
Journal of Applied Mathematics and Physics, 2018, 6, 1215-1229 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2018.66102  Jun. 14, 2018 1215 Journal of Applied Mathematics and Physics 

 

 
 
 

Revenue Optimization of Pipelines 
Construction and Operation Management 
Based on Quantum Genetic Algorithm and 
Simulated Annealing Algorithm 

Kang Tan  

Department of Civil engineering, Dalian University of Technology, Dalian, China  

 
 
 

Abstract 

For the optimization of pipelines, most researchers are mainly concerned with 
designing the most reasonable section to meet the requirements of strength 
and stiffness, and at the same time reduce the cost as much as possible. It is 
undeniable that they do achieve this goal by using the lowest cost in design 
phase to achieve maximum benefits. However, for pipelines, the cost and in-
comes of operation management are far greater than those in design phase. 
Therefore, the novelty of this paper is to propose an optimization model that 
considers the costs and incomes of the construction and operation phases, and 
combines them into one model. By comparing three optimization algorithms 
(genetic algorithm, quantum genetic algorithm and simulated annealing algo-
rithm), the same optimization problem is solved. Then the most suitable algo-
rithm is selected and the optimal solution is obtained, which provides refer-
ence for construction and operation management during the whole life cycle 
of pipelines.  
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1. Introduction 

The optimization of infrastructure has been studied by many researchers, focus-
ing mainly on the optimization during the design phase, but less on the optimi-
zation of pipelines operation and maintenance. Chirehdasta proposed a practical 
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approach for solving topology optimization problems of planar cross-sections. A 
problem formulation involving the use of continuous design variables is pre-
sented, and a standard nonlinear programming algorithm is used to solve the 
optimization problem [1]. Liu presented a section topology optimization tech-
nique based on an anisotropic beam theory considering warping of sections and 
coupling among deformations. In formulating the topology optimization prob-
lem, the minimum averaged compliance of the beam is taken as objective, and 
the material density of every element is used as design variable. The scheme is to 
determine the rigidity matrix of the cross sections and sensitivity analysis [2]. 
Ren proposed a new topology optimization design method for aircraft composite 
beam under various loads. To obtain better beam cross section, a multi-material 
optimization model including anisotropic and isotropic materials is employed. 
Topology design of composite beam cross section with weight constraint is pre-
sented for square and airfoil cross section under various loads. The results show 
that the proposed method is suitable for the optimization design of composite 
beam, and innovative structures could be given [3]. Jose presents a novel 
framework for simultaneous optimization of topology and laminate properties 
in structural design of laminated composite beam cross sections. The optimiza-
tion framework is based on a multi-material topology optimization model in 
which the design variables represent the amount of the given materials in the 
cross section. The numerical results suggest that the proposed framework is 
suitable for simultaneous optimization of cross section topology and identifica-
tion of optimal laminate properties in structural design of laminated composite 
beams [4]. 

Griffiths applied Genetic Algorithm (GA) to the problem of finding the opti-
mum cross-section of a beam, subjecting to various loading conditions. This re-
search attempts to explore the efficiency and effectiveness of GA, when applied 
to a difficult design task, without being unnecessarily constrained by preconcep-
tions of how to solve the task. The initial test case is the evolution of an optimal 
I-beam cross-section, subjecting to several load cases, starts with an initial ran-
dom population. It is shown that the methods developed lead to consistently 
good solutions, despite the complexity of the process [5]. Yoshimura proposed a 
cross-sectional shape generating method for achieving the cross-sectional prop-
erties assigned by design engineers. The cross-sectional shape-generating prob-
lem for pressed metal sheets is formulated as a multiobjective optimization 
problem that involves a marriage of continuous variables, such as shape dimen-
sions, and discrete design variables, such as types of material and their thick-
nesses. Genetic algorithms are applied to solve the optimization problem [6]. 
Fontan solves the design optimization problem of an incrementally launched 
prestressed concrete bridge during construction, searching simultaneously for 
the optimum cross section dimensions and the prestressing forces of the con-
crete deck, as well as the most adequate characteristics of the launching nose for 
the best economic solution. The results obtained with this innovative formula-
tion show the benefit of considering numerical optimization tools [7]. Guerra 
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presented a novel formulation aiming to achieve optimal design of reinforced 
concrete (RC) structures. The design procedures for RC structures that are typi-
cally adapted in practice begin by assuming initial stiffness for the structural 
skeleton elements [8].  

Cardoso performs optimal design of cross-section properties of thin-walled 
laminated composite beams. Design optimization is performed by nonlinear 
programming techniques. Laminate thickness and lamina orientations are con-
sidered as design variables [9]. Cantilever implemented Genetic Algorithm for 
solving the design optimization problem of Cantilever beam and Torsion rod. 
Cantilever beam and Torsion rod are used as structural elements in many Me-
chanical Engineering applications. The objective here is to design a cantilever 
beam and a Torsion rod for minimum weight in order to withstand the given 
working condition [10]. Liu described a second-order shape and cross-section 
optimization method of plane truss subjected to earthquake excitation. The in-
equality time-dependent constraint problem was converted into a sequence of 
appropriately formed unconstrained problems using the integral interior penalty 
function method. The results show that the new optimization method is an effi-
cient and effective approach for minimum weight design of truss structures [11]. 
To examine optimal topology of those structural bending members which com-
monly possess constant cross section along the axis the topology optimization 
with extrusion constraint is more appropriate. The extrusion constraint method 
suggests a fresh approach to investigate optimal topologies of beam cross section 
under the influence of realistic loading condition across the section at the begin-
ning of design cycle. Presented study is focused upon the influence of various 
configuration and location of the load and boundary [12]. Zhang developed a 
new method of discrete optimization for cross-section selection of truss struc-
tures. The proposed method is applied to several benchmark design examples, 
generating results with similar or improved accuracy compared to those from 
heuristic methods, showing significantly improved computational efficiency. 
The method is shown to be accurate and efficient, which would prove especially 
beneficial to large-scale problems [13]. 

According above review of past researches, most researchers are mainly con-
cerned with designing the most reasonable section to meet the requirements of 
strength and stiffness, and at the same time reduce the cost as much as possible. 
It is undeniable that they do achieve this goal by using the lowest cost in design 
phase to achieve maximum benefits. However, for pipelines, the cost and in-
comes of operation management are far greater than those in design phase. 
Therefore, the novelty of this paper is to propose an optimization model that 
considers the costs and incomes of the construction and operation phases, and 
combines them into one model. By comparing the three optimization algorithms 
(genetic algorithm, quantum genetic algorithm and simulated annealing algo-
rithm), the same optimization problem is solved. Then the most suitable algo-
rithm is selected and the optimal solution is obtained, which provides reference 
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for construction and operation management during the whole life cycle of pipe-
lines. 

2. Methodology 

The optimization of the construction and operation management for pipelines is 
to increase revenue and reduce expenditure so as to achieve the goals of profit 
maximization during life cycle period. Firstly, we should optimize the design of 
pipelines. The optimal design of pipelines is generally to optimize the thickness 
of pipeline and the ratio of reinforcement of pipelines in the conditions of the 
internal pressure and ground load to determine the most economical and best 
performance cross sections. Secondly, we should consider the incomes and costs 
during operation phase. The internal space of pipelines can be leased to pipeline 
companies for revenue. At the same time, expenses for operation and mainten-
ance will also be expended for the maintenance of pipelines. Finally, taking into 
account three factors (construction cost, lease income and operating cost), a 
simplified optimization model is established and the corresponding constraints 
are determined to obtain an optimal solution, thereby achieving the goal of prof-
it maximization of pipelines. 

In the design and construction phase of pipelines, two main factors are consi-
dered: one is the thickness, and the other is the ratio of reinforcement. For rein-
forced concrete pipelines, the two materials, steel and concrete, differ greatly in 
terms of prices. If the weight of pipe is the lightest, the designed cross-section 
will obviously have a small cross-section with high ratio of reinforcement. This 
design will lead to an increase in construction costs. Therefore, the construction 
cost can be used as an objective function. In the optimization design of pipelines, 
in order to simplify the objective function, only the cost of concrete and steel bar 
is counted. As for other factors such as machine and labor cost are not consi-
dered in the objective function. 

In operation and maintenance phase, two major factors are the incomes and 
costs of pipelines. But they are difficult to embody with quantitative function 
expressions and also affected by many other factors. In order to facilitate the 
calculation, the simplified model is used in this paper. The purpose of it is to 
embody the corresponding relationship between different variables. It is difficult 
to completely simulate and analyze the quantitative relationship among them. In 
general, the larger the diameter of the pipe is, the greater the thickness of the 
pipe is, and the greater the income is. In order to simplify the calculation, it is 
assumed that the benefit of the pipe is proportional to the thickness. The main 
cost of operation is the maintenance cost for the reason that pipe is damaged, 
which has a direct relationship with the ratio of reinforcement. If the reinforce-
ment ratio is high, pipe is not easily damaged. At the same time, the greater the 
thickness is, the larger the diameter is and the higher the operating cost is. To 
simplify the calculation, it is assumed that the operating cost is proportional to 
the thickness of the pipe and inversely proportional to the reinforcement ratio. 
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In summary, for a unit length of reinforced concrete pipe, the objective func-
tion and constraint conditions are 

( ) ( ) ( )2 2π 2πc s s

b o

Z C R X R C R a XY R X a XY

C X C X Y

γ = − + − − + + + −   
+ −

     (1) 

min maxT X T≤ ≤                         (2) 

min maxYρ ρ≤ ≤                        (3) 

X is the thickness of pipe, Y is the reinforcement ratio of pipe, Cc is the unit 
price of concrete, Cs is the unit price of steel bar,γs is the density of reinforce-
ment concrete, a is the thickness of concrete protection layer, R is the inner ra-
dius of pipe, and Cb is the operating incomes factor, Co is the operating expend-
itures factor. 

For a project case, it can be calculated by specific data. 

( ) ( )2500π 2 39000π 1.035 0.965

15000 20
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      (4) 

0.2 0.3X≤ ≤                         (5) 

0.004 0.025Y≤ ≤                       (6) 

3. Genetic Algorithm 

3.1. The Principle of Genetic Algorithm 

In computer science and operations research, a genetic algorithm (GA) is a me-
thod inspired by the process of natural selection that belongs to the larger class 
of evolutionary algorithms (EA). Genetic algorithms are commonly used to gen-
erate high-quality solutions to optimization and search problems by relying on 
bio-inspired operators such as mutation, crossover and selection [14] [15]. In a 
genetic algorithm, a population of candidate solutions (called individuals, crea-
tures, or phenotypes) to an optimization problem is evolved to better solutions. 
Each candidate solution has a set of properties (its chromosomes or genotype) 
which can be mutated and altered. Traditionally, solutions are represented in 
binary as strings, but other encodings are also possible. An implementation of a 
genetic algorithm begins with a population of typically random chromosomes. 
Then evaluates these structures and allocates reproductive opportunities in a 
way that those chromosomes which represent a better solution to the target 
problem are given more chances to reproduce than those chromosomes which 
are poorer solutions. The “goodness” of a solution is typically defined with re-
spect to the current population [16] [17].  

The evolution usually starts from a population of randomly generated indi-
viduals, and is an iterative process with the population of iteration called a gen-
eration. In each generation, the fitness of every individual in the population is 
evaluated. The fitness is usually the value of the objective function in the opti-
mization problem being solved. The more fit individuals are stochastically se-
lected from the current population, and each individual’s genome is modified 
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(recombined and possibly randomly mutated) to form a new generation. The 
new generation of candidate solutions is then used in the next iteration of the 
algorithm. Commonly, the algorithm terminates when either a maximum num-
ber of generations has been produced, or a satisfactory fitness level has been 
reached. 

3.2. The Process of Genetic Algorithm 

The first step of genetic algorithm is population initialization. Since the genetic 
algorithm cannot directly deal with the parameters of problem, the feasible solu-
tion to the problem to be solved must be represented as a chromosome or an in-
dividual in the genetic space through coding. Common coding methods are grey 
coding, real coding, and structural coding. The real number coding does not 
have to be converted numerically, and the genetic algorithm operation can be 
performed directly on the expression of the solution. This article uses real cod-
ing to define each chromosome as a real variable. Secondly, the fitness function 
is a criterion to distinguish individual good from bad in a group, and is the only 
basis for natural selection. Generally, it is obtained by transforming an objective 
function. This article is to find the maximum value of the function as the indi-
vidual fitness value. The larger the value of individual function is, the better the 
fitness is. Thirdly, the selection operation is to select a good individual from the 
old group with a certain probability to form a new group to multiply next gener-
ation of individuals. The probability that the individual is selected is related to 
the fitness value. The higher the individual fitness is, the greater the probability 
of being selected is. There are various methods for selecting the genetic algo-
rithm, such as roulette method and competition game method. In this paper, the 
roulette method is adopted. Fourthly, cross operation refers to randomly select-
ing two individuals from population and transferring excellent genetic characte-
ristics to substrings through the exchange combination of two chromosomes to 
generate new excellent individuals. Since individuals use real numbers, the cros-
sover method uses real number crossover method. Finally, the last step of genet-
ic algorithm is mutation operation. The purpose of the mutation operation is to 
maintain the diversity of the population. The mutation operation randomly se-
lects one individual from the population and selects individual to mutate to 
produce a better individual. 

3.3. The Results of Genetic Algorithm 

When using genetic algorithms, the four parameters are mainly considered to 
influence the optimization result. The four parameters are generations, popula-
tion, cross possibility and mutation possibility. In order to study the influence of 
a certain factor on the optimization performance, the interference of other va-
riables should be excluded. 

Generations is a very important factor and has a great influence on the per-
formance of optimization. From the first graph of Figure 1, we can see that, with 
other factors unchanged, as the value of generations increases, the value of X will  
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Figure 1. The effects of generations on genetic algorithm. 
 
continue to increase. Although the value will fluctuate in this process, but the 
general trend is that the value of generations is positively related to X. From the 
second graph of Figure 1, the value of Y decreases as the value of generations 
increases. The first half of the curve falls faster, and the latter half declines slow-
ly, gradually tends to a fixed value. From the third graph of Figure 1, we can see 
that the value of Z increases with the value of generations, indicating that in or-
der to get optimal solution, you can increase the value of generations. In this 
way, the entire profit can be maximized. 

From the first graph of Figure 2, we can see that with the increase of the pop-
ulation, the value of X keeps falling, and the downward trend is obvious, but 
there is a small fluctuation in the beginning part. From the second graph of Fig-
ure 2, it can be seen that as the value of population increases, the value of Y 
keeps stable at the beginning and gradually increases. The third graph of Figure 
2 shows that the shape of the curve is similar to the first graph. Similarly, there is 
a small fluctuation in the beginning. At this time, the value of Z does not de-
crease significantly, and then the value of Z declines fast, indicating that with the 
increase of the value of population, the value of Z will decrease. Because this ar-
ticle seeks the maximum benefit, it means that it will constantly deviate from the 
optimal solution. Therefore, in order to obtain an optimal solution and obtain 
maximum benefits during pipeline construction and operation, the value of 
population should be appropriately reduced. 

As can be seen from the first graph of Figure 3, as the cross possibility in-
creases, the value of X will continue to increase, but there will be some fluctua-
tions in some positions. As can be seen from the second graph of Figure 3, with 
the increase of cross possibility, the value of Y will continue to decrease. Al-
though there will be some minor fluctuations, the overall downward trend of the 
curve at that time is still obvious. As can be seen from the third graph of Figure 
3, as the cross possibility increases, the value of Z continues to increase, indicat-
ing that increasing the value of cross possibility can make the current value close 
to the optimal solution. However, compared to other factors, adjusting the value 
of cross possibility dose not bring significant effect to increase the value of Z and 
overall profit. 

From the first graph of Figure 4, with the increase of mutation possibility, the 
value of X decreases very quickly at the beginning, which means that the value of 
mutation possibility has a greater influence on X, which continues to increase 
with mutation possibility. The value of X constantly fluctuates, but it is clear that  
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Figure 2. The effects of population on genetic algorithm. 
 

 
Figure 3. The effects of cross possibility on genetic algorithm. 
 

 
Figure 4. The effects of mutation possibility on genetic algorithm. 
 
the value of X still shows a decreasing trend. From the second graph of Figure 4, 
it can be seen that with the increase of mutation possibility, the value of Y de-
creases sharply, but in the subsequent part, Y gradually tend to be flattened. 
Combined with the first and second graphs, it can be seen that the increase of 
mutation possibility causes X and Y to decrease at the same time. From the third 
graph of Figure 4, it can be seen that with the increase of mutation possibility, Z 
keeps dropping, but there will be some fluctuations in multiple points, and the 
solution obtained will gradually deviate from the optimal solution. In order to 
get the best solution and get the maximum benefit, we should try to control the 
value of mutation possibility, making it within a reasonable range. 

4. Quantum Genetic Algorithm 

4.1. The Principle of Quantum Genetic Algorithm 

Quantum algorithm is based on the concepts of qubits and superposition of 
states of quantum mechanics. The smallest unit of information stored in a 
two-state quantum computer is called a quantum bit or qubit. A qubit may be in 
the “1” state, in the “0” state, or in any superposition of the two. If there is a sys-
tem of m-qubits, the system can represent 2m states at the same time. However, 
in the act of observing a quantum state, it collapses to a single state [18]. Genetic 
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quantum algorithm are a combination between GA and quantum computing. 
They are mainly based on qubits and states superposition of quantum mechan-
ics. Unlike the classical representation of chromosomes (binary string for in-
stance), here they are represented by vectors of qubits (quantum register). Thus, 
a chromosome can represent the superposition of all possible states [19]. Genes 
are modelled upon the concept of qubits, which brings an additional element of 
randomness and a “new dimension” into the algorithm. The qubit is a basic unit 
of quantum information. It is a normalised vector in two dimensional vector 
space spanned by the base vectors 0 and 1. With some simplifications (imaginary 
part omitted) a state of qubit can be illustrated by a normalized vector on the 
two-dimensional space. In the beginning of the algorithm the genes of all indi-
viduals in the quantum population are initialized with linear superposition. The 
evaluation of individual’s fitness in the algorithm is performed by observation. 
In this step the search space is sampled with respect to the probability distribu-
tions encoded by quantum individuals. The genetic operators applied in the al-
gorithm are based on quantum rotation gates, which rotate state vectors in the 
quantum gene state space [20]. 

4.2. The Process of Quantum Genetic Algorithm 

In order to overcome the shortcomings of the genetic algorithm, such as slow 
convergence and unstable calculation result, the traditional genetic algorithm 
can be optimized by the quantum algorithm. The optimized genetic algorithm 
will be more accurate in finding the optimal solution. Firstly, initialize the pop-
ulation and randomly generate n chromosomes encoded with qubits. Using the 
binary coding in the genetic algorithm, the problem of polymorphism is qu-
bit-coded. For example, two states are coded with one qubit and four states are 
coded with two qubits. The advantage of this method is that it is simple to im-
plement. Secondly, measure each individual in the initial population to obtain 
the corresponding deterministic solution and evaluate the fitness to obtain the 
optimal individual and the corresponding fitness. Thirdly, it can be judged 
whether the calculation process can be ended or not. If the conditions are satis-
fied, the calculation exits; otherwise, the calculation continues. Furthermore, 
measurement and fitness evaluation are performed on each individual in the 
population to obtain a corresponding definite solution. The individual is ad-
justed by using the quantum revolving door to obtain a new population. The 
above steps are repeated in this order to obtain the best individual and the cor-
responding fitness. 

From the first graph of Figure 5, as generations increases, the value of X rises 
sharply and then gradually converges to 0.3, indicating that 0.3 is the optimal 
solution of X and the optimal value of X can be obtained as long as the value of 
generations increases. From the second graph of Figure 5, it can be seen that 
with the increase of generations, the value of Y decreases sharply. In this process, 
there will be some fluctuations, but the downward trend is obvious, and then Y 
gradually becomes stable and gradually converges to approximately 0.0084.  
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Figure 5. The effects of generations on quantum genetic algorithm. 
 
From the third graph of Figure 5, it can be seen that the value of Z increases 
with the generations in the first half of the curve. Due to errors and other factors 
of operation, there will be some fluctuations. However, the value of Z gradually 
becomes stable and converges to 1992.64. At this time, the optimal solution to 
this optimization problem is obtained and the maximum benefit will be obtained 
at this time. 

From the first graph of Figure 6, we can see that as the value of population 
increases, the value of X does not change significantly, and the form of the curve 
seems to be a straight line, indicating that population does not have much influ-
ence on the value of X. As can be seen from the second graph of Figure 6, al-
though there are fluctuations in the graph, the change of value is small, and it 
can be considered that there is not much correlation between Y and population. 
From the third graph of Figure 6, we can see that if we only observe from the 
curve, we will find that with the increase of the population value, the value of Z 
in the first half will rise sharply, and then gradually converge to the optimal so-
lution. But if only measured by the magnitude of the value, it can be seen that 
there is not much change in the value of Z, indicating that the value of popula-
tion does not have much influence on the parameter of optimization. 

From the first graph of Figure 7, it can be seen that as the binary length of the 
variable increases, the value of X hardly changes. According to the previous re-
sult, it can be seen that X converges to optimal resolution. From the second 
graph of Figure 7, it can be seen that as the binary length of the variables in-
creases, the value of Y increases sharply at the beginning and gradually con-
verges to a certain value after a short period of fluctuation. From the third graph 
of Figure 7, it can be seen that as the binary length of the variable increases, Z 
increases. The value of the rapid increase in the first half part, and then tends to 
be stable, indicating that by increasing the binary length of the variables, we can 
obtain optimal solution to get the maximum benefit. 

5. Simulated Annealing Algorithm 

5.1. The Principle of Simulated Annealing Algorithm 

Simulated annealing is an approach developed by Kirkpatrick that attempts to 
avoid entrapment in poor local optima by allowing occasional uphill movement. 
It never moves to a new solution unless the direction is downhill in order to get 
better value. This is done under the influence of a random number generator  
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Figure 6. The effects of population on quantum genetic algorithm. 
 

 
Figure 7. The effects of the length of variables on quantum genetic algorithm. 
 
and a control parameter called temperature. As typically implemented, the si-
mulated annealing approach involves a pair of nested loops and two additional 
parameters, a cooling ratio and an integer temperature length. The probability 
that an uphill move of size will be accepted diminishes as the temperature de-
clines, and for a fixed temperature, small uphill moves have higher probabilities 
of acceptance than large ones. This particular method of operation is motivated 
by a physical analogy, best described in terms of the physics of crystal growth 
[21]. Note that simulated annealing first builds up a rough view of the surface by 
moving with large step lengths. As the temperature falls and the step length de-
creases, it slowly focuses on the most promising area. In this way, the algorithm 
can escape from local maxima through downhill moves. Eventually, the algo-
rithm should converge to the function’s global maximum [22]. 

5.2. The Process of Simulated Annealing Algorithm 

For simulated annealing algorithm (SA), temperature is an important parameter 
that gradually decreases with the iteration of the algorithm to simulate the cool-
ing process during solid annealing. On one hand, the temperature is used to lim-
it the distance between new solution generated by the SA and current solution, 
that is, the search range of the SA. On the other hand, the temperature deter-
mines how strongly the SA receives the value of the objective function than the 
current value of objective function. The annealing schedule refers to the de-
creasing speed of the temperature as the algorithm iterates. The slower the an-
nealing process is, the greater the chance that SA finds the global optimal solu-
tion will be, but the running time will also increase. The main parameters in-
cluded in the annealing schedule include parameters such as initial temperature 
and temperature update function. Another important criterion is the probability 
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that the SA accepts the new solution. For the optimization of objective function, 
the probability that SA accepts new solution is based on principle. After that, 
determine the relationship between current solution and new solution, and de-
termine the relationship between the two based on the equations in order to de-
termine whether the new solution should be accepted or rejected. Repeating the 
following process can see that the temperature at the beginning is very high, and 
the probability that the SA accepts poor solutions is relatively high. This gives 
SA a greater chance of jumping out of local optimal solution. As the temperature 
gradually decreases, the probability of SA receiving a poor solution becomes 
smaller. 

5.3. The Results of Simulated Annealing Algorithm 

Simulated annealing algorithm is an important optimization method. The main 
factors affecting this algorithm are the number of iterations, max stall iterations, 
initial temperature, and anneal interval. This article discusses the influence of 
these four factors on optimization results, focusing on analyzing the influence of 
these factors on X, Y, and Z, and then determining the maximum benefit of 
pipelines. 

From the first graph of Figure 8, we can see that with the increase of the 
number of iterations, the trend of X increases, but there will be some fluctua-
tions, and finally converge to a stable value. Compared with the previous results, 
at this time, the value of X will reach optimal solution. From the second graph of 
Figure 8, it can be seen that in initial stage, the value of Y fluctuates greatly, but 
gradually stabilizes to a certain value as the number of iterations continue to in-
crease. The values are verified that Y will converge to the optimal solution. From 
the third graph of Figure 8, it can be seen from the overall trend of the curve 
that as the number of iterations increases, the value of Z fluctuates in the first 
half part and then turns to a certain stable value, indicating that by increasing 
the number of iterations can obtain the optimal solution and the maximum ben-
efits. 

From the first graph of Figure 9, it can be seen that as the max stall iterations 
increase, the value of X rises sharply at first and then gradually becomes stable. 
From the second graph of Figure 9, it can be seen that with the increase of max 
stall iterations, the value of Y decreases rapidly at the initial stage and then tends 
to optimal solution. From the third graph of Figure 9, it can be seen that with  
 

 
Figure 8. The effects of the number of iterations on simulated annealing. 

https://doi.org/10.4236/jamp.2018.66102


K. Tan 
 

 

DOI: 10.4236/jamp.2018.66102 1227 Journal of Applied Mathematics and Physics 

 

 
Figure 9. The effects of max stall iterations on simulated annealing. 
 
the increase of max stall iterations, the value of Z rises rapidly in the initial stage 
and then tends to be stable. The optimal solution to the convergence shows that 
the maximum value can be obtained by increasing max stall iterations in order 
to obtain maximum benefits. 

Another two factors that affect simulated annealing algorithm are initial tem-
perature and annealing interval. After determining the number of iterations and 
max stall iterations, different values of effects on the values of X, Y, and Z were 
compared and analyzed. After the analysis is completed, it can be seen that these 
two factors do not have much influence on the optimization performance. 
Therefore, if you want to get the best solution and get the maximum benefits, 
you mainly need to determine the first two factors. 

6. Conclusion 

This paper first analyzes the influence of each parameter to three optimization 
algorithms through their optimization performance, and then compares the ad-
vantages and disadvantages of them. Finally, it aims at the optimization of con-
struction and operation management of pipelines. For genetic algorithms, there 
are many parameters that need to be optimized and the values of different para-
meters have great influence on the result of the optimization. The stability of 
genetic algorithms is not very good, and the results of each running have differ-
ences. The curve has small fluctuations, but it can reflect the corresponding rela-
tionship between each variable and parameter. At the same time, if the method 
of selection, crossover, and mutation is improper, it will cause many iterations, 
slow convergence, and fall into local extremes. At the same time, it runs for a 
long time, and the difference and fluctuation of the results are great. In order to 
overcome these drawbacks, this paper uses an improved genetic algorithm, that 
is, quantum genetic algorithm, which is a genetic algorithm based on the prin-
ciple of quantum computing. The quantum state vector expression is introduced 
into genetic coding, and the probability of the quantum bit representation is ap-
plied to the coding of chromosomes, so that one chromosome can express the 
superposition of multiple states, and the quantum logic gate is used to realize the 
evolution of the chromosome so as to realize the objective optimization. From 
the experimental results of this paper, it can be seen that the quantum genetic 
algorithm is obviously superior to the traditional genetic algorithm and can 
converge to the optimal solution more quickly. However, there are still many 
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parameters that need to be optimized in the quantum genetic algorithm. For this 
reason, this paper continues to apply simulated annealing algorithm to solve the 
optimization problem. It can be found that compared with the quantum genetic 
algorithm, the simulated annealing algorithm needs to determine fewer parame-
ters, and it is not easy to fall into local extremes, and the performance is more 
stable. Therefore, this paper recommends simulated annealing algorithm to op-
timize the construction and operation management of pipelines in order to ob-
tain maximum profits. 
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