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Abstract 
In previous papers, the author considered the model of anomalous diffusion, 
defined by stable random process on an interval with reflecting edges. Esti-
mates of the rate convergence of this process distribution to a uniform distri-
bution are constructed. However, recent physical studies require considera-
tion of models of diffusion, defined not only by stable random process with 
independent increments but multivariate fractional Brownian motion with 
dependent increments. This task requires the development of special mathe-
matical techniques evaluation of the rate of convergence of the distribution of 
multivariate Brownian motion in a segment with reflecting boundaries to the 
limit. In the present work, this technology is developed and a power estimate 
of the rate of convergence to the limiting uniform distribution is built. 
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1. Introduction 

In recent years, fractional Brownian motion has experienced significant growth 
in the applied problems of physics [1] [2] [3] [4] in connection with the 
necessity of modelling chaotic behaviour of the diffusing impurity in a variety of 
environments and alloys. Therefore there is a need to analyse the speed of 
mixing of impurities (convergence to the uniform distribution) in areas with 
reflecting boundaries, which cannot be obtained by the method of Fourier series. 

Algorithm of constructing of such estimates was described in [5] for 
one-dimensional case and was based on the method of analysis of anomalous 
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diffusion [6], simulating stable random process with independent increments. It 
is based on reflection formula for the density of the anomalous diffusion process. 
However, in recent years, there have been a lot of physical researches, in which 
models of fractional Brownian motions are used. 

Therefore, in the present work the algorithm of the corresponding estimates 
for the fractional Brownian motion on interval with reflecting edges is 
constructed. This algorithm is based on a calculation of a derivative of series 
which is describing density of fractional Brownian motion distribution [7]. 

2. Preliminaries 

Let ( ) , 0y t t ≥  is a random process with a fixed initial value ( )0 0y = . 
Consider random process ( )Y t  comparable to ( )y t  but reflected at the ends 
of the segment [ ]0,1  in the following way. 

Construction of random process reflected on interval [0, 1]  
The one-dimensional process ( ) , 0y y t t= ≥  is mapped to the reflected 

(from the boundaries of the segment [ ]0,1  random process ( ) ( )( )( )Y t g s y t= , 
where the functions [ )1: 0, 2s E → , [ ) [ ]: 0, 2 0,1g →  are defined by the 
equalities ( ) ( ) 2s u u mod= , ( ) , 0 1g u u u= ≤ ≤ , ( ) 2 ,1 2g u u u= − < < , [5]. 
Here { } , 0u mod A A u A A= > ; { }z —the fractional part of a real number z. 

Reflection formula for random process with symmetric density 
Let ( )t tf f u=  is a distribution density of a random variable (r.v.) ( )Y t . 

Then by the formula ( ) ( )( )( )Y t g s y t=  we have:  

( ) ( ) ( )( ) [ ]2 2 1 2 , 0,1 ,t t t
k k

f u p u k p u k u
∞ ∞

=−∞ =−∞

= − + − + − ∈∑ ∑  

( ) [ ]0, 0,1tf u u= ∉ . If for each 0t >  the density ( )tp u  is symmetric in 
( ) ( ): t tu p u p u= − , then for [ ]0,1u∈   

( ) ( ) ( )( ) ( )2 2 1 ,t t t t
k k k

f u p u k p u k p u k
∞ ∞ ∞

=−∞ =−∞ =−∞

= − + − − + = −∑ ∑ ∑
      

(1) 

( ) [ ]0, 0,1tf u u= ∉ . 

It is interesting to note that the formula (1), giving the distribution of the 
reflected diffusion process, is very similar by its structure to the formula 
obtained by reflection ([8], Chapter III, 13, paragraphs 5, 6) and gives the 
solution of the wave equation for a finite string with fixed ends. 

Reflection formula for random process with periodic initial conditions 
Define ( )tf u a−  the density of distribution of random process ( )y t a+  

reflected from the ends of the segment [ ]0,1 , 0 1a≤ ≤ . Let S is a random 
variable, uniformly distributed on the set ( ){ }0,1 , , 1n n n− , and random 
variable S and random process ( )y t  are independent. We introduce the 
function ( ) ( ) ,0 1t tF u f u S u= − ≤ ≤ , then  

( ) ( ) ( )

( )

1 1

0 0

1 1

1 .

− − ∞

= = =−∞
∞

=−∞

= − = − −

= −

∑ ∑ ∑

∑

n n

t t t
s s k

t
k

F u f u s n p u k s n
n n

p u k n
n            

(2) 
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Because of Formula (2) the function ( )tF u  possesses following properties:  

( ) ( )1 , 0 1 1 ,t tF u F u n u n= + ≤ ≤ −  

( ) ( )( )1 , 0 1.t t
k

F u n p u k n u
n

∞

=−∞

= − ≤ ≤∑
               

(3) 

The first equality in (3) means that the function ( )tF u  consists of n periods 
of length 1/n on the interval [ ]0,1 . The second equality in (3) means that on the 
interval [ ]0,1 n  the function ( )tF u  characterizes the distribution density of a 
random process ( )ny t  reflected from the ends of the segment [ ]0,1 n . 

In turn, the function ( )1 2tF u n−  characterizes the distribution density of a 
random process ( ) ˆ 1 2y t s n+ +  with an initial condition ˆ 1 2s n+ , which has a 
uniform distribution on the set of points ( )1 2 ,3 2 , , 2 1 2n n n n−  and is 
independent with random process ( )y t . 

Self-similar stochastic processes with reflection and periodic initial 
conditions 

Let the random process ( )y t  is self-similar of order a [9], i.e. for every 0t ≥  
the random variables ( ) ( )1 ,ay t r ry t−  coincides in distribution:  

( ) ( )1 .day t r ry t− =  

In terms of the density distribution this relation looks like  

( ) ( )1 .at t r
p ur p u−=

                      
(4) 

We now turn to the calculation of the function ( )tF u n  assuming that self- 
similar random process ( )y t  has a symmetric density ( )tp u :  

( ) ( )( )

( ) ( )1 1

1

, 0 1.a a

t t
k

t n t n
k

F u n p u k n
n

p u k f u u

∞

=−∞

∞

=−∞

= −

= − = ≤ ≤

∑

∑
 

Hence in particular it follows the equality  

( ) ( )11 2 1 2 , 0 1.at t n
F u n n f u u−− = − ≤ ≤

             
(5) 

Then from Formulas (3), (5) we get the equality  

( ) ( )11 2 1 2 .at tn
F u n f u− = −

                   
(6) 

Multidimensional random process with independent components 
For simplicity of notation all future constructions without loss of generality, 

we spend for the flat case 2m = . Consider a two-dimensional random process 
with independent components of ( ) ( ) ( )( )1 2y t y t y t=

 , having symmetric and 
self-similar density distribution of order a. Construct a process ( )Y t



 with 
reflections from the boundaries of the square [ ]20,1  using the obvious 
equalities:  

( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )( )1 2 1 1 2 2, , , .Y t Y t Y t Y t g s y t Y t g s y t= = =


 

In this case equalities ( ) ( ) ( )1 2 1 2,t t tp u u p u p u=  are true and so  
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( ) ( ) ( )( )( )
( )( )

( ) ( )( )
( ) ( )

1 2

1 2 1 1 2 2 1 1 2 2
,

1 1 2 2

1 1 2 2

1 2

, 2 , 2 2 1 2 , 2

2 ,2 1 2

2 1 2 ,2 1 2

.

t t t
k k

t

t

t t

f u u p u k u k p u k u k

p u k u k

p u k u k

f u f u

∞

=−∞

= − − + − + − −

+ − − + −

+ − + − − + − 
=

∑

 

Let ( )1 2,s s=s  is a random vector, uniformly distributed on the set of 
numbers ( ){ }1 2 1 2, , , 0, , 1p p n p p n= = − , and independent random vector 
s  and a random process ( )y t . We introduce the function ( ) ( ) ,t tF u f u s= −

  

[ ]20,1u ∈ , then  

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

1 2

1 2

1 2

2 2

2
,

1 1 2 2 1 2

1 1

1

1 1 .

t t t
i i k k

t
k k

t t t t
k k

F u f u s p u k i
n n

p u k n
n

p u k n p u k n F u F u
n n

∞ ∞

∈ ∈ =−∞ =−∞

∞

=−∞

∞ ∞

=−∞ =−∞

= − = − −

= −

= − − =

∑ ∑ ∑ ∑

∑

∑ ∑

 





   





 

     

(7) 

Because of the equality (7) the function ( )tF u  has the following properties:  

( ) ( ) [ ]2, 0,1 , ,t tF u F u i u n i= + ∈ ∈
 

  

  

( ) ( )( ) [ ]
1 2

2
2

,

1 , 0,1 .t t
k k

F u n p u k n u
n

∞

=−∞

= − ∈∑


    

Let ( ) ( ) ( )( )1 2,f u f u f u=
 , then from Formula (7) it is easy to obtain the 

equality  

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 2 2 1 2 2

2 1 1 .
t t t t

t

F u f u F u f u F u f u f u F u f u

f u F u f u

− = − − + −

+ −

 

 

For a function ( )uϕ  defined on the interval [ ]0,1 , we introduce the norm 
( ) [ ]{ }sup , 0,1u uϕ ϕ= ∈ . A similar norm is introduced for a function ( )uϕ  , 

defined on the square [ ]20,1 . Let ( ) ( ) ( )n tt F u f u∆ = − , then the following 
inequality holds  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )
( ) ( )

1 1 2 2

2 1 1 1 2 2

2
1 2

2 2 0, .

t t t

t t

n n

n n

F u f u F u f u F u f u

f u F u f u f u F u f u

t f u f u t

t t t

− ≤ − −

+ − + −

≤ ∆ + + ∆

= ∆ + ∆ → →∞

 

    

(8) 

3. Examples of Random Processes Anomalous Diffusion 

Anomalous diffusion 
Let ( ) , 0y t t ≥ —homogeneous random process with independent increments, 
( )0 0y = . The difference ( ) ( ) , 0y t y tτ τ− > ≥  is symmetric on ( ),−∞ ∞  

stable distribution with parameter ,1 2a a<  and the characteristic function 
( ) ( )( ) ( )( )1exp exp aM iu y t y t uτ τ− = − −   . 

Process ( ) , 0y t t ≥  is describing in [10] anomalous diffusion on an infinite 
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straight line. From this definition it follows that this process satisfing equality (4) 
is self-similar and therefore satisfies the equality (6). 

Introduce on [ )0,2  the binary operation “⊕ ”, the unary operation of taking 
inverse element “ ”: ( )u v s u v⊕ = + , ( )u s u= − , [ ), 0, 2u v∈ . It is easy to 
check that so defined on [ )0,2  operations generate commutative group C in 
addition ⊕  with the identity element 0 and the inverse u element of u . It is 
obvious that the mapping 1:s E C→  is a homomorphism of the additive group 
of real numbers 1E  on the group C, i.e. the fair equalities ( )s u v+ =

( ) ( )s u s v⊕ , ( ) ( )s u s u− = . 
Therefore, when 0 t t τ< < +  we have  
( )( ) ( )( ) ( ) ( )( )s y t s y t s y t y tτ τ + = ⊕ + −  . Consequently, the random process 
( )( ) , 0s y t t ≥  with independent and homogeneous increments and the 

distribution density ( )tP u  is a homogeneous Markov with values in the group 
C, and with the density of the conditional distribution  

( ) ( )( )( ) ( )( ) ( ) ( )( )( ), ,q u v p s y t v s y t u p s y t y t v uτ τ τ= + = = = + − = −  

0 , 2u v≤ < , hence the equality  

( ) ( ), , , 0 , 0 , 2q u v q v u u vτ τ τ= < ≤ <                 (9) 

is true. Denote ( ){ }inf , , 0 , 2Q q u v u vτ τ= ≤ < , then  

( ) ( ) ( )2 2 2

0 0 0
1 , d 0, d 0, d 2 0q u v v q v u v q v v Qτ τ τ τ= = − = ≥ >∫ ∫ ∫  

and so  

0 12, 0.Qτ τ< ≤ >                       (10) 

From equality (9), it follows that  

( ) ( )2 2

0 0

1 1 1, d , d .
2 2 2

q u v v q v u vτ τ= =∫ ∫  

Let ( ) ( ),P u f u  densities of uniform distributions on the intervals 
[ ] [ ]0,2 , 0,1 , respectively.  

Lemma 1. For an arbitrary 1t ≥   

( ) ( ) ( ) ( ) ( ) [ ]1
1 12 1 2 , .k

tf u f u Q P u P u k t h−− ≤ − − =
       

(11) 

Proof. Assuming ( ) ( ), , 0q u v q u v Qτ τ τ∆ = − ≥  and using Formula (10) we 
obtain for 0 2u≤ < :  

( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2 2

0 0

2 2

0 0

sup , d , d , 0 2

sup , d , d , 0 2 ,

t

t

t

P u P u

P v q v u v P u q v u v u

P v q v u v P v q v u v u

τ

τ τ

τ τ

+ −

= − ≤ <

= ∆ − ∆ ≤ <

∫ ∫

∫ ∫

 

that is for , 0t τ ≥   

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

2

0
sup , d , 0 2

1 2 .

t tP u P u P u P u q v u v u

P u P u Q

τ τ

τ τ

+ − ≤ − ∆ ≤ <

= − −

∫

    

(12) 
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With the help of Formulas (10), (12) it is easy to obtain that  

( ) ( ) ( ) ( ) ( ) [ ]1
1 11 2 , .k

tP u P u Q P u P u k t−− ≤ − − =
         

(13) 

From Formulas (1), (13) follows the inequality (11). Lemma 2 is proved. 
So we obtain geometric by t convergence rate of the density ( )tf u  to the 

density of the uniform distribution ( )f u  with t →∞ . Moreover, due to (6) 
with 1 ,ak tn t = →∞    

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 12 1 2 0.
qtn

t nF u f u Q P u P u t
 − − ≤ − − = ∆ →

     
(14) 

Hence when we have n-periodic initial conditions, the characteristic time 
mixing with anomalous diffusion is reduced to 1 an  times. 

Fractional Brownian motion 
Let ( ) , 0y t t ≥  is a fractional Brownian motion [11]. Fractional Brownian 

motion with Hurst parameter a is Gaussian process with zero mean and 
covariance function  

( ) ( ) ( ) ( )
2

2 2 2, | , , 0, 0 0.
2

a a a
aB t s My t y s t s t s t s yσ  = = + − − ≥ =   

The process of fractional Brownian motion ( ) , 0y t t ≥  satisfies the condition 
of self-similarity (4) and has a symmetric density distributions of ( )tp u . Using 
the process ( )y t  we define reflected from the cut ends [ ]0,1 , the process 
( ) , 0Y t t ≥  by the equation ( ) ( )( )( )Y t g s y t= .  
Lemma 2. When 1 1, 18 2πah t Cσ= < =  the following relation is valid:  

( ) 3

0 1
0, .sup t

u

f u
Ch t

u
ε

≤ ≤

∂
≤ = → →∞

∂                 
(15) 

Proof. Fix [0,1]u∈  and denote  

( ) ( )2
1

1, , exp 2 2π ,k k ka a

k uv h v v v v v
t t

ψ
σ σ+
−

= = − = = −  

remark that  

( )d 0.v vψ
∞

−∞
=∫                        

(16) 

Using Formula (1) and the theorem on the differentiability of a series of the 
functions compute the derivative  

( ) ( ) ( )2 2 , .t t
ka

k k

f u p u k I I v
u u t

ψ
σ

∞ ∞

=−∞ =−∞

∂ ∂ −
= = =

∂ ∂∑ ∑
          

(17) 

Differentiability of a series of functions standing in the right part of the 
equality follows from the absolute convergence of the series I. 

Put ( ) ( ) ( ) ( )1, dk

k

v
k k k kv

v v v B v vψ ψ +∆ = − = ∆∫  in virtue of Formula (16) the 

number I can be represented in the form 1
kkI B

h
∞

=−∞
= ∑ . 

Compute the derivative of ( )vψ :  
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( ) ( ) ( )
( ) ( )( ) ( )

2 2

2

1 exp 2 2π ,

3 , 1 2πsup
v

v v v

v v v v

ψ

ψ ψ ψ
−∞< <∞

′ = − −

′′ ′= − =
            

(18) 

Highlight on the real axis ( ),−∞ ∞  the following segments:  

( [ ]

[ ] )
1 2 3

4 5 6

, 3 , 3, 1 , 1,0 ,

0,1 , 1, 3 , 3, .

  = −∞ − = − − = −  
  = = = ∞  

  

  
 

In virtue of (18) run inequalities:  

( ) ( ) ( ) ( )1 20, 0, ; 0, 0, ,v v v v v vψ ψ ψ ψ′ ′′ ′ ′′≤ ≤ ∈ ≤ ≥ ∈   

( ) ( ) ( ) ( )3 40, 0, ; 0, 0, ;v v v v v vψ ψ ψ ψ′ ′′ ′ ′′≥ ≥ ∈ ≥ ≤ ∈   

( ) ( ) ( ) ( )5 60, 0, ; 0, 0, .v v v v v vψ ψ ψ ψ′ ′′ ′ ′′≤ ≤ ∈ ≤ ≥ ∈   

In accordance with the issued for the segment of , 1, ,6k k =   inequalities 
we get:  

( ) ( ) ( ) ( )1 6 5 1
6 6 5 5

, ,
2 2 2 2k k k k
h h h hv S v v S vψ ψ ψ ψ+ +′ ′ ′ ′− ≤ ≤ − − ≤ ≤ −∑ ∑ ∑ ∑  

( ) ( ) ( ) ( )4 1 1 3
4 4 3 3

, ,
2 2 2 2k k k k
h h h hv S v v S vψ ψ ψ ψ+ +′ ′ ′ ′− ≤ ≤ − − ≤ ≤ −∑ ∑ ∑ ∑  

( ) ( ) ( ) ( )1 2 1 1
2 2 1 1

, .
2 2 2 2k k k k
h h h hv S v v S vψ ψ ψ ψ+ +′ ′ ′ ′− ≤ ≤ − − ≤ ≤ −∑ ∑ ∑ ∑  

Designate ( ) ( )2

1 1
d , dk k

k k

v v
k kv v

C v v D v vψ ψ+

+ −
′ ′= =∫ ∫  and we deduce from the last 

inequalities following relationships:  

6 5
6 6 5 5

1 1 1 1, ,
2 2 2 2k k k kC S D D S C− ≤ ≤ − − ≤ ≤ −∑ ∑ ∑ ∑  

4 3
4 4 3 3

1 1 1 1, ,
2 2 2 2k k k kD S C C S D− ≤ ≤ − − ≤ ≤ −∑ ∑ ∑ ∑  

2 1
2 2 1 1

1 1 1 1, .
2 2 2 2k k k kC S D D S C− ≤ ≤ − − ≤ ≤ −∑ ∑ ∑ ∑  

From them it is easy to obtain:  

( ) ( )63 3 3

1 1d d ,
2 2h

v v S v vψ ψ
∞ ∞

+
′ ′− ≤ ≤ −∫ ∫  

( ) ( )3 3 3
51 1 2

1 1d d ,
2 2

h

h h
v v S v vψ ψ

−

+ +
′ ′− ≤ ≤ −∫ ∫  

( ) ( )1 2 1
40 3

1 1d d ,
2 2

h h

h
v v S v vψ ψ

− −
′ ′− ≤ ≤ −∫ ∫  

( ) ( )0 2
31 1

1 1d d ,
2 2

h

h
v v S v vψ ψ

−

− − +
′ ′− ≤ ≤ −∫ ∫  

( ) ( )1 1 2
23 3 3

1 1d d ,
2 2

h h

h
v v S v vψ ψ

− − − −

− + −
′ ′− ≤ ≤ −∫ ∫  

( ) ( )3 3 3
1

1 1d d .
2 2

h
v v S v vψ ψ

− − −

−∞ −∞
′ ′− ≤ ≤ −∫ ∫  
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Therefore, we have:  

( ) ( )
6

3 3 3
,

2 2

h
S

ψ ψ+
≤ ≤  

( ) ( ) ( ) ( )
5

1 3 3 1 2 3
,

2 2

h h h
S

ψ ψ ψ ψ+ − − + −
≤ ≤  

( ) ( ) ( )
4

1 2 3 1
,

2 2
h h h

S
ψ ψ ψ− − − −

≤ ≤  

( ) ( ) ( )
3

1 1 2
,

2 2
h h

S
ψ ψ ψ− − + − −

≤ ≤  

( ) ( ) ( ) ( )
2

1 3 3 1 2 3
,

2 2

h h h
S

ψ ψ ψ ψ− − − + − + − − − + −
≤ ≤  

( ) ( )
1

3 3 3

2 2

h
S

ψ ψ− − − − −
≤ ≤  

and so the sum 6
1 kkS S
=

= ∑  satisfies the inequalities:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 3 3 3 1 1 2

2
1 1 3 3 3 3

2
1 2 1 3 2 1 1 2

2

h h h h

h h h

h h h h h h
S

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

+ − − + + − −

− − − − + − + − − −
+

+ − − + − − + − + − − −
≤ ≤

 

how do we get that  

( )max 3 5 3 ,6 3 6
8 2π .

2 2π
h h h h h h h

S h
+ + + + +

≤ =  

Because of Formula (18), the resultant inequality 2 2 2πkB h≤  and the 
definition of the sums , 1, ,6k k =∑ 

, we find: 

1 2 1 2 1 2 13 2 3 3 2 3

1

10 2π .
k k kk k

k
h v h h v h h v hh v h h v h

I S B
h

h

− ≤ ≤ + − ≤ ≤ − − ≤ ≤− +− ≤ ≤ + − − ≤ ≤− +

 
− ≤ + + + +  

 

≤

∑ ∑ ∑ ∑ ∑
 

Therefore, the following inequality holds 18 2πI h≤ , which leads to the 
relation (11). Lemma 2 is proved.  

Theorem 3. If 1h <  the following inequality holds  

( ) ( ) 3 0, .tf u f u tε− ≤ → →∞
                 

(19) 

Proof. Because of Formula (1) equalities ( ) ( ) [ ]0, 0,1tf u f u u= = ∉  take 
place. Let ( ) ( ) ( ) [ ]1 0 , 0,1t tu f u f uδ = − ∈ . In Lemma 2 the following inequality 
holds ( ) ( ) [ ]1 , 0,1t u u uδ ε≤ + ∈ , therefore  

( ) ( ) ( )1 1

0 0
1 d 0 dt t tf u u f u uδ= = +∫ ∫  

and hence ( ) ( )0tf f u ε− ≤ . Here we come to the statement of Theorem 3. 
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Because of Formula (6) from inequality (19) we have  

( ) ( ) ( ) ( ) ( )
( )

1

3 3 3

1 2

3 0, .

at t tn

a
n

F u f u F u n f u f f u

C t n t tσ

− = − − = −

≤ = ∆ → →∞         

(20) 

Hence for n-periodic initial conditions the characteristic time mixing under 
fractional Brownian motion is reduced to an  times. 

4. Conclusions 

Obtained in the present work, an upper estimate of the convergence rate of the 
density function of a multidimensional fractional Brownian motion with 
reflection at the boundaries of a square is not exponential as in the usual 
Brownian motion or a stable process with independent increments. Apparently 
this is due to the fact that the multidimensional fractional Brownian motion 
models the processes with chaotic behavior [1]. 

In the work [12], it is considered a model of fractional Brownian motion with 
dependent components. However, this model fails to obtain the corresponding 
results in the case of periodic initial conditions. But in the case of independent 
components multidimensional Brownian motion satisfies the statement of 
Theorem 3. 
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