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Abstract 
In present paper, by using the quantization of an electromagnetic field in the 
background of static spherically symmetric d-dimensional spacetime in the 
Boulware vacuum, we calculated the response rate of a static charge outside 
d-dimensional Schwarzschild black hole in the low-frequency regime, which 
can be expressed as the summation of hypergeometric functions. 
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1. Introduction 

At present it is believed that the study of quantum field theory in curved space-
time can provide some insights into quantum gravity effects, while the full 
theory is not available. An important prediction in this field is the thermal eva-
poration of black hole [1]. This nontrivial effect was soon realized to be closely 
associated with the existence of an event horizon in Schwarzschild spacetime. 
One of the difficulties in studying fields in Schwarzschild [2] and other black 
hole spacetime, even when the fields are non-interacting, stems from the fact 
that the solutions to the field equations are functions whose properties are not 
well known. In the low-frequency regime, however, the situation is much simp-
ler and the mode functions of the massless scalar field are well known [3]. Re-
cently, Crispino et al. [4] suggested a scheme to quantize the free quantum elec-
trodynamics in static spherically symmetric d-dimensional spacetime and gave 
out the response rate of a static charge outside the four-dimensional Schwarz-
schild black hole. The response rate is a quantum concept with no natural analog 
in classical physics though it is possible to define a corresponding classical quan-
tity mathematically and represents the number of times the source responds to 
the field per unit time. 
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In this paper we reviewed the free quantum electrodynamics in static spheri-
cally symmetric spacetime of arbitrary dimensions in a modified Feynman gauge 
[4]. Using the physical modes functions, we calculate the response rate of a static 
charge outside the d-dimensional Schwarzschild black hole in the Unruh va-
cuum [5]. Limited to four-dimensional Schwarzschild black hole, the response 
rate is consistent with the result in Ref. [4]. 

The paper is organized as follows. In Section 2 we review basic concepts of the 
electromagnetic field in the arbitrary dimensional spacetime of a spherically 
symmetric black hole in a modified Feynann gauge. Section 3 devotes to calcu-
late the response rate of a static charge outside a Schwarzschild black hole of ar-
bitrary-dimensions respectively. In Section 4, we summarize the main results. 

2. Gupta-Bleuler Quantization in a Modified Feynman Gauge 

In this section, we follow the notation of Ref. [4] to study the solutions of field 
equations for electromagnetic field in an asymptotic flat and static spherically 
symmetric ( )2p + -dimensional spacetime. The quantization of electromagnetic 
field will be carried out in the frame of Gupta-Bleuler formalism in a modified 
Feynmann gauge. 

The line element under considered takes the form  

( ) ( )2 2 2 2 2d d d d pf r t h r r r sτ = − −                   (1) 

with the line element of a unit p-sphere 2d ps . We assume that both ( )f r  and 
( ) 1h r −  have a zero at hr r=  and positive for hr r> . 
The Lagrangian density for electromagnetic field in a modified Feynman gauge is  

21 1 ,
4 2F g F F Gµν

µν
 = − − −  

                   (2) 

and G stands for the modified Feynman gauge  
.G A K Aµ µ

µ µ= ∇ +                        (3) 

here the vector K µ  is independent on electromagnetic field Aµ , and takes the form  

( )( )0, ,0,0 .K f fhµ ′=                      (4) 

Under this choice, the gauge condition changes into  

2

1 1 1p
i

t t r r ip

f rG A A A
f h r rfh

 
= ∂ − ∂ − ∇ 

  
             (5) 

From the Lagrangian density for electromagnetic field, the equations of motion are  

( ) ( )

2 2
2

2 2
2 2

2 2
2 2

2

2
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p i
t r r r r r r ip

p
p

t i r r i r i r

j j
j i i j i j

rfA A A
f h r rfh

rf f fA A A A
f f h fr r rfh
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− ∂ + ∂ ∂ + ∇ = 
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here i∇  is the covariant derivative on pS . 
We denote the complete set of solutions of Equation (6) by ( );n lmA λ ω

µ , and call 
a non-physical modes for 0λ = , physical modes for 1,2,3, , pλ =   and a 
pure-gauge mode for 1pλ = + . The label n represents modes incoming from 
the past null infinity ( )n =←  and coming out from the past horizon ( )n =→ . 

Physical Modes 1  

For other independent solutions 1,2, , pλ =  , which represent physical degrees 
of freedom, the time-component can be taken as zero. They are the linear inde-
pendent solution of Equation (6) with a gauge condition 0G = , and are classi-
fied into two types. 

The “physical modes 1” solution can be written as [4]  
( )

( ) ( ) ( ) ( )

( )

( )
( ) ( )

1 ;

1 ; 1

2
1 ; 1

0 (7a)

e , 1 (7b)

d e (7c)
1 d

n lm
t

n lm n i t
r l lm

p p
n lm n i t

i l i lm

A

A R r Y l

r f rA R r Y
l l p h r fh

ω

ω ω
ω

ω ω
ω

−

−
−

 =

 = ≥


 
= ∂  + −    

 

where 1,2,3, ,i p=   and:  

( ) ( ) ( ) ( ) ( )
2

1 12
2 2

1 1 d d 0
d d

p
n np

l l
l l p f rR r r R r

f r h rr r fhω ω
ω −

  + − 
− + =          

   (8) 

3. Response Rate of a Static Charge outside a D-Dimensional  
Schwarzschild Black Hole 

In this section, we will calculate the response rate of a static charge outside a 
d-dimensional ( )2d p= +  Schwarzschild black hole by following the proce-
dure of Ref. [4]. In this case, the black hole is characterized by  
( ) ( ) ( )( )11 1 p

hf r h r r r −−= = − . 
In order to avoid the indefinite results [6] [7], we use the formula suggested 

by Crispino et al. [8] and assume the static charge located at ( )0 0,r θ  with a 
current density jµ  

( )

( ) ( ) ( )

( ) ( ) ( )

0 1 10 0

0 1 10 0

, ,0, ,0 (9a)

2 cos (9b)

2 sin (9c)

t r

t
p p

r
p p

j j j

q Etj r r
g

qE Etj r r
g

µ

δ δ θ θ δ θ θ

δ θ θ δ θ θ

 =



= − − ⋅ ⋅ −
 −

 = Θ − − ⋅ ⋅ − −







 

The step function ( )xΘ  is defined by ( ) ( )1, 0x xΘ = >  and vanishing for 
0x ≤ . 

Such current interacts with vector potential Aµ  through the Lagrangian 
g j Aµ

µ− . Since ( )( )1 physp n
lmaω
+ †  is non-physical states, which excludes the in-

teraction with the pure-gauge particles created by ( )( )1p n
lmaω
+ † . We will neglect it. 

However, the current does interact with the states created by ( )0n
lmaω

†  but the 
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contribution to physical probabilities maybe taken as zero once the non-physical 
modes are appropriately chosen. Ref [4] gave the exact form of physical modes 2, 
we can see that 0t rA A= = . Therefore, there is no interacting term between the 
current and physical modes 2, we only need to consider the physical modes 1. To 
make the counting process more concise, we will limit in the spherical coulomb 
gauge. The mode function can be written as [4]  

( )
2

1 ; 1d= e
1 d

p p
n lm n i t

t l lm
i r f rA R Y

l l p h r fh
ω ω

ω
ω −

′ −
 
  + −  

             (10) 

( )
2 2

1 ; 11 e .
1

n lm n i t
r l lm

rA R Y
l l p f

ω ω
ω

ω′ −=
+ −

                  (11) 

The Bose-Einstein distribution of the thermal photons coming out of the ho-
rizon diverges at zero energy. Then we take the limit 0E → , the proper re-
sponse rate of the charge can be written [4]  

( ) ( )

2

0

0
0 0

4π lim Elmlm

E

R
f r f r Eβ

→

→
=


                   (12) 

where Elm
→  is the index n =→  in transition amplitude n

lmω  which has the 
form  

( )
21 ˆd  1 ; 0

2π
n p
lm x g j n lm A

E
µ

ω µω
δ ω

+≡ −
− ∫          (13) 

Now, we return to calculate Elm
→ . The Equation (6) can be written  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
2

1 1 12
2 2

11 d d 0.
d d

p p
l l l

l l p
fr r R r R r R r

r r fr rω ω ω
ω→ → →− + −  − + =  

 (14) 

After introducing the Wheeler tortoise coordinate [4] and a function ϕ   

( ) ( )
( ) ( ) ( )

11 12
1

,
p

l l

l l p
R r r rω ωϕω

− −→ →+ −
≡               (15) 

the Equation (14) changes into  

( ) ( ) ( )
2

12 *
1*2

d 0
d lV r r
r ωω ϕ → 

+ − = 
 

              (16) 

with  

( ) ( ) ( ) ( )* 2
1 2 2

1 2 2
24

l l p p p p
V r r f f f f

rr r
+ − − −

  ′= + −          (17) 

For the small ω  and the condition ( )2 3 *, 1h hr r r rω ω−   , the wave 
coming from the past horizon H −  is almost completely reflected back by the 
potential toward the horizon  

( )1 *2 constl rωϕ ω→ ≈ − +                     (18) 

For a second order nonlinear Equation (16), it is hard to find the analytic ex-
pression for the Wheeler tortoise coordinate *r . Fortunately, what we need is 
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just the behavior of *r  near horizon. Substituting the expression of ( )f r , the 
leading term of the Wheeler tortoise coordinate can be written  

( ) ( )* ln 1 , ~ 1
1

hrr z z
p

≈ −
−

                  (19) 

by using the transition  
1

2 1
p

h

rz
r

−
 

= − 
 

                       (20) 

Thus, the boundary condition of ( )1
lRω
→  reads  

( ) ( ) ( ) ( ) ( )
1

1 2 1 2 3 *12 1
2 ln 1 , , 1 ,

1

p
pp

l h h

l l p
R M z r r r r

pω ω ω
−

→ −−
+ −

≈ − − −
−

   (21) 

which is independent on ω . In terms of variable z, the Equation (14) can be 
written as  

( )
( )

( )
( )

( )
( ) ( ) ( )( ) ( )

1 12
2

2

2
12 1

2

d d
1 2 1 1

1 dd

2 21 11 1 0.
1 11

l l

p
l

R Rpz z
p zz

p p zl l p p M z R
z zp

ω ω

ωω

→ →

→−

 
− + − + − 

− +
− + − − − − + = + −−  

(22) 

This equation cannot be analytically solved, but the boundary condition im-
plies that the main contribution is from the ω -independent term. Combining 
the asymptotic behavior ( )1 0lRω

→ →  as z →+∞ , we find the solution of Equa-
tion (22) in small ω  limit  

( ) ( ) ( )

( )

1
1 2 11

1

2 1
2

1

2 2F , 2 , 2 , 1
1 1 1 1

p
pp

l

l p
p

l l p
R M

p

l l l z
p p p z

ω

−
→ −−

− −
−

+ −
=

−

    
× + + +    − − − +    

      (23) 

where ( )F , , , xα β γ  is the hypergeometric function and the coefficient has been 
appropriately chosen to agreement with the boundary condition Equation (21). 

From gauge invariance we can see that it is convenient to calculate the ampli-
tude Equation (13) in the spherical Coulomb gauge. Then the contribution from 
the r-component will be suppressed in the low energy limit due to extra factors 
of ω . So we only need to consider the t-component in this limit. By using the 
definition of Equation (12), we can get  

( )
( )

( ) ( )
( )( )

2
2 221

20 0 10 0
0 00 0

2 1 1 d F 1
1 dπ 1

p
p l

lm pl lm
p qR z z z Y

z zf r M l l p f r

−
− −

−
−    −  = +    +  + −    

 (24) 

Substituting the all parameters for d-dimensional black hole  
1

0
0 1

prz
M

−

= −                           (25) 

( )0 1
0

21 p

Mf r
r −= −                         (26) 
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( )0
0

2 2F F , 2 , 2 ,
1 1 1 1l

l l lz
p p p z

    
= + +    − − − +    

          (27) 

the total transition probability per proper time of the charge is given by  

( )

( )
( ) ( )

( )( ) ( )

tot 0

1 0

2
2 221

0 10 0
0 00

2 1 1 d F 1
1 dπ 1

l
lm

l m

p
p l

pl
l p

RR
f r

p q G lz z z
z zM l l p f r

=−

−
− −

−

=

−    −  = +    + Ω + −    

∑∑

∑

 (28) 

in which the following formula has been used [9]  

( )2

1

l

lm
m p

G l
Y

=−

=
Ω∑                        (29) 

where pΩ  is the volume of pS  and ( )G l  is the degeneracy of the eigenvalue 
( )2l l p− + −  of the Laplacian ∆ , which is given by  

( ) ( )( )
( )

2 1 2 !
.

! 1 !
l p l p

G l
l p

+ − + −
=

−
                 (30) 

when the dimension reduced to four ( 2p = ), Equation (23) can be written  

( ) ( ) [ ] [ ] ( ) 21 4 21 F , 2 , 2 2 , 1 ,
1

l
lR l l l l l z

M zω
− −→  = + + + + + 

        (31) 

and Equation (28) will reduce to a Legendre function of the second kind, which 
recovers the result in [4]. 

4. Conclusion 

In this paper we compute the total response rate of a static charge outside the 
d-dimensional Schwarzschild black hole in the Unruh vacuum, by using the free 
electrodynamics in static spherically symmetric spacetime of arbitrary dimen-
sions in a modified Feynman gauge. This outcome may provide us a chance for 
further investigating quantum field theory in high-dimensional curved space-
time. For instance, some authors [8] [10] [11] have researched whether or not a 
quantum version of the equivalence principle could be formulated and show 
some equivalence for low-frequency quantum phenomena in flat and curved 
spacetime. The same problem could be reconsidered in high-dimensional space-
time and discuss the dimension dependence of the results.  
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