a bit more viscous (Figure 8(d)). 

At 6.48t H g= , the breaking wave has plunged back into the flowing water, 
as shown in Figure 9. Figure 9(a) again shows the single-fluid results of Antu-
ono et al. [41] without diffusive terms. Our multi-fluid simulations with particle 
collisions are very similar and capture the shape of the wave very well. Note 
again that we did not need to use the above mentioned remedies to be able to 
simulate this multi-fluid flow, simply including the collision concept was suffi-
cient. A small white area in the bottom panel just below the water stream that 
has bounced back up indicates a small cavity. This cavity does not appear when 

c 0.6δ = . 

5.4. Jet Impinging on Wall 

The jet impinging on a wall is a steady flow case, which is characterized by a di-
version resulting in two flows moving in opposite directions along the wall. An 
exact analytical solution exists for inviscid fluids with a free slip wall condition. 
The case is used for validation of SPH models by other researchers, e.g. Antuono 
et al. [42]. Here it is used to demonstrate that the particle collision model can be 
applied to impose free-slip as well as no-slip wall boundary conditions. 

For an inviscid and incompressible fluid the diversion of the jet along the wall 
can be derived from the momentum (Bernoulli) and continuity equations,  
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(a)                                                (b) 

 
(c)                                                           (d) 

Figure 8. Dam break flow at 6t H g= . The top left panel shows the single-fluid results of Antuono et 
al. [41] when no diffusive terms are used, while the top right panel shows the standard multi-fluid SPH 
solution. The bottom panels show the multi-fluid results with particle collisions for different choices of 
the collision parameters. The red lines show the BEM solution of Antuono et al. [41]. (a) Solution of An-
tuono et al. [41]; (b) Standard SPH; (c) With collisions ( c R0.7, 0.5Cδ = = ); (d) With collisions 
( c R0.8, 0Cδ = = ). 

 
neglecting energy losses in the impact and wall regions. The free surface con-
tours are given by [43]: 

( ) ( )

jet

π sin ln cos ln for 0
1
π

sin ln cos ln for π

BA
x CD
H BA

CD

θ θ θ β θ
β

θ θ θ θ β

  − + + < <   = 
  + + − < <   

     (30) 

( ) ( )

( )jet

π 1 cos sin ln for 0
21

π π 1 cos sin ln for π
2
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y D
H C

D

θ θ β θ
β

θ θ θ β

  + + < <   = 
  − + − < <   

        (31) 
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(a) 

 
(b) 

 
(c) 

Figure 9. Dam break flow at 6.48t H g= . The top panel shows the single fluid results 

of Antuono et al. [41] without diffusive terms. The other panels show multi-fluid results 

of the particle collision concept for different choices for the collision parameters. (a) So-

lution of Antuono et al. [41]; (b) With collisions ( c R0.6, 0.5Cδ = = ); (c) With collisions 

( c R0.7, 0.5Cδ = = ). 
 
where jetH  is the width of the jet, θ  is the inclination angle and: 

sintan , , sin , sin .
2 2 2 2

A B C Dβ β θ β θ β+ −     = = = =     
     

     (32) 
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The second term in the y-coordinate of the free surface contour vanishes far 
from the impingement ( 0β → , πβ → ), where the height of the left and right 
branches is constant, as described by the first term. Here the magnitude of the 
flow velocity is the same as the jet velocity. 

In all simulations the width of the water jet is jet 0.005H =  m, the inclination 
angle defined from the wall is π 6θ = , the real viscosity 0.001µ =  Ns/m2. The 
wave speed is chosen ten times higher than the jet velocity. The initial particle 
distance is chosen such that jet nat 40H d = . The wall is represented by ghost 
particles. 

First, we demonstrate that the collision wall allows for a free-slip wall condi-
tion, while it also suppresses wall penetration. In this case the viscosity of the 
ghost particles is set to zero. To suppress the noise in the pressure distribution, 
Antuono et al. [42] use a numerical diffusive SPH scheme, which was later in-
troduced as δ-SPH in [44]. Instead we use the Shepard correction (applied every 
20 time steps). The Shepard correction leads to wall penetration, but not when it 
is applied in combination with the collision wall model. Figure 10 shows the re-
sults of a simulation at Re 500=  ( jet 0.1V =  m/s). The particle distribution is 
in excellent agreement with the analytical free-surface contours of 
Milne-Thomson [43]. The pressure distribution is smoothed by the Shepard 
correction, as may be expected. The result is smoother than that in Figure 7 of 
[42], obtained at the same resolution, but not as smooth as that in Figure 8, ob-
tained at a high resolution. However, the pressure distribution is in good  
agreement, noting that our dimensionless pressure is defined as ( )2

jet1 2p Vρ , 
while in [42] it is defined as ( )2

jetp Vρ . The latter results are obtained with ar-
tificial viscosity, and artificial diffusion in the continuity equation and energy 
equation, while in the equation of state an energy term is included. The velocity 
profiles demonstrate that the collision wall ( wall

R 0C = ) allows for free-slip wall 
conditions and suppresses wall penetration. 

Next, we aim for no-slip wall conditions. In this case the viscosity of the ghost 
particles is equal to that of the fluid particles ( 0.001µ =  Ns/m2). With standard 
SPH this can only be achieved by increasing the fluid viscosity to high, artificial 
values, resulting in low Reynolds numbers and parabolic velocity profiles, typi-
cally valid for laminar flows. With the particle collision model however, this can 
be achieved at a real viscosity—in this case of water—allowing for much higher 
Reynolds numbers. In Figure 11 the results of an SPH simulation with particle 
collisions are shown at Re 50000=  ( jet 10V =  m/s). Due to the no-slip condi-
tion a boundary layer arises, so that the particle distribution now slightly de-
viates from the free-surface contours. At this Reynolds number, the velocity pro-
files (Figure 11(b)) are no longer parabolic. This is revealed by the presence of a 
finite and distinct boundary layer, also seen in turbulent flows. With particle col-
lisions it is thus not necessary to increase the viscosity to high artificial values. 
The no-slip wall condition is satisfied at the real viscosity 0.001µ =  Ns/m2 of 
water, even at a high jet velocity. 
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(a)                                                          (b) 

Figure 10. Jet impinging on wall ( Re 500= ). SPH simulation with collision wall showing (a) the particle distribution and free 
surface contours of Milne-Thomson [43] (black lines) and dimensionless pressure ( )2

jet1 2p Vρ  (color bar) and (b) the dimen-

sionless vertical velocity profiles. (a) Particle distribution; (b) Velocity profiles. 

 
(a)                                                          (b) 

Figure 11. Jet impinging on wall ( Re 50000= ). SPH simulation with particle collisions showing (a) the particle distribution with 
dimensionless pressure and (b) the dimensionless vertical velocity profiles at horizontal positions 0, 1x H = −  and −2. (a) Par-
ticle distribution; (b) Velocity profiles. 

 

6. Conclusions 

In this paper the use of kinematic conditions rather than dynamic conditions is 
explored to prevent particle clustering and wall penetration. The kinematic con-
ditions are obtained from kinetic collision theory, which ensures the conserva-
tion of momentum and, under certain conditions, conservation of energy as well. 
This has resulted in the particle collision model, which is based on velocities ra-
ther than forces. It is shown that the model acts as a time and space dependent 
viscosity model, introducing viscosity only when and where it is necessary, thus 
allowing for real (low laminar) viscosities. As such it may also be used to impose 
no-slip wall conditions. In addition, the model stabilises the interface between 
two fluids, and as such may be used as a multi-fluid model in liquid-gas applica-
tions with high, realistic density and wave speed ratios. 

The particle collision concept is explored in a number of case studies. In all 
cases the particle collision concept was found to prevent the clustering of par-
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ticles. The stagnant flow in a reservoir and the dam break flow showed that the 
method is able to stabilise the interface in typical liquid-gas configurations with 
density ratios up to 1000:1. It also allows for realistic wave speed ratios and far 
beyond, which to date could not be achieved within weakly compressible SPH. It 
is demonstrated that the particle collision model allows for real viscosities, much 
lower than artificial viscosities. 

With standard SPH the no-slip condition can only be satisfied with a high (ar-
tificial) viscosity. In that case the velocity profiles show the characteristics of a 
laminar flow. In the jet flow case it is demonstrated that the particle collision 
model allows for no-slip conditions with a low (real) viscosity, even at high ve-
locities. In that case the velocity profiles are no longer parabolic and show a fi-
nite and distinct boundary layer. It is demonstrated that the collision wall model 
allows for free slip conditions and may well be used to suppress wall penetration. 

It is concluded from the parameter studies in the cases that the best results, 
with a minimum of dissipation, are obtained with a zero restitution coefficient 
( R 0C = ), while the differences in the range R0 0.5C≤ ≤  are small. The colli-
sion distance is case dependent and can be evaluated from the maximum pres-
sure. The best results are found for c0.6 0.85δ≤ ≤ . 

The particle collision model may be seen as a particle shifting method, in the 
sense that the velocities are changed, and as a consequence of that the particle 
positions change. Because it is based on direct changes in velocities rather than 
forces it allows for a more robust SPH for engineering. 

Final Remarks and Future Work 

In this work the particle collision concept is applied within weakly compressible 
SPH; in principle it can also be applied in incompressible SPH. Artificial viscos-
ity has effects similar to a subgrade scale turbulence model [45]. Turbulence is 
modelled by a smoothed velocity at the scale of the smoothing length [46]. The 
particle collision model does not rely on a smoothing kernel, so that effectively a 
(small scale) hat function is used. More investigation is needed in how far tur-
bulent viscosity is or may be represented by the time and space dependent vis-
cosity introduced by inelastic collisions. Also, more investigation is needed in 
how far the particle collision concept may be used without any dissipation of 
energy, for example by changing the particle positions due to collisions, but not 
their velocities. 
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