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Abstract 
In this paper, it is proposed to apply the Dempster-Shafer Theory (DST) or 
the theory of evidence to map vegetation, aquatic and mineral surfaces with a 
view to detecting potential areas of observation of outcrops of geological for-
mations (rocks, breastplates, regolith, etc.). The proposed approach consists in 
aggregating information by using the DST. From pretreated Aster satellite 
images (geo-referencing, geometric correction and resampling at 15 m), new-
channels were produced by determining the spectral indices NDVI, MNDWI 
and NDBaI. Then, the DST formalism was modeled and generated under the 
MATLAB software, an image segmented into six classes including three abso-
lute classes (E,V,M) and three classes of confusion ({E,V}, {M,V}, {E,M}). The 
control on the land, based on geographic coordinates of pixels of different 
classes on said image, has made it possible to make a concordant interpreta-
tion thereof. Our contribution lies in taking into account imperfections (in-
accuracies and uncertainties) related to source information by using mass 
functions based on a simple support model (two focal elements: the discern-
ment framework and the potential set of belonging of the pixel to be classi-
fied) with a normal law for the good management of these. 
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1. Introduction 

The mapping of the state of the surfaces of the Earth has been the subject of sev-
eral works. Researchers have used the use of spectral indices to classify satellite 
images. These indices have been used for the mapping of vegetated surfaces, wa-
ter surfaces and surfaces of bare soil and built-up. However, it is difficult to de-
termine the appropriate threshold values for ideal results ([1] [2]). This gives rise 
to uncertainties and inaccuracies in the information produced by the images as-
sociated with said indices. So, we propose to introduce the belief functions 
through the Dempster-Shafer theory to take into account and manage the possible 
imperfections related to the images associated with the indices in order to improve 
the decision-making in the assignment of a class to each pixel of the image. 

The general objective of the study is to develop a pixel classification model 
using the Dempster-Shafer theory, spectral indices NDVI (Normalized Differ-
ence Vegetation Index), MNDWI (Modification of Normalized Difference Wa-
ter Index) and NDBaI (Normalized Difference Bare Index), and ASTER satellite 
images. It acts specifically first, to model the framework of discernment and belief 
functions, then define the decision criteria and write algorithms and programming 
codes under the MATLAB software; finally realize and evaluate classified image. 

This paper, which proposes to report on the work carried out, presents suc-
cessively the belief functions, the material used, the methodological approach 
that guided the work and the results obtained. 

2. Belief Functions 

Exclusive use of belief functions and remote sensing images with data from dif-
ferent sensors, aims to improve classifications ([3] [4] [5]) to detect change or 
changing scales and/or mapping objects, parameters or phenomena ([6] [7]). 

2.1. Basic Principle 

The basic principle is taken from the work of [7]. 
Let { }1, , NC CΩ =  , the set of possible N classes for x, called discernment 

framework. The theory of belief functions is based on the manipulation of mass 
functions defined on the power set of Ω, denoted by 2Ω, the set of the 2N disjunc-
tions of Ω, instead of being restricted to Ω as would the theory of probabilities. 

We then define an initial mass function m of 2Ω with values in [0, 1] satisfying 
the following conditions of Equation (1): 

( )

( )
2

1

0
A

m A

m
Ω∈

 =


 ∅ =

∑
                        (1) 

where ∅ is the empty set. 
The value m(A) quantifies the belief that the class sought belongs to the subset 

A of Ω (and not to any other subset of A). 
The subsets A such that m(A) > 0 are called focal elements. 
Two functions of initial mass m1 and m2 representing the respective informa-
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tion of two different sources can be combined according to the Dempster rule 
[7] in Equation (2): 

( )
( ) ( )

{ }
1 2*

, 2 \ ; , 2
1

B C A
m B m C

m A A B C
K

Ω Ω∩ == ∀ ∈ ∅ ∀ ∈
−

∑
       (2) 

The term K is called the inconsistency of the fusion and can be interpreted as 
a measure of conflict. It corresponds to the mass of the empty set. Equation (3) 
gives its expression: 

( ) ( )1 2* , , 2
B C

K m B m C B C Ω

∩ =∅

= ∀ ∈∑               (3) 

If K = 1, the combination of information sources is impossible. This means 
that the sources are totally in conflict. They give contradictory information of 
the object of interest. 

2.2. Measuring Evidence 

The measurement of evidence is carried out through decision rules. We denote 
several decision rules ([8] [9] [10]). The most used decision rules are based on 
credibility functions and plausibility functions. 

The credibility Bel and plausibility Pls functions are defined from 2Ω  in 
[ ]0,1  and are given respectively by Equations ((4) and (5)): 

( ) ( )
2 ,

, 2
B B A

Bel A m B A
Ω

Ω

∈ ⊆

= ∀ ∈∑                 (4) 

( ) ( )
2 ,

, 2
B B A

Pls A m B A
Ω

Ω

∈ ∩ ≠∅

= ∀ ∈∑                (5) 

Credibility functions measure to what extent information given by a source 
supports hypothesis A, while plausibility functions measure how well informa-
tion from a source does not contradict hypothesis A.  

The values of the credibility ( )Bel A  and plausibility ( )Pls A  functions of 
hypothesis A can be respectively interpreted as the minimum and maximum 
uncertainty values around A. So, the interval ( ) ( ),Bel A Pls A   , called confi-
dence interval, quantifies ignorance of source on hypothesis A. 

Thus, the class C* retained for x is the element of Ω whose value is the greatest 
with respect to the criterion of decision chosen either the maximum of credibili-
ty or the maximum of plausibility. These criteria are given by Equations ((6) and 
(7)) respectively: 

( ){ }* max
i

iC
C Arg Bel C

∈Ω
 =                       (6) 

( ){ }* max
i

iC
C Arg Pls C

∈Ω
 =                       (7) 

3. Materials and Methods 
3.1. Materials 

The tools used are software and data. 
With regard to the software, it was first used ENVI 4.7 to preprocessing 
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ASTER images, then MATLAB to develop a model based on the use of the spec-
tral indices NDVI, MNDWI and NDBaI, and the theory of the belief functions 
for the classification of aquatic, mineral and vegetated surfaces. 

The data for this study are of two types: field data and remote sensing data. 
Field data consists of geographical coordinates of fixed points and outcrops. The 

geometrical and geological characteristics of these outcrops were also recorded. 
The remote sensing data used are derived from the ASTER sensor and are rec-

tified satellite images of the scene AST_L1A_00301102004105832. This sensor 
has 14 bands with a broad spectral region covering the visible and near infrared 
(VNIR-Visible and Near Infrared), the medium infrared (SWIR-Short-Wave 
Infrared: Tape 4, Band 5, Band 6, Band 7, Band 8 and Band 9) and Thermal 
Infrared (TIR-Thermal Infrared: Band 10, Band 11, Band 12, Band 13 and Band 
14).  

The spatial resolution associated with the said images is 15 m in the visible 
and the near infrared, 30 m in the medium infrared and 90 m in the thermal 
infrared. 

3.2. Methods 

The approach used consisted first of a preprocessing on the ASTER satellite im-
ages under ENVI, and then it was developed a classification model based on the 
calculation of spectral indices (NDVI, MNDWI and NDBaI) and the use of the 
theory of belief functions. Concretely, it was a question of modeling the dis-
cernment framework, the mass functions as well as the functions of measuring 
the evidence, and defining the decision criteria. In addition, algorithms and 
programming codes in language were realized under Matlab software and the 
classified image was generated and evaluated. 

3.2.1. Preprocessing 
In order to benefit from the totality and the quality of the spatial resolutions and 
the spectral resolutions, the said ASTER satellite images have been subject to 
georeferencing, geometric correction and resampling to create a compatible da-
tabase, from the 14 bands. 

First, georeferencing was performed for each band using the k-nearest neigh-
bors method; then the geometric correction was made from 100 bitter points, 
chosen covering uniformly the ASTER scene of interest, with the bilinear me-
thod; finally, the sampling, at a step of 15 m with the bilinear method, is carried 
out for the SWIR (bands 4, 5, 6, 7, 8 and 9) and TIR (bands 10, 11, 12, 13 and 14) 
bands. 

Georeferencing and geometric correction make it possible to make these satel-
lite images superimposable on others georeferenced supports in the same coor-
dinate system.  

3.2.2. Development of the Model 
1) Modeling of the framework of discernment 
Any portion of the Earth's surface can be a combination of three main entities: 
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a vegetated surface, an aquatic surface and a mineral surface. 
In this study, a vegetated area is an area of natural and/or cultural plants; an 

aquatic surface is a zone of natural and/or artificial watercourses and/or water 
bodies; a mineral surface is an area covered by soil, rock outcrops and/or 
built-up. 

The smaller the surface portion, the less it will contain different entities. So, an 
area of 15 m × 15 m could discriminate as much as possible vegetal surfaces, aq-
uatic surfaces and mineral surfaces. 

Therefore, the adopted discernment framework in Equation (8): 

{ }, ,V E MΩ =                          (8) 

V: vegetated surface  
E: aquatic surface  
M: mineral surface  
2) Modeling of information sources  
The sources of information considered in this study are the images produced 

by the new channels obtained from the calculation of the spectral indices NDVI, 
MNDWI and NDBaI. 

NDVI is a normalized vegetation index [11]. It is used by several authors to 
discriminate the vegetation of bare soils because of its simplicity of calculation, 
its normalized character and its reputation for less sensitivity (compared to ref-
lectance) with external factors such as Optical properties of the soil, geometry of 
illumination or atmospheric effects. It is given by Equation (9): 

 ( ) ( )
( ) ( )

3 2
3 2

band band
NDVI

band band
ρ ρ
ρ ρ

−
=

+
                 (9) 

( )3bandρ : Reflectance in the near infrared  
( )2bandρ : Reflectance in the red (visible) 

The MNDWI is a normalized water index that highlights water surfaces and 
not moisture in plants [12]. It is given by Equation (10): 

( ) ( )
( ) ( )

2 7
2 7

band band
MNDWI

band band
ρ ρ
ρ ρ

−
=

+
               (10) 

( )7bandρ : Reflectance in the medium infrared  
( )2bandρ : Reflectance in the green (visible) 

NDBaI is a normalized bareness index to discriminate the mineral surfaces of 
bare soils [13]. Its expression is given by Equation (11):  

( ) ( )
( ) ( )

14 7
14 7

band band
NDBaI

band band
ρ ρ
ρ ρ

−
=

+
               (11) 

( )14bandρ : Reflectance in thermal infrared  
( )7bandρ : Reflectance in mean-infrared 

On the basis of the aforementioned spectral indices, the detection of segmen-
tation thresholds was performed by learning for each source taking into account 
those proposed by said authors. Thus, the thresholds used are shown in Table 1. 
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Table 1. Segmentation thresholds of NDVI, MNDWI and NDBaI. 

 NDVI = X MNDWI = Y NDBaI = Z 

Thresholds X ≤ −0.9 −0.9 < X ≤ 0.1 0.1 < X Y ≤ 0.9 0.9 < Y Z < −0.1 −0.1 ≤ Z 

Entity E M V {M,V} E {E,V} M 

 
3) Modeling mass functions 
The sources mass functions are set to:  

{ } { } { }{ }2 , , , , , , , , , ,V E M V E V M E MφΩ = Ω
 

Considering the normal distribution of variable x and parameters µA et σA, in 
Equation (12): 

( ) ( )2

2

1, , exp
22π

A
A A

AA

x
N x

µ
µ σ

σσ

 −
 = −
 
 

            (12) 

with µA et σA respectively the mean and the standard deviation of the data x be-
longing to A, the mass functions of the sources are then defined by (13)-(19). 

- NDVI function mass 
With ( )NDVI x : value of the pixel x of the NDVI image, we have: 

if ( ) 0.9NDVI x ≤ −  then: 

( ) ( )( )
( ) ( )
( ) { }

2π , ,

1

0 2 ,

x E E E

x x

x

NDVI E N NDVI x

NDVI NDVI E

NDVI A A E

σ µ σ

Ω

 =
 Ω = −


= ∀ ∈ − Ω

           (13) 

if ( )0.9 0.1NDVI x− ≤  then: 

( ) ( )( )
( ) ( )
( ) { }

2π , ,

1

0 2 ,

x M M M

x x

x

NDVI M N NDVI x

NDVI NDVI M

NDVI A A M

σ µ σ

Ω

 =
 Ω = −


= ∀ ∈ − Ω

           (14) 

if ( ) 0.1NDVI x   then: 

( ) ( )( )
( ) ( )
( ) { }

2π , ,

1

0 2 ,

x V V V

x x

x

NDVI V N NDVI x

NDVI NDVI V

NDVI A A V

σ µ σ

Ω

 =
 Ω = −


= ∀ ∈ − Ω

            (15) 

- MNDWI mass function 
With ( )MNDWI x : value of the pixel x of the MNDWI image, we have: 

if ( ) 0.9MNDWI x ≤  then: 

{ }( ) { } ( ) { } { }( )
( ) { }( )
( ) { }{ }

, , ,, 2π , ,

1 ,

0 2 , ,

x M V M V M V

x x

x

MNDWI M V N MNDWI x

MNDWI MNDWI M V

MNDWI A A M V

σ µ σ

Ω

 =

 Ω = −


= ∀ ∈ − Ω

    (16) 

if ( ) 0.9MNDWI x   then: 
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( ) ( )( )
( ) ( )
( ) { }

2π , ,

1

0 2 ,

x E E E

x x

x

MNDWI E N MNDWI x

MNDWI MNDWI E

MNDWI A A E

σ µ σ

Ω

 =
 Ω = −


= ∀ ∈ − Ω

         (17) 

- NDBaI mass function 
With ( )NDBaI x : value of the pixel x of the NDBaI image, we have: 

if ( ) 0.1NDBaI x −  then: 

{ }( ) { } ( ) { } { }( )
( ) { }( )
( ) { }{ }

, , ,, 2π , ,

1 ,

0 2 , ,

x E V E V E V

x x

x

NDBaI E V N NDBaI x

NDBaI NDBaI E V

NDBaI A A E V

σ µ σ

Ω

 =

 Ω = −


= ∀ ∈ − Ω

     (18) 

if ( ) 0.1NDBaI x ≥ −  then: 

 

( ) ( )( )
( ) ( )
( ) { }

2π , ,

1

0 2 ,

x M M M

x x

x

NDBaI M N NDBaI x

NDBaI NDBaI M

NDBaI A A M

σ µ σ

Ω

 =
 Ω = −


= ∀ ∈ − Ω

          (19) 

Source focal elements 1S NDVI= , 2S MNDWI=  et 3S NDBaI=  are re-
ported in Table 2. 

- Combined mass function 
The combined mass function is realized in codes according to the twelve situ-

ations generated by the thresholding conditions of ( )1S x , ( )2S x  and ( )3S x , 
using the Dempster combination rule. Thus, for each situation, the combined 
mass function of the Equation (20) is generated in the planes P1, P2 and P3 
(P1P2P3), from the intersection triplet formed by the focal elements of the  

 
Table 2. Focal elements of the sources 1S , 2S  and 3S  according to the thresholding 
conditions on ( )1S x , ( )2S x  and ( )3S x . 

Situation N˚ 
Conditions Focal elements 

S1(x) = X1 S2(x) = X2 S3(x) = X3 S1 S2 S3 

1 X1 ≤ −0.9 X2 > 0.9 X3 ≥ −0.1 {E,Ω} {E,Ω} {M,Ω} 

2 X1 ≤ −0.9 X2 > 0.9 X3 < −0.1 {E,Ω} {E,Ω} {{E,V},Ω} 

3 X1 ≤ −0.9 X2 ≤ 0.9 X3 ≥ −0.1 {E,Ω} {{M,V},Ω} {M,Ω} 

4 X1 ≤ −0.9 X2 ≤ 0.9 X3 < −0.1 {E,Ω} {{M,V},Ω} {{E,V},Ω} 

5 X1 > 0.1 X2 > 0.9 X3 ≥ −0.1 {V,Ω} {E,Ω} {M,Ω} 

6 X1 > 0.1 X2 > 0.9 X3 < −0.1 {V,Ω} {E,Ω} {{E,V},Ω} 

7 X1 > 0.1 X2 ≤ 0.9 X3 ≥ −0.1 {V,Ω} {{M,V},Ω} {M,Ω} 

8 X1 > 0.1 X2 ≤ 0.9 X3 < −0.1 {V,Ω} {{M,V},Ω} {{E,V},Ω} 

9 −0.9 <X1 ≤ 0.1 X2 > 0.9 X3 ≥ −0.1 {M,Ω} {E,Ω} {M,Ω} 

10 −0.9 <X1 ≤ 0.1 X2 > 0.9 X3 < −0.1 {M,Ω} {E,Ω} {{E,V},Ω} 

11 −0.9 <X1 ≤ 0.1 X2 ≤ 0.9 X3 ≥ −0.1 {M,Ω} {{M,V},Ω} {M,Ω} 

12 −0.9 <X1 ≤ 0.1 X2 ≤ 0.9 X3 < −0.1 {M,Ω} {{M,V},Ω} {{E,V},Ω} 
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Table 3. Coding in the planes P1P2P3 of the different intersections giving each focal element of 2Ω . 

 φ E V M {E,V} {M,V} Ω 

Code (1) 111; 131; 411 113; 133; 413  431   433 

Code (2)  112; 113; 132; 133; 412; 413   432  433 

Code (3) 121; 123; 131 133  421; 431   423 

Code (4) 122; 123 132; 133 422  432 423 433 

Code (5) 211; 213; 231; 411 413 233 431   433 

Code (6) 212; 213 412; 413 232; 233  432  433 

Code (7) 221; 231  223; 233 421; 431  423 433 

Code (8)   222; 223; 232; 233; 422  432 423 433 

Code (9) 311; 313; 411 413  331; 333; 431   433 

Code (10) 312; 313; 332 412; 413  333 432  433 

Code (11)    321; 323; 331; 333; 421; 431  423 433 

Code (12) 322; 332  422 323; 333 432 423 433 

 
sources S1, S2 and S3, where: 

{ } { }
{ }{ } { }
{ }{ } { }

1

2

3

P , , , 1;2;3;4

P , , , 1;2;3

P , , , 1;2;3

E V M

E M V

M E V

 = Ω =
 = Ω =


= Ω =

                 (20) 

In the planes P1P2P3, the first component of the intersection belongs to the 
plane P1 and is indicated by its position in the same plane. The second and third 
components obey the same principle respectively in the planes P2 and P3. Thus, 
for example:  

131E M∩Ω∩ →  
411E MΩ∩ ∩ →  

The coding, which corresponds to the different intersections giving each ele-
ment of 2Ω  in the determination of the combined mass function, is given in 
Table 3. 

Consequently, the combined mass function is the sum of the mass function 
products of NDVI, MNDWI and NDBaI, for each element of 2Ω , correspond-
ing to the different codes inscribed in the box concerned.  

For example, for the Code (1) and the element φ of 2Ω , we have: 

( ) ( )
( ) ( )

111

131 411
x x x x x

x x x x

m NDVI MNDWI NDBaI NDVI MNDWI

NDBaI NDVI MNDWI NDBaI

φ = ⊗ ⊗ + ⊗

⊗ + ⊗ ⊗  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
* * *

* * *
x x x x xx

x x x xx

m NDVI E MNDWI E NDBaI M NDVI E MNDWI W

NDBaI M NDVI W MNDWI E NDBaI M

φ = +

+  
NB: The element of 2Ω  which have a blank space according to the codes, are 

not written as triplet intersections of focal elements of the sources S1, S2 and S3. 
4) Measuring evidence and evaluation 
- Measuring evidence 
Once all the combined mass functions of the simple and multiples hypotheses  
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Table 4. Elements of the combined mass function for the determination of credibility 
(Bel) et de plausibility (Pls) functions. 

  φ E V M {E,V} {E,M} {M,V} Ω 

 
 
 
 
 
 

Pls 
 
 
 
 
 
 
 
 
 
 

Bel 
 
 
 

φ 
 

m(φ) 
m(φ) 

       

E 
 

m(E) 
m(E) 

  m({E,V}) m({E,M})  m(Ω) 

V   
m(V) 
m(V) 

 m({E,V})  m({M,V}) m(Ω) 

M    
m(M) 
m(M) 

 m({E,M}) m({M,V}) m(Ω) 

 
{E,V}  

m(E) 
m(E) 

m(V) 
m(V)  

m({E,V}) 
m({E,V})   m(Ω) 

{E,M}  
m(E) 
m(E) 

 
m(M) 
m(M) 

 
m({E,M}) 
m({E,M}) 

 
 

m(Ω) 
 

{M,V}   
m(V) 
m(V) 

m(M) 
m(M) 

  
m({M,V}) 
m({M,V}) 

m(Ω) 

Ω  
m(E) 
m(E) 

m(V) 
m(V) 

m(M) 
m(M) 

m({E,V}) 
m({E,V}) 

m({E,M}) 
m({E,M}) 

m({M,V}) 
m({M,V}) 

m(Ω) 
m(Ω) 

The determination of the values of the credibility function (resp function of plausibility) is made for each 
element, by color of cell, considering the sum of the expressions in black (resp in red). 

 
of a pixel x are determined, several approaches can be chosen to measure the 
evidence, in particular the credibility (Bel) and Plausibility (Pls) functions 
represented in Table 4.  

For example, for an element E, we have: 

( ) ( )Bel E m E=  

( ) ( ) { }( ) { }( ) ( ), ,Pls E m E m E V m E M m= + + + Ω
 

The criterion of decision-making retained in this study is the maximum of 
plausibility. 

- Evaluation 
The evaluation consists in deciding on the quality of the classification carried 

out. Several methods exist. In this study, methods based on visual compliance 
analysis were used. This involves verifying in the field the correlations of the dif-
ferent entities provided by a classification. A synthesis of the methodology is 
shown in Figure 1. 

The different results obtained during this process are presented in the follow-
ing section. 

4. Results 
4.1. NDVI, MNDWI and NDBaI Images 

The raw images produced by the NDVI, MNDWI and NDBaI sources are 
represented respectively by Figures 2-4. 
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Figure 1. The flow chart of the methodology used. 
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Figure 2. Raw NDVI image. 
 

 

Figure 3. Raw MNDWI image. 
 

 

Figure 4. Raw NDBaI image. 
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It was obtained from the interpretation of the NDVI three entities:  
- Areas with a very light gray to gray color indicate a very high chlorophyll ac-

tivity. They correspond to the wooded savanna and the gallery forests; 
- Gray to dark gray areas are indicative of very low chlorophyll activity. They 

characterize the degraded savanna; 
- The zones of black to dark gray reveal an absence or very little vegetation 

cover. Therefore, they could represent water and mineral surfaces. 
For the interpretation of the MNDWI, areas of whitish color would be areas 

with water presence, while other shades are attributed to vegetation and mineral 
surfaces.  

On the NDBaI, the areas of blackish color would indicate the zones of absorp-
tion of heat, in this case the water; the areas of greyish to whitish color would 
represent the zones of varied reflection of heat whose strong reflections are whi-
tish in color.  

4.2. Segmented Images NDVI, MNDWI and NDBaI  

The segmented images produced by the NDVI, MNDWI and NDBaI, sources, as 
a function of the thresholds in Table 1, are represented respectively in Figures 
5-7. 

The distribution of the pixels in the different classes of the segmented images 
is given in Table 5. 

4.3. Combined and Segmented Image 

The proposed approach produces, from the characteristic segmented images de-
rived from the NDVI, MNDWI and NDBaI, a combined image and classified in 
Figure 8 into six classes whose number of pixels per class is given in Table 6.  

The analysis of Figure 8 shows an image classified into three absolute classes 
(E,V,M) and three classes of confusion ({E,V}, {M,V}, {E,M}).  

{E,V} is the area of whitish color that characterizes the confusion between wa-
ter and vegetation. It is observed in the vicinity of watercourses and water bo- 

 

 
Figure 5. Segmented NDVI image. 
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Figure 6. Segmented MNDWI image. 
 

 

Figure 7. Segmented NDBaI image. 
 

Table 5. Number (or percent) of pixels obtained per class for each segmented image. 

 NDVI segmented MNDWI segmented NDBaI segmented 

E 405,373 (2.35%) 133,641 (0.78%) 0 

V 8,525,447 (49.51%) 0 0 

M 8,289,180 (48.14%) 0 12,951,925 (75.21%) 

{E,V} 0 0 4,268,075 (24.79%) 

{M,V} 0 17,086,359 (99.22%) 0 

{E,V} 0 0 0 

Ω 17,220,000 (100%) 17,220,000 (100%) 17,220,000 (100%) 

 
dies. This is characteristic of gallery forests that are observed along or around the 
watercourses and bodies of water. It represents 0.354% of the area observed 
(1371.573 km2). 

{M,V} is the area of blackish color indicating confusion between vegetation 
and mineral surfaces. It occupies 38.220% of the observed surface area 
(148,083.39 km2) and corresponds to the areas covered by scattered grassy vege-
tation.  
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Figure 8. Combined and segmented image. 

 
Table 6. Number (or percent) of pixels obtained per class for the combined and classified 
image. 

Classes of image Number of pixels obtained per class 

E 11,343 (0.066%) 

V 3,170,776 (18.413%) 

M 7,130,048 (41.406%) 

{E,V} 60,904 (0.354%) 

{M,V} 6,581,532 (38.220%) 

{E,M} 265,397 (1.541%) 

Ω 17,220,000 (100%) 

 
{E,M} is the area of yellowish color marking the confusion between water and 

mineral surfaces. It covers 1.541% of the area observed (5970.604 km2) and 
marks the places (where the vegetation is almost non-existent) with presence of 
water. This corresponds to places with abundant water and minerals (flats of 
water courses and bodies, water-saturated soils, very humid soils, etc.). 

5. Conclusions 

In this paper, an application of the Dempster-Shafer Theory has been proposed 
for the classification of pixels from Aster satellite images and the NDVI, 
MNDWI and NDBaI, spectral indices in order to manage the potential inaccu-
racy and uncertainty related to images. The presented approach consists of 
merging the information of the segmented images coming from the indices 
NDVI, MNDWI and NDBaI. 

This information was modeled by mass functions based on a model of normal 
law and simple support (two focal elements: the discernment framework and the 
potential grouping of the pixel to be classified). This produces a segmented im-
age in six classes, including three absolute classes (E,V,M) and three classes of 
confusion ({E,V}, {M,V}, {E,M}). The field verification, based on geographical 
coordinates of pixels of the said classes, made it possible to make a concordant 
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interpretation thereof. 
However, the interpretation of the results could be improved by a statistical 

study, in particular by the use of conformity matrix or confusion matrix. This 
model could be used, with appropriate adjustments, for other mapping purpos-
es. 
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