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Abstract 
The paper presents a mathematical multibody model of a soft mounted in-
duction motor with sleeve bearings regarding forced vibrations caused by dy-
namic rotor eccentricities considering electromagnetic field damping. The 
multibody model contains the mass of the stator, rotor, shaft journals and 
bearing housings, the electromagnetic forces with respect of electromagnetic 
field damping, stiffness and internal (rotating) damping of the rotor, different 
kinds of dynamic rotor eccentricity, stiffness and damping of the bearing 
housings and end shields, stiffness and damping of the oil film of the sleeve 
bearings and stiffness and damping of the foundation. With this multibody 
model, the bearing housing vibrations and the relative shaft vibrations in the 
sleeve bearings can be derived. 
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1. Introduction 

Fast running induction motors with high power ratings, ( 1 MW;NP >   
)2900 rpmNn ≥  are often equipped with sleeve bearings, because of the high 

circumferential speed of the shaft journals, and are often mounted on soft foun-
dations (Figure 1). A soft foundation may be realized by e.g. rubber elements 
under the motor feet to decouple the motor from the foundation. But also a steel 
frame foundation can be often characterized to be soft, because of the light weight 
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construction. Vibrations of rotating machines are often an issue [1]-[10]. 
To guarantee a safe operation, the vibrations at the sleeve bearings are often 

monitored [1] [2] [3]. Usually the relative shaft displacements between the shaft 
journals and the bearing shells are measured, using induction sensors. Addition-
ally also the bearing housing vibrations may be measured by accelerations sen-
sors (Figure 2). 

Increasing requirements in standards and specifications of electrical machines 
regarding vibration limits [11] [12] [13] [14]—e.g. IEC 60034-14, ANSI/API 541, 
ISO 10816, ISO 7919—require high sophisticated calculation methods. In addi-
tion to the mechanical excitation—e.g. mechanical unbalance [1] [2] [3]— also 
magnetic forces occur which may lead to high vibrations [4]-[10]. In industry, 
these magnetic forces are nowadays still considered without the electromagnetic 
field damping effect, when analyzing the vibrations. The aim of the paper is now 
to present a multibody model for a soft mounted induction motor and to present 
a practical way how to consider electromagnetic field damping. 

2. Dynamic Rotor Eccentricity 

The three most important dynamic eccentricities for induction motors—eccen- 
tricity of rotor mass, bent rotor deflection and magnetic eccentricity—are here 
considered in the paper (Figure 3) [9] [10]. 
• Eccentricity of rotor mass ûe  which is e.g. caused by residual unbalance, which 

remains after the balancing process. 
 

 
Figure 1. Induction motor with sleeve bearings on a soft foundation. 

 

 
Figure 2. Sensors at the sleeve bearing housing. 
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Figure 3. Dynamic rotor eccentricities. 

 

 
Figure 4. Magnetic forces at the rotor due to eccentricity. 

 
• Bent rotor deflection â , which is e.g. caused by thermal bending of the ro-

tor. 
• Magnetic eccentricity ˆme , which is e.g. caused by deviation of concentricity 

between the inner diameter of the rotor core and the outer diameter of the 
rotor core. The so caused mechanical unbalance is compensated by a placed 
unbalance, so that the centre of rotor mass U is not displaced from the rota-
tion axis. 

3. Electromagnetic Field Damping 

If the magnetic centre M of the rotor is displaced from the centre of the stator 
bore (Figure 4), additionally electromagnetic fields—eccentricity fields—occur 
[4]-[9]. These additional fields produce a radial magnetic force ˆ

mrF  in direc-
tion of the smallest air gap. If the rotor angular frequency differs to the angular 
frequencies of these eccentricity fields, these fields induce a voltage into the rotor 
cage. The so produced harmonic rotor currents create electromagnetic fields, 
which lower the magnitude of the origin eccentricity fields. Therefore, the radial 
magnetic force ˆ

mrF  is reduced and an additional magnetic force ˆ
mtF  is gener-

ated, in tangential direction [7] [8] [9]. 
These electromagnetic forces act on the rotor but in opposite direction also at 

the stator. For forced vibration caused by dynamic rotor eccentricity the whirl-
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ing angular frequency Fω  is equal to the rotational angular frequency Ω : 

Fω = Ω                            (1) 

Referring to [7] [8] [9], the radial electromagnetic force can be described by 
an electromagnetic spring constant mdc  and the tangential electromagnetic force 
by an electromagnetic damper constant md  (with 0Fω ≠ ), depending on the 
pole-pair number p : 
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The constant mc  describes the magnetic spring constant, without electro-
magnetic field damping, l  the length of the core, R  the radius of the stator 
bore, 0µ  the permeability of air, δ ′′  the equivalent magnetic air gap width, 
ˆ

pB  the amplitude of fundamental air gap field, 1pα +  and 1pα −  the real parts 
and 1pδ +  and 1pδ −  the imaginary parts of the complex field damping value. 
For 2-pole motors ( )1p =  the components 1pα −  and 1pδ −  do not exist, ne-
glecting the homopolar flux. Without electromagnetic field damping, the field 
damping coefficients become [7] [8] [9]: 

1 1 1 11; 0p p p pα α δ δ+ − + −= = = =                    (4) 

With the ordinal number 1pν = ±  for an eccentricity field wave, the elec-
tromagnetic field damping coefficients can be calculated as follows [7] [8] [9]: 

21 ;  K s K sν ν ν ν ν ν να δ β= − ⋅ = − ⋅ ⋅  with: 
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2,R ν  presents the resistance of a rotor bar and ring segment, 1ω  the electri-
cal stator angular frequency, 2 ,hL ν  the main field inductance of a rotor mesh, 

2 ,L σ ν  the leakage inductance of a bar and ring segment, Schr,νξ  the screwing 
factor and ,K νζ  the coupling factor. A very important parameter is here the 
harmonic slip sν , which can be described by [7] [8] [9]: 

( )1

1
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p
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ν
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−Ω
= Ω = −                 (6) 
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Here, s presents the fundamental slip of the induction motor, 1ω  the electri-
cal stator angular frequency and νω ν  the angular frequencies of the eccen-
tricity fields, depending on the kind of eccentricity: 
• Static eccentricity : 1νω ω= , 
• Dynamic eccentricity as a circular forward whirl: 1 Fνω ω ω= ± , 
• Dynamic eccentricity as a circular backward whirl: 1 Fνω ω ω=  . 

In order to consider electromagnetic field damping by a simple magnetic 
spring element mdc  and a simple magnetic damper element md , the determi-
nation has to be made, that the calculation of mdc  and md  is here only based 
on circular forward orbits [9]. This definition presents the highest electromag-
netic influence, when considering electromagnetic field damping. Because of the 
fact, that for forced vibrations due to dynamic eccentricity the whirling fre-
quency is equal to the rotary angular frequency ( )Fω = Ω , and that only circu-
lar forward orbits are considered for calculating the magnetic spring and damper 
value, the harmonic slip sν  becomes equal to the fundamental slip s  [7] [8] 
[9]: 

s sν =                             (7) 

4. Multibody Model 

The vibration model is on the one side an enhancement of the model in [9], 
where only the rotor dynamic for rigid foundation is analyzed and on the other 
side an enhancement of the model in [10], where no electromagnetic field damp-
ing, no rotating damping of the rotor, no damping of the bearing housing and 
no mass of the bearing housings and shaft journals is considered. The innova-
tion of the presented model is now that all these influences are now united in 
one single multibody model. The model is a plane multibody model, which con-
sists of two main masses, the rotor mass wm , and the stator mass sm , which 
has the inertia sxθ  and is concentrated in the centre of gravity S (Figure 5). 

Additional masses are the mass of the shaft journal vm  and the mass of the 
bearing housing bm . The rotor, rotating with the rotary angular frequency Ω , 
presents a concentrated mass and has no inertia moments (no gyroscopic effect 
is considered).The movement of the shaft journal in the sleeve bearing is de-
scribed by the shaft journal centre point V. The point B, which is positioned in 
the axial middle of the sleeve bearing shell, describes the movement of the bear-
ing housing. The rotor mass is linked to the stator mass by the stiffness c  and 
internal (rotating) damping id  of the rotor, the oil film stiffness matrix Cv and 
oil film damping matrix Dv of the sleeve bearings, which suppose to be equal for 
both sides, as well as the bearing house and end shield stiffness and damping 
matrix Cb and Db. The stator structure can be defined to be rigid, compared to 
the soft foundation. The foundation stiffness matrix Cf and the foundation damp-
ing matrix Df connect the stator feet, FL (left side) and FR (right side), to the 
ground. The foundation stiffness and damping on the right side and on the left 
side is identical and the foundation stiffness values cfy and cfz and the foundation 
damping values dfy and dfz are the values for each motor side.  
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Figure 5. Multibody model. 

 
The electromagnetism is considered by the electromagnetic spring and dam-

per matrix mC  and mD , where also electromagnetic field damping is included. 
Excitations are all three kinds of dynamic rotor eccentricity—eccentricity of ro-
tor mass, bent rotor deflection and magnetic eccentricity—but are not pictured 
in Figure 5, because of the complexity. All used coordinate systems are fixed.  

5. Stiffness and Damping Coefficients 

The oil film stiffness and damping coefficients cij and ( ), ,ij i j z yd =  of the sleeve 
bearing can be calculated by solving the Reynolds differential equation [15] [16], 
and are depending on the rotary angular frequency Ω : 

( ) ( );    ij ij ij ijc c d d= Ω = Ω                     (8) 

The stiffness of the rotor c  is constant. According to [3], the internal mate-
rial damping of the rotor id  is described here by the mechanical loss factor 
tan iδ  of the rotor, depending on the whirling angular frequency Fω , which is 
here identically to the rotary angular frequency Ω : 

( ) tan i
i

c
d

δ⋅
Ω =

Ω
                       (9) 

The same approach is used for the bearing housing with end shield and the 
foundation. The stiffness of the bearing housing with end shield ( );bz byc c  and 
of the foundation ( );fz fyc c  is constant. The damping of the bearing housing 
with end shield ( );bz byd d  and of the foundation ( );fz fyd d  can be again de-
scribed by the mechanical loss factor of the bearing housing with end shield 
tan bδ  and of the foundation tan fδ : 

( ) ( )
tantan

;    by bbz b
bz by

cc
d d

δδ ⋅⋅
Ω = Ω =

Ω Ω
            (10) 
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( ) ( )
tan tan

;    fz f fy f
fz fy

c c
d d

δ δ⋅ ⋅
Ω = Ω =

Ω Ω
            (11) 

The electromagnetic stiffness coefficient mdc  and damping coefficient md  are 
depending on the harmonic slip sν , which is here equal to the fundament slip 
s , and on the whirling angular frequency Fω , which is here equal to the rotary 
angular frequency Ω . If the motor is converter driven, the angular rotor fre-
quency Ω  as well as the fundament slip s  may variate arbitrarily. Therefore 

mdc  and md  become: 
( ) ( ), ;    ,md md m mc c s d d s= Ω = Ω                 (12) 

6. Mathematical Description 
6.1. Derivation of the Differential Equation System 

The forces at the rotor mass, at the shaft journals, at the bearing housings and at 
the stator mass can be derived in the fixed coordinate systems  
( ), ; , ; , ; ,W W V V B B S Sy z y z y z y z  (Figure 6). The rotating coordinate system  
( ),rw rwy z  in Figure 6(a) is used for transferring the rotating damping of the 
rotor shaft from the rotating coordinate system into the fixed coordinate system 
( ),W Wy z  [9]. The fixed coordinate systems in Figures 6(a)-(d) are used for  

 

 
Figure 6. Vibration system split into subsystems. 
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deriving the equilibrium of forces and moments, for each single system. 
Because of the small displacements of the stator mass ( ), ,s s sz y ϕ  related to 

the dimensions of the machine ( ), ,h b Ψ , linearization is possible [10]: 
;fL s s fR s sz z b z z bϕ ϕ= − ⋅ = + ⋅                  (13) 

fL fR s sy y y hϕ= = − ⋅                      (14) 

To derive the inhomogeneous differential equation system, each single system 
—Figures 6(a)-(d)—has to be analyzed. In Figures 6(a)-(c) the equilibrium of 
forces in vertical direction (z-direction) and in horizontal direction(y-direction) 
has to be determined for each single system. In Figure 6(d) additionally to the 
equilibrium of forces, the equilibrium of moments at the point S has to be de-
termined. Based on these 9 differential equations, following inhomogeneous dif-
ferential equation system can be derived: 

u a m⋅ + ⋅ + ⋅ = + +M q D q C q f f f                 (15) 

Coordinate vector q : 

[ ]T; ; ; ; ; ; ; ;s w s w s v b v bz z y y z z y yϕ=q                 (16) 
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Damping matrix D : 
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Stiffness matrix C : 
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 (19) 

For the calculation of the forced vibrations, the complex form is used. There-
fore the excitation vectors can be described as follows: 
• Mass eccentricity: 

( )ˆ e uj t
u u

ϕ⋅ Ω⋅ += ⋅f f                        (20) 

• Bent rotor deflection: 
( )ˆ e aj t

a a
ϕ⋅ Ω⋅ += ⋅f f                       (21) 

• Magnetic eccentricity 
( )ˆ e mj t

m m
ϕ⋅ Ω⋅ += ⋅f f                       (22) 

with the amplitude vectors: 
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6.2. Solution of the Differential Equation System 

With the complex form for each particular excitation: 
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( )ˆ e , ,;j t
κ κ u a mκϕ κ⋅ Ω += ⋅ =q q                    (24) 

the complex amplitude vector for each single excitation can be calculated by: 
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             (25) 

and each single solution can now be described by: 
( ) ( ) ( )ˆ ˆ ˆe e; e ;  u m aj t j t j t

u u m m a a
ϕ ϕ ϕΩ + Ω + Ω += ⋅ = ⋅ = ⋅q q q q q q  

Afterwards, all single solutions can be superposed: 

( )
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κ
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κ
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=

= ⋅∑q q                      (26) 

6.3. Sleeve Bearing Housing Vibrations 

Now, the vibration velocities of the bearing housings can be calculated for each 
single excitation [9]: 

, , ,ˆVertical direction : b z bv zκ κ= Ω ⋅                 (27) 

, , ,ˆHorizontal direction: b y bv yκ κ= Ω ⋅                (28) 

Again, the solutions can be superposed: 
Vertical direction: 
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Horizontal direction: 
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= Ω ⋅ ⋅∑                  (30) 

6.4. Relative Shaft Displacements 

Referring to [9], the complex vector, describing the relative orbit between the 
bearing housing point B and the shaft journal point V can now be calculated as 
follows: 
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where ,v̂ br κ
+
−  and ,v b κα +

−  describe the absolute value and the phase shift of the 
forward rotating complex pointer and ,v̂ br κ

−
−  and ,v b κα −

−  the absolute value and 
the phase shift of the backward rotating complex pointer. 

The relative orbit between the shaft journal point V and of the bearing hous-
ing B can also be described by the ellipse parameters—semi-major axis ,v ba κ− , 
the semi-minor axis ,v bb κ−  and the angle of the relative major axis ,v b κψ −  re-
lated to the vertical axis (z-direction)—can be calculated: 

, , ,ˆ ˆv b v b v ba r rκ κ κ
+ −

− − −= +                      (32) 

, , ,ˆ ˆv b v b v bb r rκ κ κ
+ −

− − −= −                      (33) 

( ), , , 2v b v b v bκ κ κψ α α+ −
− − −= +                    (34) 

Again the single solutions can be superposed: 
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, , , ,

ˆ ˆ

ˆ ˆe e e e
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j jj t j t
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r r

r r rκ κϕ ϕ
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− −

⋅ − ⋅+ ⋅Ω − − ⋅Ω
− − −

= =

   
= ⋅ ⋅ + ⋅ ⋅   
   
∑ ∑

 

      (35) 

7. Numerical Example 

In this section the bearing housing vibrations and the relative shaft displace-
ments in the sleeve bearings of a 2-pole converter driven induction motor, 
mounted on a soft steel frame foundation, is analyzed. First, the boundary con-
ditions have to be described. 

7.1. Boundary Conditions 

The data of the 2-pole induction motor and the sleeve bearings are listed in Ta-
ble 1. The induction motor is driven in steady state condition by a converter in 
an operating speed range between 600 rpm ( )62.83 rad sΩ =  and 3800 rpm 
( )397.94 rad sΩ =  with constant magnetization. 

The calculated oil film stiffness and damping coefficients of the sleeve bear-
ings are shown in Figure 7. 

The magnetic spring constant mdc  and magnetic damper constant md  are 
calculated, depending on the rotary angular frequency Ω  and on the funda-
mental slip s. The fundament slip s  is varying between 0 (no load operation) 
and 0.01 (operation near below the breaking torque) (Figure 8). 

Figure 8 shows that for no-load operation ( )0s ∼  the magnetic spring con-
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stant mdc  is maximal and the magnetic damping constant md  becomes zero. 
For this case, no electromagnetic field damping occurs. With increasing funda-
mental s electromagnetic field damping occurs, and the magnetic spring con-
stant mdc  decreases. The magnetic damper constant md  reaches its maximum 
at a certain slip and declines, if the slip increases furthermore. 

 
Table 1. Data of induction motor and soft steel frame foundation. 

Motor data Description Value 

 Rated power 2400 kWnP =  

 Rated speed 3600 rpmNn =  

 Rated torque 6366 NmNM =  

 Rated slip 0.0025Ns =  

 Pole-pair number 1p =  

 Undamped magnetic spring constant 6 27.0 10 kg smc = ×  

 Mass of the stator 7040 kgsm =  

 Mass inertia of the stator at x-axis 21550 kgmsxθ =  

 Mass of the rotor 1900 kgwm =  

 Mass of the rotor shaft journal 10 kgvm =  

 Mass of the bearing housing 80 kgbm =  

 Height of the centre of gravity 560 mmh =  

 Distance between motor feet 2 1060 mmb =  

 Stiffness of the rotor 8 21.8 10 kg sc = ×  

 Horizontal stiffness of bearing housing and end shield 8 24.8 10 kg sbyc = ×  

 Vertical stiffness of bearing housing and end shield 8 25.7 10 kg sbzc = ×  

 Mechanical loss factor of bearing housing and end shield tan 0.04bδ =  
 Mechanical loss factor of the rotor tan 0.03iδ =  

Sleeve 
bearing data 

Description Value 

 Bearing shell Cylindrical 

 Lubricant viscosity grade ISO VG 32 

 Nominal bore diameter 100 mmbd =  

 Bearing width 81.4 mmbb =  

 Ambient temperature 20 CambT =   

 Supply oil temperature 40 CinT =   

 Mean relative bearing clearance (DIN 31698) Ψm = 1.6‰ 

Foundation 
data 

Description Value 

 Vertical stiffness of the foundation at each motor side 8 21.5 10 kg sfzc = ×  

 Horizontal stiffness of the foundation at each motor side 8 21.0 10 kg/sfyc = ×  

 Mechanical loss factor of the foundation tan 0.04fδ =  
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Figure 7. Oil film stiffness coefficients (a) and oil film damping coefficients (b) of the sleeve bearings. 
 

 
Figure 8. (a) Magnetic spring constant and (b) Magnetic damper constant; depending on fundamental slip s and rotor angluar 
frequency Ω . 

7.2. Vibrations for a Rigid Foundation 

First, the vibrations of the induction motor, mounted on a rigid foundation 

( )fz fyc c= →∞ , are analyzed. The bearing housing vibration velocities and the 
semi-major axis of of the relative orbit between bearing housing point B and 
shaft journal point V, are calculated for the different kinds of rotor eccentricity. 
The vibration velocities and the semi-major axes are related to the correspond-
ing rotor eccentricity. The related bearing housing vibration velocities are shown 
in Figure 9. 

The related semi-major axis of the relative orbit is shown in Figure 10. 

7.3. Vibrations for the Soft Foundation 

Now the vibrations are analyzed for the soft foundation  

( )8 2 8 2;1.5 10 kg s 1.0 10 kg sfz fyc c= × = × . The related bearing housing vibra-
tion velocities are shown in Figure 11.  
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Figure 9. Related bearing housing vibration velocities for a rigid foundation—z-direction (left diagram) and y-direction (right 
diagram): (a) mass eccentricity ˆue ; (b) magnetic eccentricity ˆme ; (c) bent rotor deflection â . 
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Figure 10. Related semi-major axis of the relative orbit for a rigid foundation: (a) mass eccentricity ˆue ; (b) magnetic eccentricity 

ˆme ; (c) bent rotor deflection â . 
 

The related semi-major axis of the relative orbit is shown in Figure 12. 

7.4. Discussion of the Results 

The influence of electromagnetic field damping can be shown, by variating the 
fundamental slip s . For 0s =  no electromagnetic field damping occurs and 
for 0.01s = , the electromagnetic field damping is maximal. 

First, the vibrations for a rigid foundation (Figure 9 and Figure 10) are dis-
cussed. Regarding an excitation with rotor mass eccentricity ûe  the influence of 
electromagnetic field damping on the vibrations is small, mostly leading to a 
slight shift of the resonances to higher rotor speeds (Figure 9(a) and Figure 
10(a)). The reason is, that with increasing fundamental slip s  the electromag-
netic spring constants mdc  decreases (Figure 8(a)), which shifts the resonance 
to higher speeds. The drop of the vibration amplitudes in the resonances when 
increasing the fundamental slip s  (Figure 9(a) and Figure 10(a))—starting  
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Figure 11. Related bearing housing vibration velocities for the soft foundation—z-direction (left diagram) and y-direction (right 
diagram): (a) mass eccentricity ˆue ; (b) magnetic eccentricity ˆme ; (c) bent rotor deflection â . 
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Figure 12. Related semi-major axis of the relative orbit for the soft foundation: (a) mass eccentricity ˆue ; (b) magnetic eccentricity 

ˆme ; (c) bent rotor deflection â . 
 

from 0s = —is caused by the change of the electromagnetic damper constant 

md  (Figure 8(b)). For excitation by magnetic eccentricity ˆme  (Figure 9(b) 
and Figure 10(b)) the influence of electromagnetic field damping on the vibra-
tions is much stronger. The vibration amplitudes decrease strongly with in-
creasing slip. The reason is that also the excitation is here depending on the 
electromagnetic spring constants mdc , which can be seen in (23). With increas-
ing fundamental slip s , the electromagnetic spring constants mdc  decreases 
(Figure 8(a)), leading also to a decrease of the electromagnetic excitation force 
( )ˆm mde c⋅ . Excitation by a bent rotor deflection â  represents here a superposi-
tion of excitation by rotor mass eccentricity ûe  and magnetic eccentricity ˆme , 
because the amplitudes ( )ˆ ˆu me e=  and the phases ( )u mϕ ϕ=  are identical in this 
kind of analysis (Figure 9(c) and Figure 10(c)).  

For soft foundation (Figure 11 and Figure 12), the vibrations characteristic 
changes completely compared to operation on a rigid foundation. Additional 
resonances at low rotor speeds occur, where the motor acts nearly as a rigid 
body, and the existing resonances at rigid foundation are now shifted to higher 



U. Werner 
 

363 

speeds. The influence of electromagnetic field damping on the resonances at 
higher speeds is quite similar as for rigid foundation. However at lower speeds, a 
shift of the rigid body resonances due to electromagnetic field damping is not 
obvious, because rotor and stator act here on the soft foundation nearly as one 
mass, oscillating with each other. Vibrations caused by magnetic eccentricity 
ˆme  are here also strongly depending on the fundamental slip s , which can be 

clearly seen in Figure 11(b) and Figure 12(b). Excitation by a bent rotor deflec-
tion â  is here again a superposition of excitation by rotor mass eccentricity ûe  
and magnetic eccentricity ˆme . For the bearing housing vibrations the rigid body 
resonances are here the worst case (Figure 11), because of the low damping of 
the foundation. However, for the relative shaft displacements (Figure 12) the 
resonances at higher speeds are much more critical than the resonances at lower 
speeds, because at higher speeds rotor and stator are oscillate against each other, 
whereas at lower speed rotor and stator are acting nearly as one mass. 

8. Conclusion 

The paper presents a mathematical multibody model of a soft mounted induc-
tion motor with sleeve bearings regarding forced vibrations caused by dynamic 
rotor eccentricities considering electromagnetic field damping. After the mathe-
matical coherences have been shown, a numerical example was presented, where 
the bearing housing vibration velocities and the semi-major axes of the relative 
orbits between shaft journals and bearing housings have been analyzed for the 
different kinds of rotor eccentricity. By analyzing the vibrations for different 
fundamental slip s , the influence of electromagnetic field damping could be clearly 
shown. The aim of the paper is to present a method—based on a multibody 
model—for considering electromagnetic field damping for vibration analysis of 
a soft mounted induction motor, which can also be adopted in FE-Analysis. 
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