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Abstract 
This paper presents the unsteady magnetohydrodynamic (MHD) flow of a 
generalized Burgers’ fluid between two side walls perpendicular to a plate. The 
flow is generated from rest at time 0t +=  induced by stress applied on the 
bottom plate. The stress is assumed to be like sawtooth pulses with quadratic 
edges. The solutions obtained by means of the Laplace, and Fourier cosine 
and sine transforms are presented as a sum between the corresponding New-
tonian and non-Newtonian contributions. Graphs are sketched for various 
parameters of interest. 
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1. Introduction 

The research in the field of non-Newtonian fluid motion has considerably grown 
because of the wide range of their applications in different fields. Such type of 
flows are of interest to workers in cement industry, medicine and geology, e.g., 
in dams, clay rotation, artificial surfing, heartbeat, motion in the liquid core of 
the earth during earthquakes. Among them the Burgers’ fluid as a special 
non-Newtonian fluid got special attention in describing polymeric liquids. There 
is a lot of work published on non-Newtonian fluid models but we mention here 
the references that are mostly related to our work. 

Zheng et al. [1] obtained the exact analytical solutions for generalized Maxwell 
fluid over an infinite flat plate due to oscillatory and constantly accelerating mo-
tion of plate. Expressions for the velocity field and the corresponding shear 
stress are expressed in series forms in terms of generalized G and R. Ghosh and 
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Sana [2] solved an initial value problem designed for the motion of an Ol-
droyd-B fluid bounded by an infinite rigid non-conducting plate. The unsteady 
flow was generated from rest in the fluid due to velocity sawtooth pulses sub-
jected on the plate in the presence of an external magnetic field. Akhtar et al. [3] 
and Fetecau et al. [4] determined the velocity field and the adequate tangential 
stresses corresponding to the unsteady flows of Maxwell and Oldroyd-B fluids, 
respectively, induced by a constantly accelerating plate between two side walls 
perpendicular to the plate by means of Fourier sine transform. Chakraborty and 
Ray [5] investigated the Couette flow between two parallel walls when one of the 
walls was set into motion by random pulses in the presence of magnetic field. 
Makar [6] presented the solution for MHD flow between two parallel plates 
when one of the plates was subjected to velocity tooth pulses, neglecting the in-
duced magnetic field. Khan and Zeeshan [7] studied the magneto hydrodynamic 
flow of an Oldroyd-B fluid through over a plate. The motion was generated in 
the fluid due to the velocity sawtooth pulses applied on the plate. 

In all of the above citations, the conditions on the boundary are given in terms 
of velocity. The stress at the boundary gives important information about the 
nature of dissipation at the boundary. A little work in the literature is available 
where stress is given on the boundary. Sohail et al. [8] provided starting solu-
tions in close-form corresponding to the unsteady motion of a Maxwell fluid 
between two parallel walls due to an infinite plate that applies oscillating shear 
stresses to the fluid. Ghosh and Sana [9] provided the unsteady motion of an 
Oldroyd-B fluid bounded by two infinite parallel plates in presence of an exter-
nal magnetic field. The flow is supposed to generate impulsively from the rest 
induced by rectified sine pulses applied periodically on the upper plate. Jamil et 
al. [10] and Shahid et al. [11] determined the starting solutions for the motions 
of Oldroyd-B fluids induced by quadratic, and cosine and sine oscillating time 
dependent shear stress, respectively. Sultan et al. [12] analyzed the unsteady flow 
of a Generalized Burgers’ fluid between two parallel walls perpendicular to a 
plate in the presence of magnetic field. The fluid was set into motion induced by 
the rectified sine pulses shear stress. Some recent attempts involving oscillating 
motions induced by stress have been made in many studies [13] [14] [15] [16] 
[17]. 

The objective of the present work is to study the magnetohydrodynamic flow 
of a Generalized Burgers’ fluid between two parallel side walls perpendicular to a 
plate. The flow is generated by the sawtooths with quadratic edges shear stress. 
The MHD flow involving such fluids has promising applications on the devel-
opment of energy generation MHD pumps. The boundary condition used is of 
interest as sound waves, light waves, and ocean waves travel like the form of 
sawtooth pulses. Study of sawtooth pulses flows is also important because of 
their increasing applications in aerospace science, astrophysics, atmospheric 
science, and physiological fluid dynamics as by Ghosh [18]. Moreover, a saw-
tooth wave has strong electromagnetic properties. A sawtooth pulse may be used 
in the detection of magnetic effect on electrically conducting flows of biological 
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fluids. Analytical expressions for the velocity field and the shear stresses are de-
termined by means of the Laplace transform, Fourier cosine, and sine trans-
forms. Finally, graphs are plotted using a numerical procedure for the inverse 
Laplace transform namely the Stehfest’s algorithm [19] to illustrate the influence 
of the parameters involved. 

2. Governing Equations 

We consider the unsteady flow of an incompressible generalized Burgers’ fluid at 
rest over an infinite flat plate in the ( ),x y -plane, and between two parallel side 
walls separated by a distance d apart, situated in the planes 0y =  and y d= . 
The z-axis is taken in the direction of flow. Initially, the system is at rest. At time 

0t += , the plate applies a pulsating shear to the fluid induced by sawtooth pulses 
with quadratic edges. 

If the fluid is at rest up to the moment 0t = , then 

( ) ( ) ( ), ,0
, ,0 0, , ,0 0.

S x y
V x y S x y

t
∂

= = =
∂

              (1) 

The velocity field V and stress S are of the form 

( ) ( ) ( )ˆ, , , , ,  , , ,V V x y t w x y t k S S x y t= = =              (2) 

and the meaningful governing equations are 

( )

( ) ( )

2

1 2 12

2

3 4 12

1 , ,

, ,
1 for , ,0 0.

x y t
t t

w x y t
x y

t xt

λ λ τ

µ λ λ τ

 ∂ ∂
+ + ∂ ∂ 

∂ ∂ ∂
= + + = ∂ ∂∂ 

        (3) 

( )

( ) ( )

2

1 2 22

2

3 4 22

1 , ,

, ,
1 for , ,0 0.

x y t
t t

w x y t
x y

t yt

λ λ τ

µ λ λ τ

 ∂ ∂
+ + ∂ ∂ 

∂ ∂ ∂
= + + = ∂ ∂∂ 

        (4) 

( )

( )

( ) ( )

2

1 2 2

2 2 2

3 4 2 2 2

2 2 2
0

1 2 3 42 2

, ,
1

1 , ,

1 , , 1 , , .

w x y t
t tt

w x y t
t t x y

w x y t w x y t
t k tt t

λ λ

υ λ λ

σβ υφ
λ λ λ λ

ρ

∂ ∂ ∂
+ + ∂ ∂∂ 
  ∂ ∂ ∂ ∂

= + + +  ∂ ∂ ∂ ∂  
   ∂ ∂ ∂ ∂

− + + − + +   ∂ ∂∂ ∂   

 (5) 

where λ1 and λ2 are the relaxation and the retardation times, λ3 and λ4 are the 
material constants, ( )1 , ,xzS x y tτ =  and ( )2 , ,yzS x y tτ =  are the nontrivial 
shear stresses, μ is dynamic viscosity, ν is kinematic viscosity, σ is electrical 
conductivity, β0 is strength of applied Magnetic field, ρ is density, ϕ is porosity of 
medium, and k permeability of the medium. 

We use the following appropriate initial conditions   

( ) ( ) ( )2

2

, ,0 , ,0
, ,0 0,

w x y w x y
w x y

t t
∂ ∂

= = =
∂ ∂

 for [ ]0, 0, ,x y d> ∈      (6) 
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the boundary conditions  

( )

( ) ( ) ( )

2

1 1 12
0

2

3 4 2
0

1 , ,

, ,
1 for 0, and 0,

x

x

x y t
t t

w x y t
Uf t y d t

t xt

λ λ τ

µ λ λ

=

=

 ∂ ∂
+ + ∂ ∂ 

∂ ∂ ∂
= + + = ∈ > ∂ ∂∂ 

    (7) 

( ) ( ),0, , , 0, for , 0,w x t w x d t x t= = >                   (8) 

and the natural conditions 

( ) ( ) [ ], ,
, , 0 as , 0, , 0.

w x y t
w x y t x y d t

x
∂

= → →∞ ∈ >
∂

        (9) 

Introducing the following nondimensional relations 

* * * * * * 1
12 2

2 2
* * *32 4
2 3 4 1 14 2 4

, , , , , ,

, , , ,xz xz

w x w z tw x y z t
U d d d d d

dS dS
U Ud d d

λυµ λ
ρ

λ υλ υ λ υ
λ λ λ τ τ

µ µ


= = = = = =




= = = = = 


       (10) 

Equations (3)-(5) in dimensionless form, after removing the sign *, become 

( )

( ) ( )

2

1 2 12

2

3 4 12

1 , ,

, ,
1 for , ,0 0

x y t
t t

w x y t
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        (11) 
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( ) ( )

2
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x y t
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+ + ∂ ∂∂ 
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  (13) 

where 
2 2
0 dσβ
ρυ

Ω =  is the dimensionless magnetic parameter and 
2d

k
φ

ε =  is 

the dimensionless porosity parameter. 
While the initial, boundary and natural conditions in dimensionless form be-

come 

( ) ( ) ( ) [ ]
2

2

, ,0 , ,0
, ,0 0, for 0,  0,1 ,

w x y w x y
w x y x y

t t
∂ ∂

= = = > ∈
∂ ∂

     (14) 

( )

( ) ( ) ( )

2
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0
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3 4 2
0

1 , ,

, ,
1  for 0,1 and 0,

x

x

x y t
t t

w x y t
f t y t

t xt

λ λ τ

λ λ

=

=
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    (15) 
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( ) ( ),0, ,1, 0 for , 0,w x t w x t x t= = >              (16) 

( ) ( ) [ ], ,
, , 0 as , 0, , 0.

w x y t
w x y t x y d t

x
∂

= → →∞ ∈ >
∂

        (17) 

According to the nature of the applied stress, we assume that the mathemati-
cal form of the function ( )f t  is 

( ) ( ) ( ) ( ) ( )22
2

1

1 2 1 ,p
pT

p
f t t H t t pT H t

T

∞

=

 
= + − − 

 
∑          (18) 

where ( )H ⋅  is defined as ( ) 0pTH t =  for t pT≤  and ( ) 1pTH t =  for 
t pT> . 

In order to solve the problem, we use the Laplace transform technique and 
Fourier cosine and sine transforms in this order. 

3. Calculation of the Velocity Field 

Applying the Laplace transform to Equation (13), we obtain the following prob-
lem 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2
1 2

2 2
2

3 4 2 2

2 2
1 2 3 4

1 , ,

1  , ,

1 , , 1 , , .

q q qw x y q

q q w x y q
x y

q q w x y q q q w x y q

λ λ

λ λ

λ λ ε λ λ

+ +

 ∂ ∂
= + + + 

∂ ∂ 

−Ω + + − + +

     (19) 

The Laplace transform ( ), ,w x y q  of the function ( ), ,w x y t  has to satisfy 
the conditions 

( ) ( ) ( ) ( )

( ) ( ) [ ]

2 2
1 2 1 3 40

0

2 3 3
1

, ,
1 , , 1

2 1 12 1 exp , for 0,1 .

x
x

p

p

w x y q
q q x y q q q

x

pTq y
T q q

λ λ τ λ λ
=

=

∞

=

∂
+ + = + +

∂

 
= + − − ∈ 

 
∑

     (20) 

( ) ( ),0, ,1, 0, for 0,w x q w x q x= = >               (21) 

( ) ( ) ( ), ,
, , 0 as , 0, .

w x y q
w x y q x y d

x
∂

= → →∞ ∈
∂

         (22) 

Multiplying both sides of Equation (19) by ( ) ( )2 cos sin
π nx yζ λ , where  

πn nλ = , integrating with respect to x and y from 0 to ∞ and 0 to 1 respectively, 
and bearing in mind the Equations (20)-(22), we find that 

( ) ( )

( )( ) ( )( ) ( )

( ) ( )

2

3 2 2 2 2 2 2 2
2 1 4 2 4 3 1 3

3
1

1 12 1, 2
π

1
1

1 1 2 1 exp

n

n
n

n n n

p

p

w q
T

q q q

pTq
q

ζ
λ

λ λ λ ζ λ λ λ ε λ ζ λ λ λ ε ζ λ ε

∞

=

− −
=

×
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 
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 
∑

 (23) 
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where 

( ) ( ) ( ) ( )
1

0 0

2,  , , cos sin d d ; 1,2,3, .
πn nw q w x y q x y y x nζ ζ λ

∞

= =∫ ∫   (24) 

Equation (23) can also be written as 

( ) ( )
( )

( )( ) ( )( ){ }
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( ) ) ( )( )} ( ) ( )

2
4,

3 2 2 2 2 2
2 1 4 2 4 3 1 3
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2 2
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1
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π

/ 1
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n

n
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λ ζ
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ζ λ ε ζ
∞

=
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= 
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(25) 

( ) ( )
( )

( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

( ) ( )

2
4,

3 2 2 2 2 2
2 1 4 2 4 3 1 3

2 1, 2, 3, 4,

3
1
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π

1
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n
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p

p
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q qT

q q q
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pTq
q

ζ
λ ζ
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λ ζ ζ ζ ζ

∞

=
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= 

+
+ + + + Ω + + + + Ω +
−
− − − +


 
× + − − 

 
∑

(26) 

Writing the above equation as 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( ) ( )

1, 2,
2

4, 2 1, 2,

3, 4,
3
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∞
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 (27) 

where 

( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1,
1,

1, 2, 1, 3, 1, 4,

n
n

n n n n n nq q q q q q
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ϕ ζ
ζ ζ ζ ζ ζ ζ

=
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( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

2,
2,

2, 1, 2, 3, 2, 4,

n
n
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n
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( ) 2 2
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( ) ( )
( )2 2
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( ) ( ) ( )( ) ( )

( )( ) ( )
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2 2
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In the above relations 
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1 3 .
2
iZ − +
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To solve Equation (27), we use the formula 

( )( )
( )( ) ( ) ( )
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2 2
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1
33
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1exp 11 2 .
n n n
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    (42) 

Inversion of Equation (26) by means of the Laplace transform and Fourier co-
sine and sine transforms, and using Equation (42), we obtain 
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The first part of Equation (43) gives solution for Newtonian fluid while the 
second part gives the corresponding non-Newtonian contribution. 

The transient part of velocity for  
( )( ) ( )( ) ( )( ) ( )( )1, 2, 3, 4,Re ,Re , Re 0, Re 0n n n nq q q qζ ζ ζ ζ< >  is 
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while the steady state part is given by 
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4. Calculation of Tangential Stresses 

To obtain the expressions for the shear stresses ( )1 , ,x y tτ  and ( )2 , ,x y tτ , ap-
plying the Laplace transform to Equations (11) and (12), we have the expressions 
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From Equation (26) with inverse Fourier cosine and sine transforms, we have  
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Using Equation (48) in Equation (47), we have 
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Writing Equation (51) under the following equivalent form  
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and 2
1 24 0λ λ− > . 

Applying the inverse Laplace transform to Equation (53), we obtain 
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Now Equation (52) can also be written as 
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Applying the inverse Laplace transform to Equation (56), we obtain 
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Using Equations (55) and (60) in Equation (61), we obtain 
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Inversion of Equations (49) and (50) by means of Laplace transform, using 
Equation (62) results in 
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the shear stresses for the generalized Burgers’ fluid. 
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5. Results and Discussion 

The present problem is concerned with an unsteady motion of generalized 
Burgers’ fluid generated from rest induced by sawtooth pluses stress. The sawt-
sooths are of the form with quadratic edges. Laplace transform technique along 
with Fourier cosine and sine transforms have been used as mathematical tools in 
this order. The obtained expression for the velocity field has been written as the 
sum of Newtonian and non Newtonian contributions. 

By using the numerical calculations and graphical illustrations, the following 
physical aspects of the fluid behavior have been analyzed. 

Figure 1 is plotted the variation in time of the exciting force given on the 
bottom plate. It is observed that, the exciting force is increasing if the time t in-
creases, but is decreasing with the parameter T. By choosing the parameter T, we 
can modify the intensity of the stress force on the plate. Figure 2 represents the 
graphs of velocity profile for three values of time t at different positions x = 0.1, 
0.6, 0.9 from the bottom plate for third harmonic verses y. It is seen that for 
small values of time t the differences between the velocities are large and these 
differences decrease rapidly for large values of time. It is also to be noted that the 
magnitude of pulse oscillations decrease far from the bottom plate and the time 
after which the transient part can be neglected is decreasing. Moreover, this fig-
ure also reveals that the velocity profiles are in the same phase during the entire 
motion.  

Figure 3 predicts the effect of magnetic field on the velocity profile verses y. 
From this figure, it is apparent that the effect of magnetic field is to enhance the 
velocity amplitudes. Figure 4 predicts the effect of pulse period on the velocity 
profile verses y. From this figure, it is apparent that the effect of pulse period  
 

 
Figure 1. Evolution in time of the exciting function f(t). 
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Figure 2. Velocity profiles for Generalized Burgers’ fluid for different values of t and x. 
Other parameters and values are taken as 1 2 3 45, 7, 0.1, 3, π 4 , 1.7Tλ λ λ λ= = = = = Ω = , 

0.3ε = . 
 
is opposite to that of magnetic field strength. Therefore, pulse period reduces the 
magnetic effect.  
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Figure 3. Velocity profiles for Generalized Burgers’ fluid for different values of Ω and t. 
Other parameters and values are taken as 1 2 3 45, 7, 0.1, 3, 4, 0.1T xλ λ λ λ= = = = = = , 

0.3ε = . 
 

In order to study the influence of various values of the material parameters λ1, 
λ2, λ3 and λ4, the diagrams of the velocity field from Figure 5 and Figure 6  
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Figure 4. Velocity profiles for Generalized Burgers’ fluid for different values of T and t. 
Other parameters and values are taken as 1 2 3 45, 7, 0.1, 3, 4, 0.2T xλ λ λ λ= = = = = = , 

0.1, 0.3εΩ = = . 
 
are plotted. In these figures, we used the numerical values x = 0.1, y = 0.1, T = 4, 
ε = 0.3, Ω = 0.1. 

https://doi.org/10.4236/jamp.2018.66106


Q. Sultan et al. 
 

 

DOI: 10.4236/jamp.2018.66106 1274 Journal of Applied Mathematics and Physics 
 

 
Figure 5. Velocity profiles for Generalized Burgers’ fluid for different values of 1λ  and

3λ . Other parameters and values are taken as 2 47, 3, 0.1, 0.1, 0.1y xλ λ= = = = Ω = , 
4, 0.3T ε= = . 

 
In Figure 5, the parameters λ1 and λ3 are variables and parameters λ2 and λ4 

are constant. It can be seen that, if the values of the parameter λ3 increase, the 
fluid flows more slowly. It can also be noted that for the same values of the pa-
rameter λ3, increasing of λ1 values result in decreasing velocity of fluid flow (the 
velocity amplitudes decrease if the values of λ1 increase). This figure also reveals  
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Figure 6. Velocity profiles for Generalized Burgers’ fluid for different values of 2λ  and 

4λ . Other parameters and values are taken as 1 33, 0.1, 0.1, 0.1, 0.1y xλ λ= = = = Ω = , 
4, 0.3T ε= = . 

 
that the velocity is a strong function of the Burgers’ fluid parameter λ3. Figure 6 
corresponds to the variation of the parameters λ2 and λ4.There is no significant 
effect in the early period of the motion. The difference appears in the behavior of 
the fluid velocity, when compared with λ3 that, velocity amplitudes increase if 
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the parameter λ2 increases. And in this case, for a constant value of the parame-
ter λ2, the increasing of λ4, it is clear that, the fluid flows more slowly. 

6. Conclusions 
Here we obtained analytical solutions for the magnetohydrodynamic flow of a 
generalized Burgers’ fluid between two parallel walls. The expressions for the 
velocity field and the corresponding tangential stresses induced by the sawtooth 
pulses stress are obtained by means of the Laplace and Fourier cosine and sine 
transforms in this order. The main findings are summarized as follows: 
 The amplitude of pulse oscillation of velocity profile reduces far from the 

bottom plate. 
 The magnitude of pulse oscillation of velocity profile increases from zero to 

maximum from the side walls till the middle of the channel. 
 There is a time interval in which the velocity is oscillatory and then the oscil-

lations of the velocity are attenuated. 
 As distance between the walls increases, the magnitude of pulse oscillation of 

velocity profile also increases initially and then the oscillations of the velocity 
are attenuated. 

 Increasing magnetic field and porosity of medium lead to increase the am-
plitude of pulse oscillation, while the effect of T on the velocity profile is op-
posite. 

 As t increases, the pulse oscillation of velocity profile also increases verses y. 
 As the values of the parameters λ1, λ3 and λ4 increase, the fluid flows more 

slowly whereas behavior of λ2 is opposite. 
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