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Abstract 
In this paper, we get many new analytical solutions of the space-time nonli-
near fractional modified KDV-Zakharov Kuznetsov (mKDV-ZK) equation by 
means of a new approach namely method of undetermined coefficients based 
on a fractional complex transform. These solutions have physics meanings in 
natural sciences. This method can be used to other nonlinear fractional diffe-
rential equations. 
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1. Introduction 

Nonlinear fractional differential equations (NFDEs) are universal models of the 
classical differential equations of integer order. In recent years, the fractional 
order derivative and integral is becoming a hot spot of international research; it 
can more accurately describe the nonlinear phenomena in physics. Such as 
chemical kinematics, chemical physics and geochemistry, communication, phy- 
sics, biology, engineering, mathematics, diffusion processes in porous media, in 
vibrations in a nonlinear string, power-law non-locality, and power-law long- 
term memory can use NFDEs as models to express these problem [1] [2] [3] [4] 
[5]. In the last few years, it has become an important issue and matter of interest 
for researchers about the study of analytical and numerical solutions of fraction-
al differential equations (FDEs). There are a lot of effective methods which can 
be used to study soliton, such as the fractional functional sub-equation method 
[6], the fractional modified trial equation method [7], the first integral method 
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[8], the fractional functional variable method [9], the extended tanh-function 
method [10], the (G’/G)-expansion method [11] [12] and so on. 

The present article aims to find out the modified KDV-Zakharov Kuznetsov 
[13] [14] [15] equation’s exact solutions by using named method of undeter- 
mined coefficients. The following is the organization of this paper. Some basic 
definitions and mathematical preliminaries of the fractional calculus are intro- 
duced in the next section. Investigated method of undetermined coefficients ap-
plied to solve fractional differential equations based on a fractional complex 
transform is presented in Section 3. In Section 4, we apply method of undeter- 
mined coefficients to the space-time nonlinear fractional modified KDV-ZK eq-
uation. Finally, we give some conclusions. 

2. Basic Definitions 

Fractional calculus is a generalization of classical calculus. There are a lot of ap-
proaches developed over years to generalize the concept of fractional order deriva-
tive, such as, Riemann-Liouville, Grünwald-Letnikow, Caputo [16], Kolwankar- 
Gangal, Oldham and Spanier, Miller and Ross, Cresson have presented many me-
thods, and Jumnarie put forward a modified Riemann-Liouville derivative [17] 
[18]. 

In the section, the some properties and definitions of the modified Riemann- 
Liouville derivative that will be applied in the sequel of the work were given. 

The following is the modified Riemann-Liouville derivative defined by Juma-
rie [17] [18] 
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Remark1. ( ),f R R t f t→ →：  denote a continuous but not necessarily dif-
ferentiable function. 

The probability calculus, fractional Laplace problems, and fractional varia- 
tional calculus successfully applied Jumarie’s modified Riemann-Liouville deriv-
ative. To summarize a few useful formulae by Jumarie’s modified Riemann- 
Liouville derivative in [17] [18], we give some properties as follows 

( )
( )

1
,   0,

1tD t tα γ γ αγ
γ

γ α
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= >
Γ + −

                   (2) 

( )( ) ( ) ,     constant,t tD cf t cD f t cα α= =                 (3) 

( ) ( ) ( ) ,t g tD f g t f g t D g tα α′=                        (4) 

( ) ( ) ( ) ,t gD f g t D f g t g αα α ′=                         (5) 
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( ) ( ) ( ) ( ).t t tD af t bg t aD f t bD g tα α α+ = +                    (6) 

Remark 2. J. H. He et al. in [19] modified the chain rule given by Equation (5) 
to the formula 

( ) ( ) ( ) ,t t g tD f g t f g t D g tα ασ ′ ′=                     (7) 

where tσ ′  is called the sigma indexes (see [19]). Therefore, Equation (5) is mo- 
dified to the forms 

( ) ( ) ( ) .t t gD f g t D f g t g αα ασ ′ ′=                      (8) 

3. Method of Undetermined Coefficients 

In the section, we introduce the generally steps of method of undetermined coef-
ficients 

Step 1: We set a nonlinear fractional order partial differential equation as fol-
lows 

( ), , , , , , 0,  0 , 1t x t t t x x xP u D u D u D D u D D u D D uα β α α α β β β α β= < <
     (9) 

where u  is an unknown function about ,x t  two independent variables, 
,t xD u D uα α  modified Riemann-Liouville derivative of u , and P  is a polyno- 

mial of u  and its partial fractional derivatives, in which includes the highest 
order derivatives and the nonlinear terms. 

Step 2: By using the traveling wave transformation 
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where k  and c  are non zero arbitrary constants. And by using the chain rule 
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where tσ ′  and xσ ′  are called the sigma index. The sigma index usually is de-
termined by gamma function [20]. In general, we can take ,t x lσ σ′ ′= =  where 
l  is a constant. 

Substituting (10) along with (2) and (11) into (9), we can rewrite Equation (9) 
in the following nonlinear ordinary differential equation 

( ), , , , 0,Q U U U U′ ′′ ′′′ =                      (12) 

where the prime denotes the derivative with respect to ξ . For the convenience 
of calculation, we should obtain a new equation by integrating Equation (12) 
term by term one or more times. 

Step 3: By the following form [21], assume that solution of the Equation (14) 
can be represented 

( ) sech ,mU Aξ ξ=                         (13) 
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where A  is nonzero constant, m  is obtained by balancing the highest order 
term and nonlinear term of Equation (9) or Equation (12). 

Step 4: Substituting the constant A  and m  into Equation (14), we can ob-
tain the solution of the fractional order Equation (9). 

4. The (3 + 1) Dimensional Space-Time Fractional mKDV-ZK 
Equation 

In this current sub-section, we apply method of undetermined coefficients to 
solve the (3 + 1) dimensional space-time fractional mKDV-ZK equation of the 
form, 

2d 0,    0,  0 1,t x xxx xyy xzzD u u u eu fu gu tα α+ + + + = > < <     (14) 

where d , e , f  and g  are nonzero constants, α  is a parameter describing 
the order of the fractional space-time-derivative. When 0f = , 0g = , d , 

0e ≠ , Equation (14) is called the fractional modified KDV equation 
2d 0,    0,  0 1,t x xxxD u u u eu tα α+ + = > < <            (15) 

when 1,α =  Equation (14) is called the modified KDV-ZK equation 
2d 0,    0.t x xxx xyy xzzu u u eu fu gu t+ + + + = >            (16) 

The modified KDV-ZK equation is applied in many physical areas. Existence 
of the solutions for this equation has been considered in several papers, see ref-
erences in [22] [23]. Next, we will obtain the non-topological soliton and dark 
soliton solutions to Equation (14) by method of undetermined coefficients [24] 
[25]. 

Therefore, we use the following transformations, 

( ) ( ) ( )
, , , , ,

1
tu x y z t U kx py qz
αλξ ξ
α

= = + + −
Γ +

         (17) 

Where ,k  ,p  ,q  λ  are nonzero constants. 
Substituting Equation (17) with Equation (2) and Equation (11) into Equation 

(14), we have 
2 3 2 2 0,U kdU U k eU kfp U kgq Uλ ′ ′ ′′′ ′′′ ′′′− + + + + =           (18) 

where d“ ”
d
UU
ξ

′ = . By once integrating and setting the constants of integration  

to zero, we obtain 

( )3 2 2 2 0.
3

kdU U k ek fp gq Uλ ′′− + + + + =            (19) 

4.1. The Non-Topological Soliton Solution 

To get the non-topological soliton solution of Equation (19), we can make the 
assumption, 

( ) sech ,mU Aξ ξ=                         (20) 
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where 

( )
,

1
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Γ +

                   (21) 

where ,k  ,p  ,q  λ  are nonzero constants coefficients. The m  is unknown 
at this point and will be determined later. From the Equation (20)-(21), we ob-
tain 
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 (23) 

and 

( )3 3 3sech .mU Aξ ξ=                         (24) 

Thus, substituting the ansatz (23)-(27) into Equation (21), yields to 

( ) ( )( )

3 3

2 2 2 2 2

sech sech
3

sech 1 sech 0.

m m

m m

kdA A

k ek fp gq Am Am m

λ ξ ξ
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− +

+ + + − + =
       (25) 

Now, from Equation (25), equating the exponents 2m +  and 3m  leads to 

2 3 ,m m+ =                             (26) 

so that 

1.m =                                  (27) 

From Equation (25), setting the coefficients of 2sechm ξ+  and 3sech mξ  
terms to zero, we obtain 

( ) ( )3 2 2 2 1 0,
3

kd A Ak ek fp gq m m− + + + =                (28) 

by using Equation (27) and after some calculations, we have 

( )2 2 26
.

ek fp gq
A

d

+ +
= ±                     (29) 

We find, from setting the coefficients of sechmξ  terms in Equation (25) to 
zero 

( )2 2 2 2 0,A Am k ek fp gqλ− + + + =                  (30) 

also we get 

( )2 2 2 .k ek fp gqλ = + +                      (31) 
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From Equation (29), it is important to note that 

( )2 2 2 0.d ek fp gq+ + >                 (32) 

Thus finally, the 1-soliton solution of Equation (14) is given by: 
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4.2. The Dark Soliton Solution 

In order to start off with the solution hypothesis, we use the solitary wave ansatz 
of the form 

( ) tanh ,mU Aξ ξ=                           (35) 

and 

( )
,

1
tkx py qz
αλξ
α

= + + −
Γ +

                   (36) 

where ,k  ,p  ,q  λ  are the free parameters. Also the m  is unknown at this 
point and will be determined later. 

From Equations (35)-(36), we obtain 

( ) ( )1 1d
tanh tanh

d
m mU

Am
ξ
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ξ

− += −                  (37) 

and 

( ) ( ) ( ){ }
2

2 2
2

d
1 tanh 2 tanh 1 tanh ,

d
m m mU
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ξ

ξ ξ ξ
ξ
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and 

( )3 3 3tanh .mU Aξ ξ=                          (39) 

Substituting Equations (35)-(39) into Equation (19), gives 

( ) ( ){
( ) }

3 3

2 2 2 2

2

tanh tanh
3

1 tanh

2 tanh 1 tanh 0.

m m
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m m

kdA A
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Now, from Equation (40), equating the exponents of 3tanh m ξ  and 
2tanhm ξ+  gives, 

3 2,m m= +                           (41) 

which yields 

1.m =                             (42) 

Setting the coefficients of 3tanh m ξ  and 2tanhm ξ+  terms in Equation (40) 
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to zero, we have 

( )( )3 2 2 21 0,
3

kd A Akm m ek fp gq+ + + + =                (43) 

then, we get 

( )2 2 26
.

ek fp gq
A

d

+ +
= ± −                    (44) 

Again, from Equation (40) setting the coefficients of tanhm ξ  terms to zero, 

( )2 2 2 22 0,A m Ak ek fp gqλ− − + + =                   (45) 

and from Equation (45) we have 

( )2 2 22 .k ek fp gqλ = − + +                      (46) 

Equation (46) prompts the constraint 

( )2 2 2 0.d ek fp gq+ + <                         (47) 

Thus finally, the dark soliton solution for the (3 + 1) dimensional space-time 
fractional mKDV-ZK equation is given by: 
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2 2 2 2 2 2
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6 2
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d α
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u x y z t kx py qz

d α
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 = − − + + +
 Γ + 

(49) 

5. Conclusion 

In this article, we have got the new solutions for the (3 + 1) dimensional space- 
time fractional mKDV-ZK equation by using the method of undetermined coef-
ficients. Up to now, we could not find that these solutions were reported in other 
papers. In order to solve many systems of nonlinear fractional partial differential 
equations in mathematical and physical sciences, such as, the space-time frac-
tional mBBM equation, the time fractional mKDV equation, the nonlinear frac-
tional Zoomeron equation and so on, we can use the method of undetermined 
coefficients recommended herein would be general to a certain extent. 
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