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Abstract 
This research paper represents a numerical approximation to non-linear coupled 
one dimension reaction diffusion system, which includes the existence and 
uniqueness of the time dependent solution with upper and lower bounds of 
the solution. Also numerical approximation is obtained by finite difference 
schemes to reach at reasonable level of accuracy, which is magnified by 2L , 
L∞  and relative error norms. The accuracy of the approximations is shown 
by randomly selected grid points along time level and comparison with 
analytical results. The test example demonstrates the accuracy, efficiency and 
versatility of the proposed schemes. Moreover, the schemes can be easily 
applied to a wide class of higher dimension non-linear reaction diffusion 
equations with a little modifications. 
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1. Introduction  

Fisher and Kolmogorov Petrovsky Piscounov founded quasilinear partial dif- 
ferential equation which represents reaction diffusion phenomena [1] [2], which 
play important rule in population dynamics as propagation of beneficial genes; 
mathematical description to this phenomena is as follows [1] [2] [3],  

( ) ,t xu i Q ρ∂ = −∂ +                          (1) 
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here, x declares spatial coordinate position with time t, also ( ),x tρ  is the term 
used to identify the population density, i is the flux associated to population, and 
( )Q ρ  is a limited to originator term that illuminate the net rate of production 

or growth in the populated area or density associated to population [3]. The be- 
haviour of the diffusion is accounted in the flux i, inclines by Fick’s law,  

,xi D ρ= − ∂                             (2) 

where the assumption on the diffusion coefficient D, is to be constant [3]. It is 
frequently to imitate the law, which is known as the Pearl-Verhulst logistic law,  

( )
1 , 0

0, 0

s
s

s

Q
ρ

γρ ρ ρ
ρ ρ

ρ ρ

  
− < <  ⇒   

 ≤ ≤

                  (3) 

related to stranded scale to growth in the population [3]. This law explains the 
that initially population would grow with homogeneous fashion with time of 

1γ −  until that growth reach at some stranded level with some saturation in 
population [3]. Fisher and KPP were very much keen about the speed that exists 
in advantageous genes to propagate and they found a travelling wave solution to 
Equations (1), (2), (3) [3], such solution related to velocity ( )1 22 Dγ≥ . Con- 
sequential, Kametaka (1976) and Uchiyama (1977)] remarks about velocity of 
( )1 22 Dγ  developed initial conditions (ICs), categorised as [3],  

( )
( )

( )

1

1 2
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, 0 , for
0 , 0 , for

, 0 0, for

s

s

x t x x
x t x x x

x t x x

ρ ρ
ρ ρ

ρ

= = ≤ 
< = < < < 
= = ≤ 

                (4) 

2. Governing Equation  

In the year of 1948 El’ dovich, raised the major features of the diffusion reaction 
semi-linear equation which make useful contribution to wave of advantageous 
genes which are now totally classify as in the dynamics of the gas and flame with 
chemical kinetics [3]. Mostly, in process of combustion, the concept of heat 
which is channelized by the conduction processed by heat related to molecules 
which moves from the hot part of flame to coolant side [3], by a particular 
locality, the rate of the chemical reaction such as exothermic chemical reaction 
(due to presence of heat), totally aware of temperature of the related gas mixture 
[3]. The coefficients associated with molecular diffusion and thermal are at same 
level of scaled, the temperature and concentration are situated almost isobaric 
[3]. The quantity ρ , then can represent either the temperature or concentration, 
without confusion, and is often referred to as the “combustion completeness by 
such coefficient” by Vulis, 1961 [3]. Equations (1)-(4) are then hired to modelled 
this attractive phenomena as a result of travelling wave nature of the flame exists 
in combustion process or zone, i.e. the transition layer between the region of 
burnt gas and the gas where combustion has not yet begun [3]. Above literature 
review, leads to the following reaction-diffusion system in two components 
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along single direction, is as follows,  

( )( )
( )( )

1 1

2 2

1 1
1 1

t xx

t xx

u u u u v
v v v v u

∂ = + − − 
∂ = + − − 

β α
β α

                  (5) 

where in above Equation (5), 1α  and 2α  are the linear growth rate whereas 

1 2,β β  are coefficients of the diffusion [3] [4] [5], with 1 2 1 2, , , 0>α α β β , as 
well as ( ),u x t  and ( ),v x t  are the concentrations of the chemicals in the 
reaction diffusion process.  

3. Exact Solution 

Exact solution to system in Equation (5) found by E. S. Fahmy [5], he used 
factorization method, given below:  

( ) ( )

( ) ( )
( )

1
1

1 0

1

1 1 tanh
2 2 where
1 1 2coth
2 2

u z D kD z z
u z D

+

−

= +  = −
= −


           (6) 

( ) ( )

( ) ( )
( )

2
2

2 0

2

1 1 tanh
2 2 where
1 1 2coth
2 2

v z D kD z z
v z D

+

−

= −  = −
= +


           (7) 

4. Smoothness and Uniqueness of the Reaction Diffusion  
System 

It is very important to enforce some assumptions on some physical parameters 
or related reaction functions, to analysed the smoothness and uniqueness of a 
positive oriented natural solution by considering lower and upper bound of the 
solution of the system which mentioned in Equation (5) [6]. We assume that 

1 2=β β  which represents the diffusion coefficients are always positive in the 
bounded or finite domain such as Ω , whereas initially means at 0t =  the un- 
knowns such as ( )0 0,u v  are non-negative [6]. The smoothness hypothesis is 
used to guarantee the existence of the problem of the corresponding linear system 
[6]. Let us look at the complete obtained system in one dimension,  

( ) ( )
( ) ( )

( ) ( )( )1 1

2 2

, ,
for 1, , , 1 1 .

, ,

m
t

m
t

u u u g x u v
m g x u v u v

v v v g x u v

−∇ ⋅ ∇ =  ≥ = − −
−∇ ⋅ ∇ = 

β α

β α
   (8) 

imposed the following boundary conditions on Equation (8), which is,  

[ ] ( )
[ ] ( )

( )1 1

2 2

for 0,
B u h x

t x
B v h x

=  > ∈Ω
= 

                  (9) 

imposed the following initial conditions on Equation (8), which is,  

( ) ( )
( ) ( )

0

0

0,
for

0,

u x u x
x

v x v x

=  ∈Ω
= 

                   (10) 

combined above three equations, to get the model system.  
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Assumption or Hypothesis (H) 
Let us suppose that vf  exists and is also bounded which is subsets of domain 

Ω  and there exists a function with ( ) 0oc x ≥ , such that  
( ) ( ) ( )1 20 , , of u v f u v c x≤ ≤ ≤  for 1 20 v v≤ ≤ ≤ ∞  [6]. This definition implies 

that the function f is monotone non-decreasing in v  and is uniform bounded 
for 0v ≥  [6]. Clearly this condition is satisfied by function f [6]. Thus this 
property leads to  

( ) ( )1 1, , ,mG u v u g x u v=α                      (11) 

( ) ( )2 1, , , ,mG u v v g x u v=α                      (12) 

where above Equations (11), (12) represents 1 2,G G  are quasi monotone non- 
increasing and quasi monotone non-decreasing functions in Ω  respectively [6]. 
According to classification of the reaction functions, 1 2,G G  are typed III 
functions [6]. This leads to the following definition of the solutions.  

4.1. Definition 

A smooth pair of two vector functions ( ),u v  , ( ),u v  defined in + ×ΩR  are 
called upper and lower solutions respectively [6], if they satisfy the following 
inequalities  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

[ ] ( ) [ ]
[ ] ( ) [ ]
( ) ( ) ( )
( ) ( ) ( )

1 1 1 1

2 2 2 2

1 1 1

2 2 2

0

0

, 0 ,
for 1

, 0 ,

for 0,

0, 0,
for

0, 0,

m m
t t

m m
t t

u u u g x v u u u g x v
m

v v v g x v v v v g x v

B u h x B u
t x

B v h x B u

u x u x u x
x

v x v x v x

−∇ ⋅ ∇ − ≥ ≥ −∇ ⋅ ∇ −  ≥
−∇ ⋅ ∇ − ≥ ≥ −∇ ⋅ ∇ − 


≥ ≥  > ∈Ω 

≥ ≥  


≥ ≥  ∈Ω ≥ ≥  

   

    









β α β α

β α β α

 (13) 

In the above definitions the smoothness of ( ),u v  , ( ),u v  is in the sense that 
these functions are continuously differentiable to the order appeared in Equ- 
ations (8) and (11), (12) respectively [6]. Hypothesis and above definition leads 
to the following theorem.  

4.2. Theorem 

Let f holds hypothesis (H). If there exist upper and lower solutions ( ),u v  , 
( ),u v  of system (8), with u u≤  and v v≤  in + ×ΩR , then the sequence 

{ },k ku v  , { },k ku v  converges monotonically from above and below, respec- 
tively [6], to a unique solution (u, v) of system (8) [6]. Moreover,  

( ) ( ) ( )
( ) ( ) ( )

, , ,
0, ,

, , ,

u t x u t x u t x
t x

v t x v t x v t x

≤ ≤  > ∈Ω
≤ ≤ 





              (14) 

The quality of being of practical use about above theorem, need to construct 
of lower and upper solutions, with existence problem to be ensured [6], but the 
asymptotic behaviour of the time-dependent solution and related stability can 
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also be established from the behaviour of the lower and upper solutions [6], ac- 
cording to the definition, so stability of a steady-state solution make according to 
selection of Lyapunov function [6], be that as it may for the global existence 
problem or the stability problem with homogeneous boundary conditions [6].  

5. Numerical Methods 

Let us apply numerical methods technique, to solve such system which men- 
tioned in Equation (5) in finite domain Ω . We partitioned the interval [ ],a b  
into n equal parts of width h [7] [8]. Place a grid on the rectangle region R by 
drawing vertical and horizontal lines through the points. Numerical solution is 
denoted by ( ),n n

m mu v , whereas exact one make in the form of ( ),n n
m mU V  

respectively.  

5.1. Forward in Time and Centre in Space (FTCS) Scheme 

We consider forward in time and center in space (FTCS) explicit scheme by 
substituting the forward difference approximation for the time derivative and 
the central difference approximation for the space derivative in system in Equation 
(5),  

( ) ( )( )

( ) ( )( )

1
1

1 1 12

1
2

1 1 22

2 1 1

2 1 1

n n
n n n n n ni i
i i i i i i

n n
n n n n n ni i
i i i i i i

u u u u u u u v
k h

v v v v v v v u
k h

β
α

β
α

+

+ −

+

+ −

−
= − + + − − 


− = − + + − − 

        (15) 

( ) ( )( )
( ) ( )( )

1
1 1 1 1

1
2 1 1 2

2 1 1

2 1 1

n n n n n n n n
i i i i i i i i

n n n n n n n n
i i i i i i i i

u u u u u u u v

v v v v v v v u

+
+ −

+
+ −

= + − + + − − 


= + − + + − − 

R Q

R Q
        (16) 

where 1
1 2

k
h
β

=R , 2
2 2

k
h
β

=R , 1 1kα=Q  and 2 2kα=Q .  

Finite difference schemes, must pass certain tests of accuracy, consistency, 
stability and convergence [9] [10] [11], we discuss these concepts in the follow- 
ing way.  

5.1.1. Accuracy of FTCS 
Accuracy of the FTCS scheme for system in Equation (16), we apply Taylor’s 
series on each term, which is as follows:  

( )( )( )

( )( )( )

2 2 3
Resultant

2 2 3
Resultant

1 1 11 1
2 12 6

1 1 11 1
2 12 6

t xx tt xxxx ttt

t xx tt xxxx ttt

u u u u u v k k u kh u k u

v v v v v u k k v kh v k v

= − − − − + − + + 

= − − − − + − + +






 (17) 

simplifies above equations, we get the following,  

2 2 3
Resultant

2 2 3
Resultant

1 1 1
2 12 6
1 1 1
2 12 6

tt xxxx ttt

tt xxxx ttt

u k u kh u k u

v k v kh v k v

= − + + 

= − + +






            (18) 

dividing above system, by k and simplifies some terms:  
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2 2
Resultant

2 2
Resultant

1 1 1
2 12 6
1 1 1
2 12 6

tt xxxx ttt

tt xxxx ttt

u ku h u k u

v kv h v k v

= − + + 

= − + +






              (19) 

This leads to principle part of the truncation error (PPTE), which is as follows:  

2 2

2 2

1 1 1
2 12 6
1 1 1
2 12 6

u tt xxxx ttt

v tt xxxx ttt

PPTE ku h u k u

PPTE kv h v k v

= − + + 

= − + +






              (20) 

which shows that this scheme has 2nd order accuracy in space and first order 
accuracy in time such as ( )2,O k h  [9].  

5.1.2. Consistency of FTCS 
According to the definition of the consistency, if the difference between finite 
difference equation (FDE) and related partial differential equation (PDE), i.e 
truncation error vanishes as the sizes of the grid spacing go to zero inde- 
pendently, i.e  

Truncation error 0 as , 0h k
k

→ →                 (21) 

Equation (20) is consistent, because the truncation error divided by k tends to 
zero as h and k tends to zero [11] [12] [13] [14].  

5.1.3. Convergence of FTCS 
A finite difference method is convergent if the solution of the finite difference 
equation approaches to exact solution of the partial differential equation as the 
sizes of the grid spacing h and k tends to zero [13] [14] [15].  

0 as , 0n n n
m m mu U z h k− = → →                  (22) 

where n
mz  is called the discretization error.  

0 as , 0n n n
m m mv V Z h k− = → →                  (23) 

where n
mZ  is called the discretization error.  

0, as , 0n n
m mu U h k− → →                   (24) 

0, as , 0n n
m mv V h k− → →                   (25) 

this completes the proof of the convergence.  

5.1.4. Stability of FTCS 
Another important feature of a finite difference method of solving partial dif- 
ferential equation is the stability of the associated finite difference equation 
which must be investigated. Let us look again Equation (16),  

( ) ( )( )
( ) ( )( )

1
1 1 1 1

1
2 1 1 2

2 1 1

2 1 1 )

n n n n n n n n
i i i i i i i i

n n n n n n n n
i i i i i i i i

u u u u u u u v

v v v v v v v u

+
+ −

+
+ −

= + − + + − − 


= + − + + − − 

R Q

R Q
      (26) 
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linear form of above Equation (26), is as follows:  

( )
( )

1 2
1 1

1 2
2 2

n n n n
i i x m m

n n n n
i i x m m

u u u u

v v v v

δ

δ

+

+

= + + 


= + + 

R Q A

R Q A
                 (27) 

where ( )( )max 1 1n n
m mu v = − − A , from Equations (26) and (27), we can write in 

the following way,  
1

1
1

1

01 0
00 1

n n

n n

Cu u
Cv v

+

+

     
=     

      
 

where ( )2
1 1 11 4 sin 2C hβ= − +R AQ .  

1n nGψ ψ+ =                          (28) 

where  
1

1

1

01 0
00 1
C

G
C

−
  

=   
   

 

where matrix G  is called the amplification matrix. According to Von-Ne- 
umann stability analysis, the condition for stability for system is  

{ }max eigenvalues of 1G ≤                   (29) 

above Inequality (29) leads to the following two special cases,  
1) Special Case 1  

• The right hand side of the Inequity (29) gives,  

2
1 1

2
1 1

2
1 1

1
1

2

1 4 sin 1
2

0 4 sin 0
2

4 sin
2

4sin
2

h

h

h

h

β

β

β

β

 − + ≤    
 − + ≤  

  
  ≥  

  


≥       

R AQ

R AQ

R AQ

AQR

                 (30) 

which is condition of stability to FTCS scheme in coupled non-linear PDE 
system.  

2) Special Case 2  
• The left hand side of the Inequity (29) gives,  

2
1 1

2
1 1

2
1 1

1
1

2

1 1 4 sin
2

2 4 sin
2

4 sin 2
2

2

4sin
2

h

h

h

h

β

β

β

β

 − ≤ − +    
 − ≤ − +  

  
  ≤ +  

  
+

≤       

R AQ

R AQ

R AQ

AQR

                 (31) 
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which is condition of stability to FTCS scheme in coupled non-linear PDE 
system.  

Special case (1) and special case (2) lead to the following very interesting 
results,  

1 1
1

2 2

2

4sin 4sin
2 2
h hβ β

+
≤ ≤

   
   
   

AQ AQR                 (32) 

The Von-Neumann stability analysis is the most common used method of de- 
termining stability criterion as it is generally the easiest to apply. It can only be 
used to establish a necessary and sufficient condition for stability of linear initial 
value problems with constant coefficients [14] [15] [16] [17] [18] [19]. Thus 
according to Von-Neumann stability analysis, FTCS scheme is conditionally 
stable as obtained in Equation (32).  

5.2. Crank Nicolson Implicit Scheme 

Let us apply Crank Nicolson implicit finite difference scheme to Equation (5).  

( ) ( )

( ) ( )

1
2 2 1 2 2 2

2

1 1 1

1
2 2 1 2 2 2

2

1 1 1

1 (
2

1 1
2 2 2

1 (
2

1 1
2 2 2

n n
n ni i

x i x i

n n n n n n
i i i i i i

n n
n ni i

x i x i

n n n n n n
i i i i i i

u u O k u u O k O h
k h

u u u u v v

v v O k v v O k O h
k h

v v v v u u

δ δ

δ δ

+
+

+ + +

+
+

+ + +

−  + = + + +  

  + + +

+ − −   
  


−  + = + + +  


  + + + + − −  
   



    (33) 

after some simplification, we get the following,  

( )
1 1

2 1 2 1
1 1 1

1 1 11 1 1 1
2 2 2 2 2

n n n n
n n n n i i i i

x i x i i i
u u v vu u u uδ δ

+ +
+ +      + +   − = + + + − −                    

R R Q  (34) 

( )
1 1

2 1 2 1
2 2 2

1 1 11 1 1 1
2 2 2 2 2

n n n n
n n n n i i i i

x i x i i i
v v u uv v v vδ δ

+ +
+ +      + +   − = + + + − −                    

R R Q  (35) 

combine Equations (34) (35), we get the following,  

( )

( )

1 1
2 1 2 1

1 1 1

1 1
2 1 2 1

2 2 2

1 1 11 1 1 1
2 2 2 2 2

1 1 11 1 1 1
2 2 2 2 2

n n n n
n n n n i i i i

x i x i i i

n n n n
n n n n i i i i

x i x i i i

u u v vu u u u

v v u uv v v v

δ δ

δ δ

+ +
+ +

+ +
+ +

     + +   − = + + + − −                    
    + +   − = + + + − −               

R R Q

R R Q






 
    

 (36) 

where 1 2 1, ,R R Q  and 2Q  are mentioned in Equation (16).  

5.2.1. Accuracy of CN 
Accuracy of the CN scheme to Equation (36), we apply Taylor’s series on each 
term. After some simplification, resultant is as follows,  
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( )( )( ) ( ) ( )( )

( )

2
Resultant

2 3 2 2

11 1 1 1 1
2

1 1 1 11
12 6 4 24

t xx tt xxt t t

t xxxx ttt xxtt xxxxt

u u u u u v k k u u uv u u u v

uu v kh u k u u k h u

= − − − − + − + − − − −

 + − − + − + − +    
 

 (37) 

( )( )( ) ( ) ( )( )

( )

2
Resultant

2 3 2 2

11 1 1 1 1
2

1 1 1 11
12 6 4 24

t xx tt xxt t t

t xxxx ttt xxtt xxxxt

v v v v v u k k v v vu v v v u

vv u kh v k v v k h v

= − − − − + − + − − − −

 + − − + − + − +    
 

 (38) 

we divide above equation by time step k with using in system (5), to get the 
accuracy, in the following form,  

( )( ) 2
Resultant

2 2

1 11 1
2 12

1 1 1
6 4 24

t xx xxxx

ttt xxtt xxxxt

u k u u u u v h u
t

k u u kh u

∂
= − − − − −  ∂

 + − + − + 
 

 

        (39) 

( )( ) 2
Resultant

2 2

1 11 1
2 12

1 1 1
6 4 24

t xx xxxx

ttt xxtt xxxxt

v k v v v v u h v
t

k v v kh v

∂
= − − − − −  ∂

 + − + − + 
 

 

        (40) 

2 2 2
Resultant

2 2 2
Resultant

1 1 1 1
12 6 4 24
1 1 1 1

12 6 4 24

xxxx ttt xxtt xxxxt

xxxx ttt xxtt xxxxt

u h u k u u kh u

v h v k v v kh v

 = − + − + − +    


  = − + − + − +    

 

 

   (41) 

Now principle part of the truncation error (PPTE) is as follows:  

2 2 2

2 2 2

1 1 1 1
12 6 4 24
1 1 1 1

12 6 4 24

u xxxx ttt xxtt xxxxt

v xxxx ttt xxtt xxxxt

PPTE h u k u u kh u

PPTE h v k v v kh v

 = − + − + − +    


  = − + − + − +    

 

 

   (42) 

which shows that this scheme is 2nd order accurate in both time and space, such 
as ( )2 2,O k h  [19] [20].  

5.2.2. Consistency of CN 
From accuracy, we find principle part of the truncation error along with Equ- 
ation (42). Which shows that Crank Nicolson scheme is consistent because 

n
mz PPTE=  tends to zero as h and k tends to zero, i.e. 0n

mz →  as , 0h k → .  

5.2.3. Stability of CN 
Stability of the associated finite difference Equation (36), which is in linear form,  

( )

( )

1 2 1 2 1

1 2 1 2 1

1 1 1
2 2 2
1 1 1
2 2 2

n n n n n n
m x m m x m m

n n n n n n
m x m m x m m

u u u u u u

v v v v v v

δ δ

δ δ

+ + +

+ + +

   − = + + +        


    − = + + +        

R R Q A

R R Q A
      (43) 

where ,R Q  and A  are mentioned in Equation (16) and Equation (27) re- 
spectively. From Equation (43), we can write,  
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1
1 2

1
1 2

0 0
0 0

n n

n n

c cu u
c cv v

+

+

      
=      

      
 

where ( )2
1

11 2 sin 2
2

c hβ= + −R AQ  and ( )2
2

11 2 sin 2
2

c hβ= − +R AQ .  

According to Von-Neumann stability analysis, we have  
1n nGψ ψ+ =                          (44) 

where  
1

1 2

1 2

0 0
0 0
c c

G
c c

−
   

=    
   

 

where matrix G  is called the amplification matrix. According to Von-Neu- 
mann stability analysis (29). We have  

2

1

1
c
c

≤                            (45) 

( )

( )

2

2

11 2 sin 2
2 1
11 2 sin 2
2

h

h

β

β

− +
⇒ ≤

+ −

R AQ

R AQ
               (46) 

Above Equation (46), satisfies the Von-Neumann stability criterion, which 
shows that CN scheme for Equation (5) is unconditionally stable [21] [22] [23] 
[24] [25].  

5.3. Fourth Order Accurate Implicit Scheme 

Let us apply another implicit scheme with improved accuracy in space to 
Equation (5).  

( ) ( )( )

( ) ( )( )

1 1 12 1 21
12

1 1 12 1 22
22

1 1 1 1

1 1 1 1

n n
n n n n ni i

x i i x i i i

n n
n n n n ni i

x i i x i i i

u u u u u u v
k h

v v v v v v u
k h

β
δ α δ

β
δ α δ

+
− −+

+
− −+

−    = + + + + − −     


−    = + + + + − −    

  (47) 

( ) ( ) ( )( )

( ) ( ) ( )( )

1 2 1 21
1

1 2 1 22
2

1 1 1 1
2

) 1 1 1 1
2

n n n n n n n
i i x i i x i i i

n n n n n n n
i i x i i x i i i

u u u u u u v

v v v v v v u

δ δ

δ δ

+ +

+ +

   − + = + + + − −     

   − + = + + + − −    

R Q

R Q
  (48) 

where 1 2,R R , and 1 2,Q Q  are mentioned in Equation (16).  

( ) ( )
( ) ( )

1 1 1
1 2 3 1 1 4 1 1

1 1 1
1 1 1 1 1

1 5 1
2 6 12

n n n n n n
i i i i i i

n n n n n n
i i i i i i

a u a u a u u a u u

u u u u u u

+ + +
+ − + −

+ + +
+ − + −

− + + + −

 − + + + + +  
Q P

         (49) 

( ) ( )
( ) ( )

1 1 1
1 2 3 1 1 4 1 1

1 1 1
1 1 1 1 1

1 5 1
2 6 12

n n n n n n
i i i i i i

n n n n n n
i i i i i i

a v a v a v v a v v

v v v v v v

+ + +
+ − + −

+ + +
+ − + −

− + + + −

 − + + + + +  
Q P

         (50) 

combine Equations (49) (50), to get the following,  
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1
1 2 3 1 1 4 1 1

1 1 1
1 1 1 1 1

1 1 1
1 2 3 1 1 4 1 1

1 1 1
1 1 1 1 1

1 5 1
2 6 12

1 5 1
2 6 12

n n n n n n
i i i i i i

n n n n n n
i i i i i i

n n n n n n
i i i i i i

n n n n n n
i i i i i i

a u a u a u u a u u

u u u u u u

a v a v a v v a v v

v v v v v v

+ + +
+ − + −

+ + +
+ − + −

+ + +
+ − + −

+ + +
+ − + −

− + + + −

 − + + + + +  


− + + + −

 − + + + + +  

Q P

Q P











          (51) 

where 1 1
5
6

a = +R , 2 1
5
6

a = −R , 3 1
1 1
2 6

a  = − 
 

R , 4 1
1 1
2 6

a  = + 
 

R , and  

( ) ( )1 11 11 1
2 2

n n n n n
m i i i iu u v v+ +  = − + − +  

  
P   

5.3.1. Accuracy of Douglas Scheme 
Accuracy of the Douglas scheme to Equation (36), we apply Taylor’s series on 
each term. After some simplification, resultant is as follows,  

( )( )( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )( )

( ) ( )

2
Resultant

2

2 2

2 3

4

11 1 1 1
2

11 1 1 1
2

1 1 1 1
24

1 1 11 1
12 6 4

1
144

t xx tt xxt t t

t xxt xxxx xx

ttxx xxxxt xx t xx t

xxt xxxx ttt xxtt

x

u u u u u v k k u u uv u u u

v uu v u u u u v kh

h k u u u v u u u u v

u u v kh u k u u

kh u

= − − − − + − + − − −

× − + − + − + − −    

+ − + − − − −

 + − − − + − +    

−



( )( )1 1 1 1
360 144xxxt xxxxxx xxxxu u v u − + − − +  



 (52) 

( )( )( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )( )

( ) ( )

2
Resultant

2

2 2

2 3

4

11 1 1 1
2

11 1 1 1
2

1 1 1 1
24

1 1 11 1
12 6 4

1
144

t xx tt xxt t t

t xxt xxxx xx

ttxx xxxxt xx t xx t

xxt xxxx ttt xxtt

x

v v v v v u k k v v vu v v v

u vv u v v v v u kh

h k v v v v v v v v u

v v u kh v k v v

kh v

= − − − − + − + − − −

× − + − + − + − −    

+ − + − − − −

 + − − − + − +    

−



( )( )1 1 1 1
360 144xxxt xxxxxx xxxxv v u v − + − − +  



 (53) 

( )( ) [

( ) ( )( ) ( ) ( )

2 2 2
Resultant

2 3

1 11 1
2 24

1 1 1 1 1

1 1 1
12 6 4

xxt xxxx xx ttxx xxxxt

xx t xx t xxt

xxxx ttt xxtt

u u u u u v kh h k u u

u v u u u u v u u v

kh u k u u

= − + − − + −  

+ − − − − + − − 
 − + − + − 
 

 

   (54) 

( )( ) [

( ) ( )( ) ( ) ( )

2 2 2
Resultant

2 3

1 11 1
2 24

1 1 1 1 1

1 1 1
12 6 4

xxt xxxx xx ttxx xxxxt

xx t xx t xxt

xxxx ttt xxtt

v v v v v u kh h k v v

v v v v v v u v v u

kh v k v v

= − + − − + −  

+ − − − − + − − 
 − + − + + 
 

 

   (55) 
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Dividing above Equations (54) and (55) by k and take into account Equation 
(5), so resultants are as follows:  

[ ]2 4
Resultant

1 1 1
6 4 144ttt xxtt xxxxtu k u u h u = − + − − + 

 
           (56) 

let us look above equation in new way,  

( )( )

( )( )

2 4
Resultant

2 4
Resultant

1 1 1 1 1 1 1
6 4 144 360 144
1 1 1 1 1 1 1
6 4 144 360 144

ttt xxtt xxxxt xxxxxx xxxx

ttt xxtt xxxxt xxxxxx xxxx

u k u u h u u u v u

v k v v h v v v u v

   = − + − − + − − +       


    = − + − − + − − +        

 

 

 (57) 

Now principle part of the truncation error (PPTE) is as follows:  

( )( )

( )( )

4 2

4 2

1 1 1 11 1
144 144 6 4

1 1 1 11 1
144 144 6 4

u xxxxt xxxx ttt xxtt

v xxxxt xxxx ttt xxtt

PPTE h u u v u k u u

PPTE h v v u v k v v

   = − + − − + − + +       


    = − + − − + − + +       

 

 

 (58) 

which shows that this scheme is 4th order accurate in space, such as ( )2 4,O k h
 

[26] [27] [28] [29] [30].  

5.3.2. Consistency of Douglas Scheme 
From accuracy, we find principle part of the truncation error along with Equ- 
ation (58). Which shows that Douglas scheme is consistent because n

mz PPTE=  
tends to zero as h and k tends to zero, i.e. 0n

mz →  as , 0h k →  [31] [32]. 

5.3.3. Stability of Douglas Scheme 
Stability of the associated finite difference Equation (51), which is in linear form, 
is  

( ) ( ) ( )

( ) ( ) ( )

1 2 2 1 2 1

1 2 2 1 2 1

11 1
2 2

11 1
2 2

n n n n n n
i i x x i i x i i

n n n n n n
i i x x i i x i i

u u u u u u

v v v v v v

δ δ δ

δ δ δ

+ + +

+ + +

   − + = + + + +     

   − + = + + + +    

R AQ

R AQ
    (59) 

1 2 1 2 1 1 1

2 2

1 2 1 2 1 1 1

2 2

1 1 1 1
12 2 2 12
1 1 1 1

12 2 2 12
1 1 1 1

12 2 2 12
1 1 1 1

12 2 2 12

n n n n n
i x i x i m m

n n n n n
i x i x i m m

n n n n n
i x i x i m m

n n n n n
i x i x i m m

u u u u u

u u u u u

v v v v v

v v v v v

δ δ

δ δ

δ δ

δ δ

+ + + + +

+ + + + +

+ − − − 

= + − − − 

+ − − − 

= + − − − 

R AQ AQ

R AQ AQ

R AQ AQ

R AQ AQ

         (60) 

Consider Equations (44) (60), in the following few important steps.  

( ) ( ) ( )

( ) ( ) ( )

2 2 2
1

2 2 2
2

1 1 11 sin 2 2 sin 2 sin 2
3 2 3
1 1 11 sin 2 2 sin 2 sin 2
3 2 3

c h h h

c h h h

β β β

β β β

= − + − + 

= − − + −


R AQ

R AQ
    (61) 

Apply Von-Neumann stability analysis to Equation (60), we get the following  
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2

1

1
c
c

≤                            (62) 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

1 1 11 sin 2 2 sin 2 sin 2
3 2 3 1.
1 1 11 sin 2 2 sin 2 sin 2
3 2 3

h h h

h h h

β β β

β β β

− − + −
⇒ ≤

− + − +

R AQ

R AQ
  (63) 

Above Equation (63), satisfies the Von-Neumann stability criterion, which 
shows that fourth order implicit scheme is unconditionally stable [33] [34] [35] 
[36] [37].  

5.4. Richardson Extrapolation Technique 

Richardson extrapolation method lead to considerable improvement of numerical 
results which solving the partial differential equation system by finite difference 
method. Richardson’s extrapolation formulae are [38] [39],  

( ) ( )

( ) ( )

( )

1 1

2 1 1
2 ,

2 4 1

hN N h
hN h N

  −    = + 
− 

               (64) 

above formula leads to get fourth order accuracy [39] [40],  

( ) ( )

( ) ( )1 1

2 1
4 2

4 3

h hN N
hN h N

   −        = + 
 

              (65) 

6. Error Norms 

The aim of the accuracy is assessed by some redefined norms, associated with 
the consistency of the finite difference schemes, such scaled measurement to 
error defined in term of norms specially 2L  and L∞ , which are outlined below:  

2Exact Approximation
2

0

N

i i
i

L u u
=

= −∑                  (66) 

Exact Approximationmaxi i iL u u∞ = −                  (67) 

2
Relative

2Exact

0

N

i
i

LL
u

=

=

∑
                    (68) 

Exact Approximation
ErrorAbsolute i iu u= −                (69) 

( )
( )

1 2

1 2

log
Rate of Convergence

log
h hE E

h h
=              (70) 

where 
1h

E  and 
2hE  are errors in 2L  and L∞  at number of partitions h and 

h/2 respectively [41] [42].  

7. Results 

Numerical computations have been performed using the uniform grid [14] [21] 
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[25] [29]. For the test problem (5), we analysed results with various finite 
difference schemes. In Tables 1-3, we fixed domain as 8 8x− ≤ ≤  with k = 
0.0001 and find results at 0.5t = . In these three tables, we obtain insight error. 
Table 4 and Table 5 show results for 2 ,L L∞  and RelativeError  norms for major  
 
Table 1. Estimates of results using Crank Nicolson Implicit Scheme. Fixed some para- 
meters such as 0.0001k = , 0.5t = , ( )Grid 36 36= ×  and [ ] [ ], 8 8a b = − . Error means 

simple absolute error for two components u and v in different columns. 

time = t x .Appu  .ExU  Error .Appv  .ExV  Error 

0.5 −7.6 0.0046011 0.0041001 0.000501 0.9953994 0.9952149 0.000184 

 −3.2 0.0085027 0.0083021 0.000200 0.9914981 0.9911982 0.000299 

 −1.6 0.0096107 0.0092104 0.000401 0.9903902 0.9900162 0.000374 

 −0.4 0.0176852 0.01761453 0.000071 0.9823165 0.9821154 0.000202 

 2 0.0975382 0.0972546 0.00013 0.9024705 0.9020103 0.000611 

 4 0.4845664 0.4841066 0.00046 0.5154585 0.5152934 0.000160 

 5.6 0.7288725 0.7281615 0.00071 0.2711472 0.2710380 0.000109 

 8.4 0.8968938 0.8965883 0.00031 0.1031154 0.1030094 0.000106 

 
Table 2. Estimates of results using Fourth Order Implicit Scheme. Fixed some parameters 
such as 0.0001k = , 0.5t = , ( )Grid 36 36= ×  and [ ] [ ], 8 8a b = − . Error means 

simple absolute error for two components u and v in different columns. 

time = t x .Appu  .ExU  Error .Appv  .ExV  Error 

0.5 −7.6 0.0041091 0.0041001 0.000009 0.9952994 0.9952149 0.0000845 

 −3.2 0.0083067 0.0083021 0.000021 0.9911981 0.9911001 0.0000981 

 −1.6 0.0092145 0.0092104 0.000050 0.9900902 0.9900162 0.0000742 

 −0.4 0.0176109 0.0176141 0.000011 0.9821165 0.9821154 0.0000220 

 2 00.0972592 0.0972546 0.000017 0.9020705 0.9020103 0.0000601 

 4 0.4841021 0.4841066 0.000060 0.5152585 0.5152934 0.0000351 

 5.6 0.7281665 0.7281615 0.000011 0.2710472 0.2710380 0.0000923 

 8.4 0.8965813 0.8965883 0.000005 0.1030154 0.1030094 0.000006 

 
Table 3. Estimates of results using Sixth Order Extrapolation Method. Fixed some 
parameters such as 0.0001k = , 0.5t = , ( )Grid 36 36= ×  and [ ] [ ], 8 8a b = − . Error 

means simple absolute error for two components u and v in different columns. 

Time = t x .Appu  .ExU  Error .Appv  .ExV  Error 

0.5 −7.6 0.0041211 0.0041001 0.0000021 0.9952117 0.9952149 0.00000032 

 −3.2 0.0083227 0.0083021 0.0000021 0.9911012 0.9911001 0.00000011 

 −1.6 0.0092607 0.0092104 0.0000053 0.9900121 0.9900162 0.00000041 

 −0.4 0.0176152 0.0176141 0.0000011 0.9821116 0.9821154 0.00000038 

 2 0.0972382 0.0972546 0.0000017 0.9020100 0.9020103 0.00000003 

 4 0.4841664 0.4841066 0.0000059 0.5152959 0.5152934 0.00000025 

 5.6 0.7281725 0.7281615 0.0000015 0.2710339 0.2710380 0.0000004 

 8.4 0.8965938 0.8965883 0.000005 0.1030091 0.1030094 0.0000003 
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Table 4. Estimates of results, with comparison of errors as mentioned in formulae. Fixed 
some parameters such as 0.0001k = , 1t = , and [ ] [ ], 8 8a b = − . 

t Grid 
Crank Nicolson Douglas 

2L  L∞  relativeError  2L  L∞  relativeError  

1.0 31 × 31 31.29e−  48.79e−  51.53e−  41.14e−  51.14e−  74.3e−  

 51 × 51 31.9e−  43.47e−  61.36e−  41.7e−  62.21e−  88.7e−  

 81 × 81 43.24e−  51.19e−  62.04e−  52.0e−  62.18e−  88.11e−  

 101 × 101 41.24e−  64.91e−  71.57e−  62.2e−  72.83e−  99.08e−  

 
Table 5. Estimates of results, with two different Implicit FD schemes. Relative error 
values give encouragement to our results. Fixed some parameters as ( )Grid 51 51= × , k = 

0.0001 and h according to grid with wave speed c = 2 and z = 1. 

t 
Crank Nicolson Douglas 

2L  L∞  relativeError  2L  L∞  relativeError  

0.1 0.0012 0.000031 0.0000013 0.000067 0.0000011 0.00000079 

0.3 0.0019 0.000043 0.0000027 0.000071 0.0000019 0.00000008 

0.5 0.00017 0.000051 0.0000039 0.000079 0.0000031 0.000000081 

0.7 0.00021 0.000079 0.0000048 0.000081 0.0000042 0.000000094 

 
schemes CN and Douglas at different grids and time levels. Rate of convergence 
is defined in Table 6. All these six tables show results for three implicit scheme 
to analyse error and performance of the schemes. According to results men- 
tioned in tables, these scheme play very important role for convergence although 
non-linear system is difficult to stabilized. In Figure 1, FTCS conditionally 
stable finite difference scheme is used at different grid, also we did in Figure 2 
with Crank Nicolson implicit scheme. Fixed some parameters in CN scheme to 
get common region at different time level, as we mentioned in Figure 3. In 
Figure 4 and Figure 5, we did comparison of results with two different schemes 
at various time levels. In Figure 6 and Figure 7 attractive common region at 
different time level is obtained. In Figures 8-10, comparison of results with 
Richardson, Douglas and exact in ( ),u x t  component and ( ) ( ), ,u x t v x t  
form. Last Figure 11 is obtained at ( ) ( ), ,u x t v x t  form of results with two 
finite difference schemes. From Tables and Figures, we observed that these 
schemes exactly predict accuracy as we learn from literature reviews. 

8. Conclusions 

In this chapter, the solution to one dimensional coupled Fisher KPP system is 
successfully approximated by a various numerical finite difference schemes. 
Explicit FTCS is conditionally stable, and we give more attention to parameter 
R1 and R2, which can be used to stabilized the results as we can see from Figure 
1. Crank Nicolson and Douglas schemes are implicit schemes with uncondi- 
tionally stable nature, this guarantee is given by Von-Neumann stability analysis  
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Table 6. Estimates the rate of convergence for two implicit FD schemes for different grids. 

Grid 
Crank Nicolson Douglas 

Rate 2L  Rate L∞  Rate rE  2L  L∞  relativeError  

31 × 31 - - - - - - 

51 × 51 2.1882 3.0712 3.1098 2.881 3.0941 3.8172 

81 × 81 2.1761 3.1971 3.2910 2.5619 3.4218 3.8971 

101 × 101 1.4097 3.3468 4.0118 2.9431 3.7689 3.9981 

 

 
Figure 1. Shows results using FTCS scheme at two different grids, keeping the conditionally 
stable term. Area under the curves is the common region for two different grids. 
 

 
Figure 2. Shows results using Crank Nicolson scheme at two different grids. 
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Figure 3. Shows results using Crank Nicolson scheme at two different time level. Common region is the 
wave front that we study in literature [35] [39] [41]. 

 

 
Figure 4. Shows results using Crank Nicolson scheme at various time levels. We did comparison with 
exact solution for ( ),u x t  and ( ),v x t  components. 
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Figure 5. Shows results using fourth order implicit scheme at various time levels. We did comparison with 
exact solution for ( ),u x t  and ( ),v x t  components. 

 

 
Figure 6. Shows fourth order implicit scheme at three different time level. Common region is the wave front 
that we study in literature [17] [23] [29] [41]. 
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Figure 7. Shows results using fourth order implicit scheme at various time levels, with common region. 

 

 
Figure 8. Shows results using Richardson Extrapolation and fourth order implicit scheme, with comparison to 
exact solution for u component. 
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Figure 9. Shows results using Richardson Extrapolation and fourth order implicit scheme, 
with comparison to exact solution for ( ) ( ), ,u x t v x t  form. 

 

 
Figure 10. Shows results using Richardson Extrapolation at different time levels, along fourth order implicit 
scheme. 

https://doi.org/10.4236/jamp.2017.58129


S. Hasnain et al. 
 

 

DOI: 10.4236/jamp.2017.58129 1571 Journal of Applied Mathematics and Physics 
 

 
Figure 11. Shows a comparison of two schemes in u(x,t)/v(x,t) form, with exact solution. 
 
as we explained in methodology section [27] [28] [29] [31] [35] [36]. Jacobean 
found with the help of Newton’s iterative method [36] [38], whereas tridiagonal 
nature of the linear obtained system is solved by Crout’s or Partially Pivoting 
method. These method are highly computable in term of non-linear system as we 
defined in this chapter [40] [41] [42]. Numerical results show great deal of match- 
ability to exact solution. Accuracy in results are glanced from figures and tables. 
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