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Abstract 
In this paper, we investigate the Rotating N Loop-Soliton solution of the 
coupled integrable dispersionless equation (CIDE) that describes a current-fed 
string within an external magnetic field in 2D-space. Through a set of inde-
pendent variable transformation, we derive the bilinear form of the CIDE Eq-
uation. Based on the Hirota’s method, Perturbation technique and Symbolic 
computation, we present the analytic N-rotating loop soliton solution and 
proceed to some illustrations by presenting the cases of three- and four-soli- 
ton solutions. 
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1. Introduction 

During the past several years, the study of coupled nonlinear evolution Equa-
tions has played an important role in explaining many interesting phenomena, 
like electromagnetic wave propagation in impurity media, water waves, pulse in 
biological chains and so on [1] [2] [3]. At the same time, the coupled integrable 
dispersionless system (CIDE) has attracted much interest in view of its wide 
range of application in various fields of mathematics, physics, applied mathe-
matics, theory of quantum and theory of conformal maps on the complex plane 
[4] [5] [6] [7]. The CIDE, has first been presented by Konno and Oono in Ref. 
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[8] based on a Lie-group ( )2SU= , and its generalization based on the 
Lie-group ( )2,SL=   are examples of such system [7] [9] [10], which have 
attracted great deal of interest because of its nice integrability structure and soli-
ton solution. Based on this standpoint, the solitons show loop shapes in the 
three-dimensional Euclidean space. The angular momentum conservation law 
can be derived from the Equations of motion of the string such that we can ex-
pect rotating loop solitons. 

So far, several successful methods have been developed to obtain explicit solu-
tion for soliton Equations, such as the Inverse Scattering Transformation (IST) 
[1] [11] [12], Bäcklund and Darboux Transformations [13] [14], the Hirota’s 
method [15] [16], the Wronskian and Cassoratian techniques [17] [18], the Al-
gebra geometric method [19] and so on. Among these methods, the Hirota’s bi-
linear method has been proven to be an efficient and direct approach to con-
struct soliton solutions to nonlinear evolution Equations via the bilinear forms 
from the dependent variables transformation. 

In Ref [8], Konno and Oono have presented the well known CIDE 
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                         (1) 

where Equation (1) describes the current-fed within an external magnetic field 
[20]. In Equation (1), q, r, and s are all functions of x and t, the subscripts denote 
partial derivatives with respect to the space-like and time-like variables respec-
tively. 

The aim of this work is to verify if the congestion, due to the displacement of a 
great number of soliton will modify the conservation properties observed for the 
case of two solitons. Indeed, we provide the explicit expression of the N-Rotating 
loop soliton solution to the CIDE for the general positive integer 2N ≥  and to 
illustrate our general result, we discuss particular cases of N. Thus the following 
paper is organized as follows. In section 2, we summarize the transformation of 
the CIDE Equation (1) into an Equation in bilinear form. In section 3, we give 
the full expression of the N-Rotating loop soliton solution and we illustrate our 
results by considering in detail the cases of 1,2,3,4N =  and we end this work 
with a brief summary. 

2. Hirota’s Bilinearization of the CIDE 

Let us consider the following setting [20] [21] [22] 

, ,r X iY s X iY= + = −  

, , ,q Z x t x tσ τ= = + = −                  (2) 

which inserted into Equation (1) gives 

( ) ( ) ,ττ σσ τ σ− = + × ×r r r r J r                   (3) 

where ( ), ,X Y Z=r  stands to be the vector position of the string, ( )1,0,1=J  
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is the constant electric current [23]. In Equation (3) the factor τ σ+r r  can be 
interpreted as the Lorentz force acting on effective internal current, σr  can be 
considered as an internal electric current and τr  is a correction term induced 
by the motion of string to σr . Equation (3) can therefore represent a current-fed 
string interacting with the external magnetic field = ×B J r  which satisfies the 
two Maxwell’s Equations 2rot =B J  and 0div =B . Using the boundary con-
dition ( )0,0,σ→r  for σ →∞ , we bilinearize Equation (3) as 

2 1D D , D ,
2x t tQ F Q F F F Q Q∗⋅ = ⋅ ⋅ = ⋅               (4) 

using the transformation 

, 2 ln ,t
Qr q x F
F

= = − ∂                     (5) 

where D  denotes the Hirota’s derivative [15] [16]. Now, expanding Q and F as 
series 
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                (6) 

Substituting the expansion into the above bilinear Equations, we find that 
there are only even order terms of   in the first Equation while odd order 
terms in the second one. Arranging the coefficients at each order of  , we have 
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It is then possible to obtain at the required order the required number of soli-
ton solutions by determining the full expansion of F and Q. 

3. Rotating one and Two-Loop Soliton Solution 

In this section, we derive the rotating solitons i.e., solutions that the Z compo-
nent of the angular momentum is a conserved quantity. In order to construct 
one-rotating soliton solution, we take 

( )1 1exp ,Q η=                          (8) 

where 1 1 1 1k x tη ω γ= + + . Substituting it into Equation (7), limiting our interest 
to the terms of i , 2i ≤ , we obtain 



S. Abbagari et al. 
 

1373 

( )1

1
1 1 2 1 1 1 11, exp , 1,i

j
k F A i jω η η∗

∗= = + = =             (9) 

the first part of Equation (9) standing for the dispersion relation and the coeffi-  

cient 1
1

A ∗  is giving by 
( )

1
21

1 1

1

4
A

ω ω
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∗
=

+
. This show that the expansion can be  

truncated as the finite sum 
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Absorbing the parameter   into the phase constant 1γ  gives the one-ro- 
tating soliton solution of the CIDE as it is depicted in Figure 1. 

Next, we choose the solution of Equation (7) while limiting our interest to the 
terms of i , 4i ≤  to be 

( ) ( )1 2
1 1 2exp exp ,Q A Aη η= +                 (11) 

where the phase i i i ik x tη ω γ= + +  and the dispersion relation 1i ikω =  with 
1,2i = . From Equation (7) we have 
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where 
 

 
Figure 1. From left to right panels rotating one-loop soliton solution to the CIDE 
Equation (1): For left we depict at times 30t = −  (blue color), t = 0 (red color) and t = 30 
(black color) corresponding to three moving states, with 1 0.66v =  and the computed 
angular velocities of such wave is 1 0.40Ω = , respectively. 
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According to the above analysis, the two-rotating soliton solution is obtained 
when we substitute Equations (11)-(13) into Equation (5) as it is depicted in 
Figure 2. 

Generally we can conjecture the N-rotating soliton solution as 
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where the phase p p p pk x tη ω γ= + +  and the dispersion relation 1p pk ω =  with 
1, ,p N= � . 
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Figure 2. From left to right panels rotating two-loop soliton solution to the CIDE Equa-
tion (1): For right we depict at times 30t = −  (blue color), t = 0 (red color) and t = 30 
(black color) corresponding to three moving states, with 1 2v = , 2 3.33v =  and the 
computed angular velocities of such wave is 1 0.10Ω =  and 2 0.15Ω = , respectively. 
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where [ ]N  denotes the maximum integer which does not exceed N, N mC  in-
dicate the summation over all possible combinations of m elements from N and 
(m) indicates the product of all possible combinations of m elements with 
( )α β< . Using the real parameters, we write the phase into two parts as 

( ) ( ), , , , , , , 1, , ,n n re n re n re n im n im n imk x t i k x t n Nη ω γ ω γ= + + + + + = �    (17) 

where the real parts and imaginary parts of the parameters nk  and nω  are ob-
tained using the dispersion relation as 
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vk v v
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k v

ω
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            (18) 

here, nv  and nΩ  are the phase velocity and the angular velocity of the soliton, 
which respect the following condition 

0, 1 ;1 .n n n nv v v > Ω ∈ −                  (19) 

Now, let us consider two simple cases: 3N =  and 4N = . 
• Case N = 3 

We then write the following expressions of F and Q with all coefficients, 
where ( )0

exp 1jη∗ = . This leads to the three-rotating soliton solution depicted in 
Figure 3. 

 

 
Figure 3. From left to right panels rotating three-loop soliton solution to the CIDE 
Equation (1): For left we depict at times 30t = −  (blue color), t = 0 (red color) and t = 30 
(black color) corresponding to three moving states, with 1 2v = , 2 0.30v = , 3 0.55v =  
and the computed angular velocities of such wave is 1 0.25Ω = , 2 1.00Ω = , 3 0.50Ω = , 
respectively. 
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• Case N = 4 
In this case the four-rotating soliton solution is obtain by 
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   (23) 

Figure 4 gives the depiction of the four-rotating soliton solutions to the CIDE. 

4. Summary and Discussion 

In this work, we have investigated the CIDE under the view-point of Hirota’s bi-
linearization. Investigating its one- and two-soliton solution, we have come to 
propose a generalization of such solution to explicit N-soliton solution of the 
same system. As a matter of illustration, we have provided explicit expressions of 
3- and 4-soliton solutions to the CIDE, and have provided figures to enforce our 
results. In this figures it has appeared clearly that the solution exhibit particle 
character, since they interact elastically. Since the CIDE is of many physical im-
plications, the N-soliton solution we have obtained is helpful in understanding 
the propagation of waves in some media such as the propagation electric field in 
optical fibers, since in Ref. [22] has provided the relation that link the CIDE and 
the short pulse system. In this work, we have not gone deeply in studying the in-
teraction process between solitons. Such a study will help understand better the 
interaction process that occurs during the propagation of such waves in some 
media including optical fibers. 
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Figure 4. From left to right panels rotating four-loop soliton solution to the CIDE Equa-
tion (1): For right we depict at times 90t = −  (blue color), 0t =  (red color) and 

90t =  (black color) corresponding to three moving states, with 1 0.91v = , 2 1.82v = , 

3 1.33v = , 4 1.11v =  and the computed angular velocities of such wave is 1 0.015Ω =  
and 2 0.050Ω = , 3 0.090Ω = , 4 0.990Ω =  respectively. 
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