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Abstract 
Cordial Volterra integral equations (CVIEs) from some applications models 
associated with a noncompact cordial Volterra integral operator are discussed 
in the recent years. A lot of real problems are effected by a delayed history in-
formation. In this paper we investigate some properties of cordial Volterra 
integral operators influenced by a vanishing delay. It is shown that to repli-
cate all eigenfunctions tλ , 0λ =  or 0λℜ > , the vanishing delay must be a 
proportional delay. For such a linear delay, the spectrum, eigenvalues and ei-
genfunctions of the operators and the existence, uniqueness and solution spaces 
of solutions are presented. For a nonlinear vanishing delay, we show a neces-
sary and sufficient condition such that the operator is compact, which also 
yields the existence and uniqueness of solutions to CVIEs with the vanishing 
delay. 
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1. Introduction 

A kind of Volterra integral equations with weakly singular kernels arisen in 1975 
[1] from some heat condition problems with mixed-type boundary conditions is 
transformed by Watson transforms [2] and the convolution theorem [3]. In [4], 
the author generalizes such kind of equations into cordial Volterra integral equ-
ations (CVIEs) with the form  
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( ) ( ) ( )( ), : [0, ],u t f t u t t I Tϕµ = + ∈ =                 (1) 

where 0T > , the core 1(0,1)Lϕ ∈  and the cordial Volterra integral operator is 
defined by  

11
0 0

( )( ) : ( / ) ( )d ( ) ( )d .
t

u t t s t u s s x u tx xϕ ϕ ϕ−= =∫ ∫  

CVIEs appear in a lot of application models, such as Diogo core  

1
2 2( ) (1 )x xϕ

−
= − , linear Lighthill’s equation (

2
3 3
2( ) 1x xϕ

−
 

= −  
 

), and so on. 

It is shown that the cordial Volterra integral operator ϕ  in the Banach space 
( )C I  is noncompact and its spectrum is a non-countable set, i.e.,  

( ) { } ( ){ }ˆ0 : 0 ,ϕσ ϕ λ λ= ∪ ℜ ≥  

where  
1

0
ˆ( ) ( ) d .x x xλϕ λ ϕ= ∫  

In [5], the author describes the eigenvalues and eigenfucntions of the operator 

ϕ  on the space ( )C I  when (0,1)pLϕ ∈  with some 1p > :  
1) the point spectrum of ϕ  is exactly the set ˆ( ) { ( ) : 0}ϕσ ϕ λ λ+ = ℜ > ;  
2) the dimension of the null space ( )ϕµ −    is the sum of the multiplici-

ties of the roots of ˆ( ) : ( ) 0µγ λ µ ϕ λ= − =  in the complex plane  
{ 0 : }λ λℜ > ∈ ;  

3) the linearly independent eigenfunctions are given by  

( ), , ln ,kt t tλ λ λ…  

where kλ  is the multiplicity of the root λ  of ( ) 0µγ λ = .  
The pure Volterra integral equations with vanishing delay (VIEwND) are in-

itially studied in [6] and a special form of VIEwND, proportional delay differen-
tial equations, is widely used in practical applications, for example, electrody-
namics [7] [8], nonlinear dynamical systems [9] [10], and also the survey papers 
[11] [12]. In this paper, we consider the CVIEs with a vanishing delay,  

( ) ( ) ( )( ), , ,u t f t u t t Iθ ϕµ = + ∈                   (2) 

where ( )tθ  is a continuous delay function such that (0) 0θ =  and ( )t tθ <  for 
all 0 t I< ∈  and the operator with delay is similarly defined by  

( )( ) ( ) ( )1
, ( )

: / d .
t

t
u t t s t u s sθ ϕ θ

ϕ−= ∫                   (3) 

Besides the existence and uniqueness of solutions to (2), it is more interesting 
how the eigenvalues and eigenfunctions of the operators are influenced by va-
nishing delays. In Section 2, we show that the proportional delay ( )t qtθ = ,  
0 1q< < , is the only one that replicates all eigenfunctions tλ , 0λ =  or  

0λℜ > . For such a delay, we describe the spectrum, eigenvalues and eigenfunc-
tions of the operator ,θ ϕ . In Section 3, we present a necessary and sufficient 
condition for the compactness of the operator ,θ ϕ  with a vanishing delay. Based 
on these discussions, we present the existence, uniqueness and the construction 
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of solutions to (2). 

2. Propositional Delays 

For a vanishing delay ( )tθ  satisfying that  
(D1) (0) 0θ = ,  
(D2) 0 ( )t tθ≤ <  for all 0 t I< ∈ ,  
(D3) ( )tθ  is a continuous function in the interval I  and (0)θ ′  exists,  

the operator (3) is rewritten as the following form  
1

, , ( )
( )( ) ( )( ) : ( ) ( )d ,

t
u t u t x u tx xθ ϕ ξ ϕ ξ

ϕ= = ∫                 (4) 

where the function ( )( ) tt
t

θξ =  is a well-defined continuous function in the whole 

interval I . Obviously  

0
0 (0) lim ( ) (0) 1,

t
tξ ξ θ

→ +
′≤ = = ≤  

and ( ) [0,1]tξ ∈  for all t I∈ . 
The cordial Volterra integral operator with a vanishing delay (3) is also writ-

ten as a cordial Volterra integral operator with a variable kernel, i.e.,  
1

, , 0
( )( ) ( )( ) : ( ) ( , ) ( )d ,au t u t x a t tx u tx xθ ϕ ϕ ϕ= = ∫   

where the discontinuous kernel ( , )a t s  is defined by  

0, 0 ( ),
( , )

1, ( ) .
s t

a t s
t s t

θ
θ
≤ ≤

=  < ≤
 

The properties of the operator ,aϕ  with continuous kernels are investigated 
in [13] such as it is compact if and only if (0,0) 0a = . From the above defini-
tion, the discontinuous function a  always satisfies (0,0) 0a = , but the com-
pactness of the operator ,θ ϕ  is influenced not only by the core but also by the 
value of (0)θ ′  (see in Corollary 2.3 and Theorem 3.1). 

Theorem 2.1. Assume that the function ( )C Iξ ∈ .  
1) The operator ,θ ϕ  is a bounded operator from ( )C I  to ( )C I .  
2) If all power-functions ,  0tλ λ =  or 0λℜ > , are eigenfunctions of ,θ ϕ , 

then  
( )

(0)
( ) d 0

t
x x

ξ

ξ
ϕ ≡∫  

where for ( ) (0)tξ ξ< , the integration is defined by  
( ) (0)

(0) ( )
( ) d ( ) d .

t

t
x x x x

ξ ξ

ξ ξ
ϕ ϕ= −∫ ∫  

Proof. (i) For 1(0,1)Lϕ ∈ , ( )u C I∈  and 0> , there exists a  

1 1( , ) 0uδ δ= >  such that  

( )
1min{1, } 1( ) d  for all [0,1]

2 1
a

a
x x a

u
δ
ϕ

+

∞

< ∈
+∫   

and for all 1 2,s s I∈  with 1 2 1s s δ− ≤   

( )1 2
1

1( ) ( )
2 1

u s u s
ϕ

− ≤
+

 , 
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since u  is uniformly continuous on the closed interval. The uniform continuity 
of ξ  implies that there exists a 1δ δ≤  such that 1 2 1( ) ( )t tξ ξ δ− ≤  for all  

1 2,t t I∈  with 1 2t t δ− ≤ . 
We, without loss of generality, assume that 1 2( ) ( )t tξ ξ≥  in the following 

estimation. Then  

( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

1 2

1 1

)1

, 1 , 2 , 1 , 2

( ) 1
1 1 2( ) ( )

min{1, ( ) } 1

( 0
1

d d

1d d .
2 1

t

t t

t

t

u t u t u t u t

x u t x x x u t x u t x x

u x x x x

θ ϕ θ ϕ ξ ϕ ξ ϕ

ξ

ξ ξ

ξ δ

ξ

ϕ ϕ

ϕ ϕ
ϕ

+

∞

− = −

≤ + −

≤ + ≤
+

∫ ∫

∫ ∫

   

 

 

Hence ,θ ϕ  maps ( )C I  to ( )C I  and its boundedness comes from  

( ) ( ), ,[0, ] [0, ]

1

1( )[0, ]

max ( ) max ( )

                        max ( ) ( )d .

t T t T

tt T

u t u t

x u tx x u

θ ϕ ξ ϕ

ξ
ϕ ϕ

∈ ∈

∞∈

=

≤ ≤∫

 
 

2) Without loss of generality, suppose that *( ) (0)tξ ξ>  and  
( )

(0)
( ) d 0

t
x x

ξ

ξ
ϕ

∗

>∫  for some * (0, ]t T∈ . Then similarly to the approach in [4], 

there exists a polynomial 
0

( )
n

i
i

i
p t p t

=

= ∑  such that  

( ) ( ) ( )
* *( ) ( )*

(0) (0)

1d d 0
2

t t
x p t x x x x

ξ ξ

ξ ξ
ϕ ϕ≥ >∫ ∫  

Since ,  0,1,it i = … , is an eigenfunction of ,ξ ϕ ,  
1

( )
( ) di it
x x x c

ξ
ϕ =∫  

is also independent of t  for 0,1,i = …. Thus  

1 1* * *
(0) (0)

0 0 0
( ) ( ) d ( ) ( ) d ( ) ,

n n n
i i i i

i i i i
i i i

x p t x x p t x x x p c t
ξ ξ
ϕ ϕ

= = =

= =∑ ∑ ∑∫ ∫  

1 1* * *
* *( ) ( )

0 0 0
( ) ( ) d ( ) ( ) d ( ) ,

n n n
i i i i

i i i it t
i i i

x p t x x p t x x x p c t
ξ ξ

ϕ ϕ
= = =

= =∑ ∑ ∑∫ ∫  

and hence  
*( ) *

(0)
( ) ( )d 0.

t
x p t x x

ξ

ξ
ϕ =∫  

This contradiction implies the proof is complete.                          
Remark 2.2. In [4], the author shows that an operator   mapping ( )C I  

to ( )C I  has the two properties:  
1)   is a bounded operator;  
2) all power-functions tλ , 0λ =  or 0λℜ > , are eigenfunctions of  ;  

if and only if ϕ=   is a cordial Volterra integral operator. While including 
vanishing delays, the two properties only hold for a proportional delay  

( )t qtθ = , 0 1q< < .  
For a core 1(0,1)Lϕ ∈ , we define an integration function of the core by  

0
( ) ( ) d .

x
x r rϕΦ = ∫  
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If ( ) 0xΦ ≡  for [0, ]x q∈  with some 0 1q< <  (or supp [ ,1]qϕ ∈ ), then 
CVIEs naturally reduce to a proportional delay form  

,( ) ( ) ( )( ),qu t f t u tϕµ = +                      (5) 

where the corresponding operator has the form , qq ϕ ϕ=   with  
( ) : ( ) ( )q qx x xϕ ϕ=   and  

0, [0, ),
( ) :

1, [ ,1].q

x q
x

x q
∈

=  ∈
  

Corollary 2.3. Assume that 1(0,1)Lϕ ∈  and ( )xΦ  is a strictly increasing 
function for [0,1]x∈ . Then a cordial Volterra integral operator with vanishing 
delays opposites the two properties in Remark 2.2 if and only if the delay  

( )t qtθ =  is a proportional delay. Of course it is a noncompact operator.  
Proof. By Theorem 2.1, one obtains that ( ) (0)tξ ξ≡  is a constant. Thus the 

proof is completed by ( ) ( )t t tθ ξ= .                                     
Based on , qq ϕ ϕ=  , some more detailed properties on cordial Volterra 

integral operators with a proportional delay are presented in the following theo-
rem. 

Theorem 2.4. Assume that a core (0,1)pLϕ ∈  with some 1p > , ( )t qtθ = , 
0 1q< <  and ( ) 0xΦ >  for ( ,1]x q∈ . Then  

1) The spectrum of ,θ ϕ  is given by  

( ) { }, ˆ{0} ( ) : 0 ,qθ ϕσ ϕ λ λ= ∪ ℜ ≥  

where 
1 1

0
ˆ ( ) : ( ) d ( ) dq q q

x x x x x xλ λϕ λ ϕ ϕ= =∫ ∫ .  
2) The point spectrum of ,θ ϕ  is exactly the set ( ) { }, ˆ ( ) : 0qθ ϕσ ϕ λ λ+ = ℜ > .  
3) The dimension of the null space ,( )θ ϕµ −    is the sum of the multip-

licities of the roots of , ˆ( ) : ( ) 0q qµγ λ µ ϕ λ= − =  in the complex plane  
{ 0 : }λ λℜ > ∈ .  

4) The linearly independent eigenfunctions are given by  

( ), , ln ,kt t t λλ λ…  

where kλ  is the multiplicity of the root λ  of , ( ) 0q µγ λ = .  
5) The range of the operator ,θ ϕµ −   is the whole space ( )C I  if and only 

if ( ) { } { }0
, ˆ ( ) : 0 0qθ ϕµ σ ϕ λ λ∈ = ℜ = ∪/  .  

Both the existence and uniqueness of solutions to (5) are valid when the pa-
rameter µ  does not lie in the spectrum of the corresponding operators. On the 
other hand, for µ  lying in the spectrum, by the same technique in [5], we are 
also able to construct solutions to (5). For convenience, we review some nota-
tions in [5]:  

1) { }
1, , [0, ] [0, ] : ( ) 0, 1, ,

nc c iC T u C T u c i n… = ∈ = = …  with different parameters  

1, , (0, ]nc c T… ∈   
2) { }[0, ] : ( ) : [0, ]C T t w t w C T= ∈   with the norm  

:  for [0, ].u w u C T= ∈ 


 

Theorem 2.5. Assume that (0,1)pLϕ∈  with some p > 1 and that ( )t qtθ = , 
0 1q< < , and ( ) 0xΦ >  for ( ,1]x q∈ . Let ,dim ( )n θ ϕµ= −   . Then there 
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exist 1, , nc c  distinct points in (0, ]T  such that the following statements are 
true.  

1) For 0
, ,( ) \ ( )θ ϕ θ ϕµ σ σ+∈   , there exists a unique solution  

1

*
, , [0, ]

nc cu C T…∈  to (5) that continuously depends on [0, ]f C T∈ , and all solu-
tions have the form  

* ,u u u⊥= +  

where u⊥  is a linear combination of functions fo functions 
*
(ln )it tλ ,  

*0, , 1i k
λ

= … − , and *λ +∈  is a root of , ( ) 0q µγ λ =  with multiplicity *k
λ

.  
2) For 0

, ,( ) \ ( )θ ϕ θ ϕµ σ σ +∈   , there exists at most one solution to (5), and 
there exists exactly one solution to (5) when [0, ]f C T∈   for any 0> .  

3) For 0
, ,( ) ( )θ ϕ θ ϕµ σ σ +∈ ∩  , there exists at most one solution *u  belong-

ing to 
1, , [0, ]

nc cC T


, and there exists a unique solution in 
1

*
, , [0, ]

nc cu C T…∈  for 
any 0>  and [0, ]f C T∈  . All solutions have the form  

* ,u u u⊥= +  

where u⊥  is linearly combined by such functions 1 (if ˆ (0)qµ ϕ= ) and  
*
(ln )it tλ , *0,1, , 1i k

λ
= … − , and *λ +∈  is a root of , ( ) 0q µγ λ =  with multip-

licity *k
λ

.  

3. General Vanishing Delays 

For a more general vanishing delay, the compactness of the cordial Volterra 
integral operators is influenced by the value of (0)θ ′ . 

Theorem 3.1. Assume that 1(0,1)Lϕ ∈  and that the delay function ( )tθ  
satisfies the assumptions (D1), (D2), (D3). Then the operator ,θ ϕ  is compact 
in ( )C I  if and only if supp [0, (0)]ϕ θ ′⊆ .  

Proof. From the definition of the function ξ , it is known that (0) (0)ξ θ ′= . 
In Lemma 3.6, one obtains from supp [0, (0)]ϕ θ′⊆  that ,( )(0) 0uθ ϕ =  for all 

( )u C I∈ . Hence by Ascoli-Arzela theorem, the compactness of the cordial Vol-
terra integral operator ,θ ϕ  with such a vanishing delay term is shown in 
Lemma 3.7. The proof will be completed, when the non-compactness of the op-
erator is proved in Lemma 3.8.                                        

The simplest compact condition according to Theorem 3.1 is (0) 1θ ′ = . 
Corollary 3.2. Assume that 1(0,1)Lϕ ∈  and that the delay function ( )tθ  

satisfies the assumptions (D1), (D2), (D3). Then the operator ,θ ϕ  is compact 
in ( )C I  for any core 1(0,1)Lϕ ∈  provided that (0) 1θ ′ = .  

Remark 3.3. Consider the constant core ( ) 1xϕ ≡ . Then  
1) ,1q , 0 1q< < , are non-compact in ( )C I .  
2) For ( ) sint tθ = , ,1θ  is compact in ([0,1])C .  
The existence and uniqueness of solutions to (2) is similar to the classical 

second kind of VIEs when the corresponding operator is compact. 
Theorem 3.4. Assume that 1(0,1)Lϕ ∈  and that the delay function ( )tθ  sa- 

tisfies the assumptions (D1), (D2), (D3) and that supp [0, (0)]ϕ θ ′⊆ . Then for 
all 0µ ≠  and all ( )f C I∈ , there exists a unique solution to (2).  

Proof. In Lemma 3.9, it is shown that the null space of the operator ,θ ϕµ −   
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in ( )C I  is {0} , which together with the compactness of ,θ ϕ  implies that the 
operator ,θ ϕµ −   has a bounded inverse in ( )C I  (see in [14]). Hence the 
proof is complete.                                                   

Example 3.5. Consider the following CVIEs with a vanishing delay  

1) 1( )
2

x xϕ
+

 = − 
 

 and 21( )
2

t t tθ = −  for 10,
2

t I  ∈ =   
;  

2) 

2
3 3
2( ) 1x xϕ

−
 

= −  
 

 (the linear form of Lighthill’s equations) and ( ) sint tθ =  

for [0,1]t I∈ = ;  

3) 1( )
2

x xϕ
+

 = − 
 

 and 21( )
2

t t tθ = +  for 10,
2

t I  ∈ =   
.  

Then the corresponding operators are compact and there exists a unique solu-
tion to (2) for 0µ ≠  and ( )f C I∈ .  

Theorems 3.1 and 3.4 are proved by the following lemmas. 
Lemma 3.6 Assume that 1(0,1)Lϕ ∈  and that ( ) [0,1]tξ ∈  is a continuous 

function in I . Then one obtains that ,( )(0) 0uθ ϕ =  for all ( )u C I∈  if  
supp [0, (0)]ϕ ξ⊆ .  

Proof. In view of  
1

, , (0)
( )(0) ( )(0) (0) ( )d ,u u u x xθ ϕ ξ ϕ ξ

ϕ= = ∫   

the condition in this lemma yields that for all ( )u C I∈ ,  

,( )(0) 0.uθ ϕ =  

The proof is complete.                                               
Lemma 3.7 Assume that 1(0,1)Lϕ ∈ , ( ) [0,1]tξ ∈  is a continuous function 

in I and that supp [0, (0)]ϕ ξ⊆ . Then ,ξ ϕ  is a compact operator in ( )C I .  
Proof. By Ascoli-Arzela theorem, the compactness will be proved by the 

equiv-continuity of ,( )( )u tξ ϕ . 
Since ( )tξ  is a continuous function of t  and ( )xΦ  is a continuous func-

tion of x , for any given 0>  there exists an *( ) 0T >  such that  

( )( ) ( )( ) *10  for 0, ( )
2

t t Tξ ξ  Φ −Φ ≤ ∈   . 

Therefore, for ( )u C I∈  with 1u
∞
= , ,( )(0) 0uξ ϕ =  by Lemma 3.6 and for 

*[0, ( )]t T∈  ,  

( )( ) ( )( ) ( )( ),
10
2

u t tξ ϕ ξ ξ≤ Φ −Φ ≤  . 

In the following, we let *
1 2

1
2

T t t T≤ < ≤  and we choose ( ) 0δ δ= >  such 

that for all 2 1| |t t δ− ≤  implies  

( )( ) ( )( )1 2

1 1
0

2

2 1
* 1

1 ,
3

1( ) d ,
3

2 1 .
3

t t

t x x x
t

t t
T

ξ ξ

ϕ ϕ

ϕ

Φ −Φ ≤

 
− ≤ 

 
−

≤

∫
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Therefore,  

( )( ) ( )( )

( ) ( )2

1

, 2 , 1

( ) 1
2 1( ) 0

11 1
1 0

2 2

( ) d ( ) d

1 1 ( ) d .
3

t

t

u t u t

x x x u t x u t x x

t t x x x
t t

ξ ϕ ξ ϕ

ξ

ξ
ϕ ϕ

ϕ ϕ ϕ

−

≤ + −

 
≤ + − + − ≤ 

 

∫ ∫

∫

 

 

 

The proof is complete.                                               
Lemma 3.8. Assume that 1(0,1)Lϕ ∈ , (0) 1ξ <  and that ( (0)) (1)ξΦ < Φ . 

Then ,ξ ϕ  is a noncompact operator in ( )C I .  
Proof. Without loss of generality, we assume that ( ) (0)tξ ξ≥  (or  
( ) (0)tξ ξ≤ ) for all t I∈  and suppose that the operator ,ξ ϕ  is compact. Then 

the operator  

( ) ( ) ( )
(0), , (0)

( ) ( ) ( ) ( )d
t

u t u t x u tx x
ξ

ξ ϕ ξ ϕ ξ
ϕ= + ∫   

or  

( ) ( ) (0)
(0), , ( )

( ) ( ) ( ) ( )d
t

u t u t x u tx x
ξ

ξ ϕ ξ ϕ ξ
ϕ= − ∫   

is compact by Lemma 3.7. This contradicts to Corollary 2.3 and the proof is 
complete.                                                          

Lemma 3.9 Assume that 1(0,1)Lϕ ∈ , ( ) [0,1]tξ ∈  is a continuous function 
in I and that upp [0, (0)]s ϕ θ ′⊆ . Then the null space of ,ξ ϕµ −   is trivial in 

( )C I  for all 0µ ≠ .  
Proof. We suppose that 0µ ≠  and there exists a ( )u C I∈  such that  

, .u uξ ϕ µ=                           (6) 

Then *[0, (| |)] 0Tu
µ

≡  by  

*, ,[0, (| |)]

1( )( ) | | .
2 Tu t uξ ϕ µ

µ
∞

≤  

Thus, (6) reduces to  

( )1 *
( )

( ) ( ) ( )d , .
t

u t x u tx x t T
ξ

µ ϕ µ= >∫  

For all 0λ <  and 0δ > , it holds  

( ) ( ) ( ) ( )

( ) ( ) ( )( )( ) ( )

*

*

*

1 1 (1 )
( ) ( ) [ (| |), ]

(| |)

[ (| |), ]

d d max

1 1 1 max .

t t x t
t t t T T

T t

t T T

e x u tx x x e x e u t

e e u t

λ λ λ
ξ ξ µ

λ µ δ λ

µ

ϕ ϕ

δ δ

−

∈

∈

≤

≤ Φ − + Φ −Φ −

∫ ∫
 

Hence (6) yields for sufficiently small 0δ >  and sufficiently large 0λ < ,  

( ) ( )
* *[ (| |), ] [ (| |), ]

1max max .
2

t t

t T T t T T
e u t e u tλ λ

µ µ
µ µ

∈ ∈
≤  

This implies that *,[ (| |), ] 0T Tu
µ∞

=  and the proof is complete.               

4. Concluding Remarks 

In this paper, we consider CVIEs with a vanishing delay:  
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1) a proportional delay,  
2) a nonlinear vanishing delay ( )tθ .  
The first case reduces to a classical CVIE with a core limited to a subinterval. 

Hence these results are trivial from [4] [5]. For case 2), we present the compact-
ness of the operators, i.e., supp [0, (0)]ϕ θ′⊆ . In subsequent work, we will in-
vestigate the spectrum, eigenvalues and eigenfunctions when ( (0)) (1)θ ′Φ < Φ  
and also numerical methods for CVIEs with vanishing delays. 
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