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Abstract 
This paper begins with an overview of quantum mechanics, and then recounts 
a relatively recent algebraic extension of the Boolean algebra of probabilistic 
events to “conditional events” (order pairs of events). The main point is to 
show that a so-called “superposition” of two (or more) quantum events 
(usually with mutually inconsistent initial conditions) can be represented in 
this algebra of conditional events and assigned a consistent conditional prob-
ability. There is no need to imagine that a quantum particle can simulta-
neously straddle two inconsistent possibilities. 
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1. Introduction 

Perhaps the first thing to say about quantum mathematics is that it is about va-
riables with a finite number of possible values, not continuous variables. Energy 
as exhibited by A. Einstein [1] exists and is emitted only in certain fixed quan-
tum amounts or multiples thereof, not in fractional or continuous amounts the-
reof. 

1.1. Energy Quanta 

For a photon (particle of light), the energy E equals Plank’s constant h times the 
frequency (color) f of the photon. A blue photon with frequency fb has more 
energy hfb than does a red photon with frequency fr and the positive difference is 
(fb – fr)h. 

Since there must be a smallest energy value hfo for a photon the respective 
frequencies of the blue and red photons must be multiples of this lowest photon 
frequency fo. 
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Apparently, photons carry these different energy values in their axial spin. 
Although all photons move from place to place in “empty space” at the same 
speed c, their axial spin frequencies vary by as many as 100 octaves, each octave 
being twice the frequency (and energy) of the next lower octave. The energy 
range is proportionately huge. The human eye sees only one octave of color fre-
quencies, but the ear senses lower ones while the whole body feels still lower 
frequency vibrations. 

Although contemporary theory regards photons as having zero mass, they do 
carry a potential impact as shown by comets; their wispy (gaseous) tails always 
point away from the sun. 

To represent the energy of a spinning or orbiting particle, a vector is needed 
so as to include both the orientation of the spin (or orbital) axis and also the 
magnitude of that angular energy of spin (or orbit). And indeed von Neumann 
and Birkhoff [2] formulated the current standard quantum logic in terms of a 
vector space—a complete, normed, inner-product space. 

1.2. Heisenberg Indeterminacy 

Another basic principle of quantum mechanics is the Heisenberg Indeterminacy 
Principal [3]. It arises from the way that present methods of measurements in 
the quantum world, whether by particle emission or reflection, disturb the 
quantum object being measured. Therefore, determining the values of certain 
pairs of variables, like the position and velocity of a particle, requires measure-
ments that typically disturb the object being observed, thereby limiting the pre-
cision of the simultaneous measurement of the other variable. A position mea-
surement changes the velocity of the particle; a velocity measurement changes 
the expected position of the particle. 

However, this is a measurement technique ambiguity, purely epistemological. 
It does not mean that the position and velocity cannot be simultaneously known 
in principle, just not with the information and measurement methods available. 
For a particle, various alternate possibilities are mutually exclusive. They are not 
all “somewhat true” at the same time! Our lack of knowledge about the position 
and velocity does not imply there is no actual position and velocity. There is no 
need to imagine some kind of “superposition” of states all of which simulta-
neously exist with probabilities. But that is what is presently said. 

1.3. Quantum Entanglement 

An important distinction to make in quantum mechanics is between the Hei-
senberg Indeterminacy Principle and the so-called quantum “entanglement 
phenomena”.  

The Double-Slit experiments [4] [5], the Stern-Gerlach spin experiments [6] 
and John Bell’s Theorem [7] as illuminated by N. D. Mermin [8] provide crucial 
insights into the nature of the mysterious entanglement phenomena of quantum 
mechanics. In one interpretation, trajectories and spin states of quantum par-
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ticles are influenced by certain energy waves discovered by Schrödinger [9] but 
later conceptually combined with the associated particles and called “wavicles” 
and more recently “strings”. These later conceptions were designed to instanta-
neously bridge great distances without influences being conveyed by fast-
er-than-light wave intermediation. Rather than imagining “a faster-than-light, 
(pre-mass) energy wave reaction to a particle’s motion”, contemporary theory 
imagines “a faster-than-light collapse of a space-extended particle-wave from all 
directions to the location of a measurement”. Some kind of instantaneous influ-
ence across space is impossible to avoid. 

Quantum ambiguities due to Heisenberg’s Indeterminacy Principal added to 
these mysterious measurement correlations of entanglement [10]-[15] and re-
sulted in quantum mechanical “physical states” becoming quantum probability 
distributions. Physical predictions morphed into probability statements about 
energy distributions. And that is pretty much where things now stand. 

1.4. Particle Properties and Local Reality 

But does not a particle have an actual position and velocity? According to the de 
Broglie-Bohm interpretation [12], [15] of Schrödinger’s quantum waves, par-
ticles have local properties of spin, and the waves merely carry influences at 
speeds faster than light.  

The interference patterns, incrementally assembled by individual particle tra-
jectories through the 2-slit apparatus suggested that somehow each particle was 
going through both slits! But experiments later confirmed (See [4], pp. 1-7) that 
each particle indeed went through one but not both slits. Somehow those par-
ticles accumulated an interference pattern rather than an independent scat-
ter-shot distribution centered behind each slit.  

Combined with Heisenberg Indeterminacy, the ambiguities of entanglement 
posed a difficult modeling problem. But von J. Neumann knew the experiments 
so well that he and G. Birkhoff were able to do it with what is now called Hilbert 
space—a complete, normed, inner product space. 

The indeterminacy ambiguity complicated by the entanglement phenomena 
led to the notion that quantum particles routinely somehow simultaneously oc-
cupy two or more mutually inconsistent states. This hypothetical physical state is 
called a “superposition”, a combination of alternate but inconsistent states or 
trajectories. This prompted that famous question by Einstein et al. [16] about 
whether a certain cat was dead or alive, or both dead and alive. 

1.5. Conditioning in Logic versus Probability 

The mathematical modeling problem posed by these physical and measurement 
phenomena was exacerbated by the lack, both in logic and probability theory, of 
an adequate algebraic conditioning relation. B. Russell’s [17] “material implica-
tion” over-simplified implication by assuming that a conditional statement that 
is not false must be true. Although that is adequate for doing 2-valued logic, 
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probability theory clearly cannot count as true those instances for which the 
premise (condition) of a statement is false. 

A collection of alternate physical conditions each potentially leading to other 
specific states has no way of being algebraically expressed in standard Boolean 
logic nor as an event in standard probability theory. For instance, if A, B, C and 
D are uncertain probabilistic events, the construction “(A if B) or (C if D)” is 
neither a Boolean object nor a probabilistic event, but it certainly makes sense as 
an English statement.  

In probability theory, the conditional probability P(A|B), of an event A given 
that an event B also occurs, is defined to be P(A and B)/P(B), and it measures the 
probability of A in the context of the occurrence of B. But the conditional event 
“A if B” is not an event in standard probability theory, and neither are combina-
tions of such conditionals unless the conditions are equivalent. Therefore both 
standard Boolean logic and the standard algebra of probabilistic events are 
missing a 4th operation—conditioning. 

Although constructions such as “(A if B) or (C if not B)” have been assigned 
probabilities in quantum logic, and elsewhere, the underlying algebraic structure 
has heretofore been incapable of supporting the calculation. So the idea of a 
“superposition” of mutually inconsistent events was invented as though a par-
ticle could somehow simultaneously be in some ambiguous “combination state” 
of two or more incompatible events, as though the hypothetical cat could be 
somewhat dead and somewhat alive. 

Such mental acrobatics are no longer necessary. The de Broglie-Bohm inter-
pretation of quantum mechanics allows particles to have definite local properties 
at the cost of including faster-than-light “space force interference reactions” to 
particle motions in space.  

The main purpose of this paper is to show that the so-called superposition of 
two or more alternative initial conditions (states) can be represented in the au-
thor’s relatively new algebraic system of “conditional events” [18] and that such 
constructions can be assigned a consistent probability.  

Conditional events are fractions (order pairs) of probabilistic events or Boo-
lean propositions that can consistently carry conditional probabilities. They can 
also be combined by “or”, “and”, “not” and “conditioning” like two numerical 
fractions can be added, multiplied, negated and divided one by the other to get 
an equivalent fraction. And this extension of Boolean algebra to non-Boolean 
“conditional events” can represent disjunctions (or) of alternative particle tra-
jectories and assign them consistent probabilities. Thus as far as superposition’s 
are concerned, there is no need to imagine anything more than alternative con-
ditions, only one of which need apply, that is, be factually existent. 

2. The Algebra of Conditional Events (Boolean Fractions) 

Both probability and logic are founded on Boolean algebra: Probabilistic events 
A, B, C, ∙∙∙ form a Boolean algebra just like logical propositions p, q, r, ∙∙∙ form a 
Boolean algebra. Operations of “or”, “and” and “not” ( ∨ , ∧ , and ') in logic 
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correspond to “union”, “intersection” and “complement” ( ∪ , ∩ , ') in proba-
bility. 

2.1. A Framework for Logic and Probability 

A model of a given logic is a realization of the axioms of the logic in which each 
proposition expressible in the logic is either true or false. For instance, a dog is a 
model (example) of a four-legged animal. A proposition “able to climb trees” 
may be true in one model and false in another just as a probabilistic event may 
occur in one instance and not occur in another. However, by the definition of a 
logical model [19] or probabilistic instance, every proposition is either true in 
the model or it is false in that model. A probabilistic event B either contains a 
specific instance (occurs), or it doesn’t occur. 

For example, the rules of a game of chance, such as coin flipping, define the 
axioms of a Boolean logic. “If heads you win; if tails you lose.” The individual 
models of this logic are each single coin flip producing “heads”, “tails” or “the 
coin lands on its edge”. Note that in each model (flip) the proposition “heads 
comes up” is either true or it is false. 

Or consider the face turned up after the roll of a 6-sided die with numbered 
faces {1, 2, 3, 4, 5, 6}. There are 64 events (or propositions) corresponding to 
each of the subsets of these 6 numbers. The event (or proposition) that “an odd 
numbered face comes up” is the subset {1, 3, 5}. There are just 6 models or in-
stances, namely the 6 possible faces that can turn up. 

This model framework allows the probability of an arbitrary proposition such 
as “odd face turns up” to be defined as the probability of the set of models in 
which that proposition is true, namely the probability of the subset {1, 3, 5}. 

The collection of all subsets of some fixed set forms a Boolean algebra, and 
these subsets and earlier examples can be assigned probabilities according to the 
familiar Kolmogorov [20] axioms of a probability measure. 

2.2. Conditional Events and Conditional Propositions 

Analogous to how integer fractions are constructed, ordered pairs of events and 
associated propositions can be defined.  

Let B be a Boolean algebra of propositions or events, and let (B|B) denote the 
set of ordered pairs, {(a|b): a, b in B }, called the set of conditionals, “a given b” 
of B. The proposition or event “b” is called the condition or given event, and the 
proposition or event “a” is called the consequent or conclusion, the proposition 
“a” in the context of b. 

2.2.1. Equivalent Conditionals 
Two conditional statements (a|b) and (c|d) are defined to be equivalent (=) pro-
vided:  

1) Their conditions, b and d, are equivalent propositions or events; and  
2) Their conclusions, a and c, are equivalent when their common condition is 

true. 
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In symbols, 

( ) ( )| |a b c d=  if and only if b d=  and ab cd=            (1) 

where juxtaposition, “ab”, denotes “ a b∧ ”, that is, “a and b”. 
In other words, two conditionals are equivalent when they have equivalent 

premises and their conclusions are equivalent assuming that common premise. 
This equivalence relation on conditionals implies that for all propositions a and 
b,  

( ) ( )| |a b ab b=                           (2) 

and also that for all a ∈ B, (1|0) = (a|0) = (0|0).  
(1|0) is the “inapplicable” or “undefined” conditional and is denoted U. The 

Boolean 1 and 0 propositions are represented by (1|1) and (0|1) respectively. 

2.2.2. Truth-Values of Conditionals 
Thus, in any instance a conditional (a|b) can have any one of 3 truth-values: 

(a|b) is true if a is true and b is true; 
(a|b) is false if a is false and b is true;          (3) 
(a|b) is inapplicable if b is false.  

Thus, (a|b) is true on a b∧ , false on a b′ ∧ , and inapplicable on b'. Note that 
(a|b) has the truth-value of “a” when condition b is true, but is inapplicable 
when b is false.  

We frequently encounter such inapplicable conditional statements or ques-
tions in everyday life. Consider a questionnaire that asks, “If you served in the 
military then were you in the navy?” or “If you own a pet then do you feed table 
scraps?” These questions cannot be accurately answered “yes” or “no” if their 
premise (condition) is false any more than an animal lover can answer “yes” or 
“no” to the question, “Have you stopped beating your dog?” In such a case the 
answer must be “inapplicable”. 

2.3. Operations on Conditionals 

Each of the three operations defined below agrees with the corresponding Boo-
lean operation when applied to conditionals with equivalent conditions. There-
fore they extend the Boolean operations. 

2.3.1. Relative Negation (Not) 
The relative negation of “a given b” is the “negation of a, given b”. That is, 

( ) ( )| |a b a b′ ′=                          (4) 

and the latter has probability 1 – P(a|b). 

2.3.2. Disjunction (or) 
The disjunction, “(a if b) or (c if d)” of two conditionals means “if either condi-
tional is applicable, i.e. if ( b d∨ ) is true, then at least one of the two conditionals 
is true, i.e. ( ab cd∨ ) is true”, thus, 
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( ) ( ) ( ) ( )( ) ( )| | | |a b c d ab cd b d ab cd b d∨ = ∨ ∨ = ∨ ∨          (5) 

2.3.3. Conjunction (and) 
The conjunction, “a if b and c if d” means “if either conditional is applicable 
then one is true while the other is not false”. That is, 

( ) ( ) ( ) ( ) ( )| | |a b c d ab c d a b cd b d′ ′∧ = ∨  ∨  ∨ ∨             (6) 

( )|abd abcd b cd b d′ ′= ∨ ∨ ∨                    (7) 

which also means “if either conditional is applicable then either they are both 
true or else one is true while the other is inapplicable.” 

2.3.4. Conditional Conditionals 
In practice, adding a condition “c” to a conditional (a|b) merely means (a|bc). 
That is,  

( )( ) ( )| | |a b c a bc=                       (8) 

Therefore the iterated conditional 

 ( ) ( )( ) ( )( ) ( )( )| | | | | |a b c d a b c d a b c d ′= ∧ = ∨            (9) 

because by the operations ( ) ( ) ( ) ( )( ) ( )| |1 | |1b c d b c d dd b c b c∧ = ∧ = =′ ′∨ ∨ . 
That is, “(a|b) if (c|d)” means “a if [b is true and (c|d) is not false]”. 
The order of preference of the operations1 is negation (') before conjunction 

( ∧ ), before disjunction ( ∨ ), before conditioning (|). 
The algebra (B|B) of conditionals includes the original Boolean algebra B as 

those conditionals (a|Ω), where Ω is the universal event, and “a” is any member 
of B. In logical notation these are the conditionals (a|1) whose condition is cer-
tain. 

2.4. Indicator Function Representation of Events 

It is helpful to visualize events and conditional events as indicator functions; see 
Figure 1. Suppose P = (Ω, B, P) is a probability space of individual instances Ω, 
events B (an algebra of subsets of instances), and probability measure P. Then 
the characteristic function of each measurable subset B, B ∈ B is a unique mea-
surable indicator function qB: Ω → {0, 1} from Ω into the 2-element Boolean al-
gebra {0, 1} defined as follows: 

( )( )
1, if
0, ifB

B
q

B
ω

ω
ω

∈
=  ′∈

                   (10) 

The function q (dropping the subscript) is a “proposition” in the sense that for 
each ω ∈Ω , either q is true for ω, meaning q(ω) = 1, or else q is false for ω, 
meaning q(ω) = 0. L will denote the set of all propositions of P. Conversely, each 
measurable indicator function q defines a unique measurable subset B, B ∈ B by 

 

 

1These operations and the resulting not-altogether-Boolean algebra of conditional events are com-
pletely characterized in [18], p. 56. 
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Figure 1. Propositions and conditional propositions. 

 

( ) ( ){ }1 1 : 1B q qω ω−= = ∈Ω =                   (11) 

B is the measurable subset of cases (instances) for which q is true, and P(B) is 
the probability measure of the partial truth of q. 

2.5. Indicator Function Representation of Events 

Each ordered pair, (B|A) of measurable subsets B, A in B with corresponding in-
dicator functions q, p, defines a unique domain-restricted measurable indicator 
function (q|p): A → {0, 1}, from A into the 2-element Boolean algebra as follows: 

( )( )
1, if

| 0, if  
, if

B A
q p B A

U A

ω
ω ω

ω

∈ ∩
 ′= ∈ ∩
 ′∈

                  (12) 

where U means “undefined”. This can be expressed in terms of the uncondi-
tioned propositions p and q by 

( )( )
( ) ( )

( )
if 1

|
if 0

q p
q p

U p

ω ω
ω

ω

== 
=

                 (13) 

(q|p) is a “conditional proposition” in the sense that if p is true for ω then ei-
ther (q|p) is true for ω or (q|p) is false for ω. On the other hand, we say that (q|p) 
“does not apply” (i.e., is undefined or inapplicable) for those ω for which p is 
false. Thus (q|p) has three truth states. (q|p) is simply q, restricted to p−1(1), the 

https://doi.org/10.4236/jamp.2018.66107


P. G. Calabrese 
 

 

DOI: 10.4236/jamp.2018.66107 1286 Journal of Applied Mathematics and Physics 
 

subset on which p is true. 

3. Quantum Conditioning 

Besides being able to characterize simultaneously verifiable quantum events and 
a number of other properties of quantum logic, the conditional event algebra2 
that I am recommending can disambiguate the notion of a superposition of 
quantum events. 

3.1. Superpositions Expressed as the Disjunctions of Conditional  
Events 

Consider a quantum system and associated measurement apparatus that starts 
out in a condition (state) d, and after some one of a number of mutually exclu-
sive and exhaustive events {bi} occur and we observe the value of some proposi-
tion c. In the standard Hilbert linear space calculation, the “amplitude” or logical 
representative of observing c via the bi starting with condition d is  

| | |i iic d c b b d= ∑                    (14) 

and the probability of this observation is the square of the norm of the vector 
|c d  

2
| | |i iiP c d c b b d= ∑                   (15) 

In the realm of conditionals this formula is first expressed as 

( ) ( )( )| | |i i ic d c b d b d d= ∨                   (16) 

with probability 

( ) ( ) ( )| | |i iiP c d P c b d P b d d= ∑ .               (17) 

However, in the quantum physical situation described above, starting from an 
initial condition d, the subsequent occurrence of an intermediate event bi usually 
makes additional subsequent events such as c independent of d, which can be 
expressed as ( ) ( )| |i iP c b d P c b= . So 

( ) ( ) ( )| | |i iiP c d P c b P b d= ∑                  (18) 

This follows by substitution and since ( ) ( )| |i iP b d d P b d= . 
In the vernacular of quantum mechanics, (c|bi) is the “projection” of c onto 

the Boolean subspace (B|bi) and P(bi|d) is the relative probability of the Boolean 
subspace generated by bi given d.  

Notice that in (B|B) so-called “superpositions” can be expressed as disjunc-
tions of quantum events that have incompatible conditions. For instance, 
( ) ( )| |a bd c b d′∨  exists and has a consistent probability, namely 

( ) ( )| |P abd cb d bd b d P ab cb d′ ′ ′∨ ∨ = ∨ . There is no need to believe that this 
situation is any more mysterious than two conditional alternatives, only one of 
which applies. 

 

 

2See Chapters 8 and 9 of [18] for a fuller account of how quantum logic can be expressed in the logic 
of conditional events. 
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3.2. Quantum Vectors and Linear Operator Language 

The summation ( ) ( )| |i ii P c b P b d∑  can be written as the inner product (•) of 
the two countable vectors  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2| , | , , | , | , | , , | ,i iP c b P c b P c b P b d P b d P b d      (19) 

or two finite vectors in case {bi} is a finite partition of the universe of possibili-
ties. 

An inner product of two n-dimensional real vectors can be interpreted as the 
product of their lengths times the cosine of the angle between them, and the ab-
solute value of this is the length of one vector times the length of the projection 
of the 2nd vector onto the first. 

The first vector can be considered to be the result of the “projection operator” 
( ) ( ) ( )1 2| , | , , | ,iP b P b P b ⋅ ⋅ ⋅    applied to any proposition c. It gives the vec-

tor of projection (conditional) probabilities of any proposition c on (given) the 
basis propositions { }: 1, 2,ib i =  . 

The second vector is the vector of relative probabilities of the basis proposi-
tions given some initial state (proposition) d. The sum over i of the probabilities 
P(bi|d) is 1. The probability of c is therefore a linear combination of the individ-
ual conditional probabilities of c given bi. If nothing is known about the initial 
state, then d = 1, and so the second vector becomes the vector  

( ) ( ) ( )1 2, , , ,iP b P b P b   of relative probabilities of the basis propositions, 
and the equation reduces to 

( ) ( ) ( )| i iiP c P c b P b= ∑ .                    (20) 

3.3. Quantum Measurements Perturbations versus Passive  
Conditioning 

In the above, P(d|d) represents the probability of a quantum state d that without 
further measurement perturbation will always be found in state d, and of course 
that probability is 1. But when, for instance, there is an assumed amplitude from 
a state d to each member of a complete set of orthogonal states {bi} and then 
another amplitude back to state d in a subsequent perturbation of the system, 
the probability P(not d|d) need not be 0 as it must if P(d|d) = 1. In this double 
transformation case ( ) ( ) ( )| | |i iiP d d P d b P b d′ ′= ∑ , which need not be zero 
because the probability distribution (state) has changed. This illustrates why the 
designers of quantum logic decided to define a “state of the system” as a proba-
bility distribution on vectors, vectors built from atoms of complete assignments 
of values to variables. Every measurement of a variable in general produces a 
new state (condition) of the probability distribution for the system. 

This situation is not yet covered by a theory of conditioning that only accu-
mulates conditions and assumes there is no additional measurement disturbance 
but merely seeks to answer the probability questions of what else might be true 
given that the condition is true. 

Nevertheless, even though the measurements are perturbation operators on 
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the probability distribution being measured, the new post-disturbed probability 
distributions (quantum states) are still defined in (B|B) as sub-spaces (B|b) gen-
erated by alternative possible conditions b given to be true in the new state. 

4. Conclusion 

The so-called “superposition” of a quantum particle in two possibly mutually 
inconsistent quantum states B, D can be represented in the new extension alge-
bra [18] of conditional events as the event A given condition B or event C given 
the alternate condition D. This non-Boolean object ( ) ( )( )| |A B C D∪  is a 
member of the new algebra, namely ( ) ( ) ( )( )|A B C D B D∩ ∪ ∩ ∪ , and it can 
be assigned the consistent conditional probability, 

( ) ( ) ( )( )|P A B C D B D∩ ∪ ∩ ∪ . The quantum particle can be imagined as be-
ing in one or the other of the initial conditions without being in both. 
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