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Abstract

The goal of this paper is to investigate whether the Ext-groups of all pairs
(M,N) of modules over Nakayama algebras of type (n,n,n) satisfy the

condition EXtR(M,N):O for n>0< EXtR(N,M):O for n>0. We
achieve that by discussing the Ext-groups of Nakayama algebra with projec-

tives of lengths 3n+1 and 3n+2 using combinations of modules of dif-
ferent lengths.
Keywords

Quivers, Path algebras, Ext-Groups, Projective Resolutions

1. Introduction

In this paper, we describe homological properties of Nakayama algebras. The al-
gebra A is a Nakayama algebra if every projective indecomposable and every in-
jective indecomposable A-module is uniserial. In other words, these modules
have a unique composition series, (see Schréer [1]). Nakayama algebras are fi-
nite dimensional and representation-finite algebras that have a nice representa-
tion theory in the sense that the finite-dimensional indecomposable modules are
easy to describe.

The main contribution of this paper is to investigate whether the Ext-groups
of all pairs (M,N) of modules over Nakayama algebras of type (n,n,n) sa-
tisfy the condition Extj (M,N)=0 for n> 0« Ext; (N,M)=0 for n>0.

2. Preliminary Notes

This section will briefly discuss the properties of Nakayama algebra and some
related propositions. We consider also proofs of some of the propositions. All

the information presented here can be found in deeper details in the book from
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Rotman [2].

Definition: Let A be an artin algebra. A A -module A is called a uniserial
module if the set of submodules is totally ordered by inclusion.

Proposition 1: The following are equivalent for A -module A

1. A is uniserial.

2. There is only one composition series for A.

3. The radical filtration of A is a composition series for A.

4. The socle filtration of A is a composition series for A.

5. I(A)=rl(A), where I(A) is the length of A and rl(A) is the radical
length of A.

Proof: See Rotman [2] for the details.

Proposition 2: The following are equivalent for an artin algebra A .

1. A isasum of uniserial modules .

2. A/a isasum of uniserial modules for all ideals a of A.

3. A/r? isa sum uniserial modules.

Proof: 1=2 and 2=3 are trivial. If A is the sum of uniserial modules,
then A/a and A/r? which are factors of A are also a sum of uniserial
modules.

3=1

Let P be an indecomposable projective A -module. We show that P/ r'p
is uniserial by induction on n when n>2. When n=2, there is nothing to
prove. Suppose N> 2. Let the radical filtration of P be;

PSIPor’Po.e rM*P>r"P=0 such that r'P/r*P is simple for
i=01---,n-1.

When n=3, we have r’Pcr?PcrPcP. Hence by induction hypothesis,
P/ r"*P is uniserial. Considering the exact sequence 0—rP —P — P/rP >0,
which also implies that P/rP is uniserial, hence P/r"*P is also uniserial.

If r"'P=0, then P/r"P is clearly uniserial, so we have to assume that
r"*P=0 . From proposition 1, it follows that r' P/rMP is simple for
i=0,1,---,n—2. To show that P/r"P is uniserial, then it is sufficient by prop-
osition 1 to prove that r"*P/r"P is also simple.

Let Q > r"?P be a projective cover. Since r"?P/r"* issimple, Q must
be indecomposable and so Q/ r’Q is uniserial. But we have an epimorphism
rQ/r’Q — r"*P/r"P which shows that r"*P/r"P is simple.

Proposition3: Proposition 2 (1).

Let ¢ bea D Tr-orbit of ind A. Suppose there is a projective module P
in ¢.Then we have the following

1. ¢ of non-zero objects in {P,(DTr )_1 P,---,(DTr)_i P,~--}i L

2. ¢ is finite if and only if (DT,)" P=(T,D)" is injective for some n in
N . Moreover, if (T,D)'P is injective, then ¢={P,(DT,)"P,--+,(DT,)"P}.

Proof: By proposition 1, DTrP =0 if and only if P is projective. Since P
is projective module in (p,(DTr)i P=0 forall i>0.Hence the claimin 2 (1).

We claim that if (DTI‘)fi P= (TDr)f(”j) P=0 with j>0 wehave

(DTr) (DTr)_(”j) P=(DTr)(DTr)"' P which implies that
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P= (DTr)j P :(TrD)j P which is not possible since j>0. ¢ can therefore
be finite if (DTr)f(M) P=0 for some n>0. Since (DTr)fn P :(TrD)n P,
then P is injective in ¢ . We know therefore that if (DTr)fn P is injective,
then ¢>={P,(DTr)‘1 P,-,(DTr)" P} .

3. Results

The main goal of this work is to investigate whether the Ext-groups of all pairs
(M, N) of modules over Nakayama algebras of type (n, n, n) satisfy the condition:
Exty (M,N)=0 for n>»0< Ext; (N,M)=0 for n>0, where n is a posi-
tive integer. We discuss the Ext-groups of Nakayama algebras with projectives of
lengths 3n+1 and 3n+2 using combinations of modules of different lengths.
Reader may refer to Auslander, M et al. [3] for ideas illustrated in this section.

We begin with the Ext-groups of Nakayama algebra with projectives of length
3n+1 using the combinations (3i,3j) , and (3i,3j + 2) where 3i and 3]
are modules of lengths 3i and 3] respectively, 3j+2 is also module of
length 3j+2.

Let ' be a path with the relations

- yBa, fay--ayf and 1pa--pay
where the length of each relationis 3n+1. Let

A =KT/{ayB---yBa, Bay---ayB, yBa--- Bay).

The projectives of the above path algebra are as follows:

Sy S, S
S, Sy Sy
R=[S| P=S | P = Sz
S S, S

The above projectives P,P, and P, each has length 3n+1. The minimal
projective resolution of the module M = (Sl, S, S, )t oflength 3i,i=12,---,n

is given as;
d d d d d d
cen Q4 5 > Q3 4 > Q3 3 QZ 2 Ql 1 QO 0 M N 0

where Qg =Qgi.y =P, Qgih2 =Qeina =P, and Qg4 =Qg,5=F for i20.
The combinations have been reduced to four class because in the above mi-

nimal projective resolution of the module of length 3i, we see that it is in the
same group as the module of length 3i+1. The modules of lengths 3i and
3i+1 therefore have the same properties with respect to the conditions;
Ext{ (M,N)=0 for n>0< Ext{ =0 for n>0.

From the above resolution, we have;

o Ae —% 5 Ae,—5 5 Ae,—% 5 Ae, —2 Je,
25 Ae, —4 Ae, —2(S,,S,,-+,S;) > 0.

Let A=(S,S,,~-,S; )t , the pd A= since the resolution is periodic. The
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period is 6. The truncation of the resolution is given as;

P.--Ae, —% 5 Ae,—5 > Ae, —% 5 Ae, —2 5 Je, —%2 5 Ae, —L 5 Ae, —250.

The map dGHl is the multiplication by ( yﬂa) siro is the multiplication by
a(;/ﬁa) " dg., is multiplication by (eyB) ,d 6i-4 is the multiplication by
B (a;/ﬂ) dgi,s is the multiplication by (ﬁ’ay) and dg is the multiplica-

tion by ( ,Bay)
Applying Hom, (,M) where M is the module

of length 3j, we have;
0—% Hom, (Ae;,M)—%— Hom, (Ae,,M)—%— Hom, (Ae,,M)
—% 5 Hom, (Ae;,M) —% 5 Hom, (Ae;,M) EjéHomA (Ae,M),

where Hom, (Ae;,M)=¢M,Hom, (Ae,,M)=e,M and
Hom, (Ae;,M)=eM .
We have the following Ext-groups;

Exty (N,M) = ker(elM "’—“)4>e2M)/S(elM (e elM)

where N and M are modules of length 3i and 3] respectively. We first

compute the kernel for
d;: (elM S Ny )
We have

d;((ai,az, A, a, ~-)‘,0,0)=(o,(o,o,o,-~-,o,a1,az,.--,as)‘,o)

where & is in the coordinate number n—i+1, therefore &, is in the coordi-
nate number n—i+s.Hence S= j+i—Nn and consequently S+1=j+i+1-n,

ker(elM M RN ezM) {((0 0,-++,0,8,,, ,aj))t,0,0)

a ekr=s+1.-., j}.
Next we compute the image of
o L)
We have that
d;((bl,bz,---,bj)‘,o,o):(( L0.b,++1by ;) ,0,0)
where b isin the coordinate number i+1. This shows that
\s(elM ), elM) {(( +,0,b,+,b ) ,0,0)‘btek,t=1,---,j—l}.

Hence dim, Ext} ((Sl,Sz,---,S3)t,M):(i+1)—(j+i+1—n):n—j,for
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j<n.We compute

n-i

Ext,z\((sl,sz,--~,83)t,M)):ker(eZM L")isz)/S(elM ) se M.
We compute the kernel for
d;:(eZM M—)EZM),
we have
d;(o,(ai,az,---,aj)‘,o):(0,(0,0,---,o,a1,---,aj,i)t,0)
where @, is the coordinate number i+1. This shows that

ker(eZM %ezm)={(o,(o,o,-~,o,ai,~-,aj )t,o)

arek,rzl,---,j},

where @, is in the coordinate number j—i+1. Next we compute the image of
d; :(elM BN )
We see that

d; ((blybz,u.,bs,.“,bj )I ,Oj =(0,(0,0,...’0’bl’b b, )t ’0)

where b is in the coordinate number n—i+1 and therefore b, is in the

coordinate number Nn—i+s. Thisimplies N—i+S=] andhence S= j+i—-n,

s(qM MMZM)={(0,(O,O,~--,O,b1,---,bs)t 0)

b ek,t:1,~-~,s}.

Hence dim, EXt} ((S,,S;.+++,8,)' ,M ) =(n=i+1)~(j-i+1)=n-j for
j<n.
dim, Ext,z\((sl,---,s\g)t ,M):n—j
We compute

Exti((sl,---,se,)t,M)=ker(e2M (G NN e3M)/S(e2M Lﬁ)t)ezM).

First we compute the kernel for

d; :(eZM S N )

We have
dj(O,(ai,az,---,as,---,aj)t,0):(0,0,(0,0,---,0,ai,az,---,as)t,),

where @, is in the coordinate number n—i+1 and therefore a, is in the
coordinate number n—i+s.Hence S= j+i—n and consequently
S+1= j+i+1-n. This shows that

ker(ezM M)eaM)

:{(0,(0,0,---,0,asﬂ,am,---,aj)t,0) a ek,r=s+1-, j}.

We compute the image of
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d; :(ezM e e M)
to have
d;(O,(bl,bz,-u,bj)t,O):(O,(O 0,by,b, oo, by I)‘,o)
where b, is in the coordinate number i+1. This shows that
(ezM 7 N M):{(o,(o,o,.--,bl,---,bji)‘,o)‘bt ek,tzl,---,j—i}.
Hence
dim, Ext} ((S,+++,S:)' M ) =i+1=(j+i+1-n)=n- ]

for j<n.

Next we have

Exti((sl,...,sg)"M):ker(esM M)e M)/S(ezM %eM)
Similarly, we have

ker(eaM M)eaM):{(0,0,(0,0,---,0,al,az,“-,aj)t,0)

a, ek,rzl,---,j}

where @ isin the coordinate number j+1-i,then

s(ezm% e3|v|)={(o,o,(o,o,--.,o,bl,bz.--,bs)‘)

btek,tzl,u-,s},
S= j+i—n where b isin the coordinate number n—i+1.Hence
dim, Extﬁ((sl,-.-,ss)‘,M):n—i+1—(j+1—i)=n-j,jsn.
Again we have
EXti((Sll...,S3)t,M):ker(e3M%>elM)/S(e3MLy))eM)_
We compute the kernel for
de i (e,M > eM)
to have
( (al a,, S,"',aj)t)=((0,0,'",0,al,az,"',as)t,0,0)

where @, is in the coordinate number n—i+2 and therefore a; is in the
coordinate number N—i+1+s,nN—i+S+1=js=j+i—n-1 and consequently
S+1= j+i—n. This show that

ker (e,M —>e1M):{(0,0,(0,0,---,as+1,---,aj )t)

a, ek,r:s+1,---,j}.

We compute the image for

dy: (esM L%M)

to get
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t
d: (OO(ble,-, J,))z(o,o,(o 0,b,,b,, b J.))
where b, is in the coordinate number i+1. This shows that

S(eSM ) oM ):{(o,o,(o,o,---,,bl,.--,bji)‘)‘bt ek,tzl,---,j—l}.

Hence dim, Ext} ((Sl,---,S3)t M ) =i+1-(j+i-n)=n+1-j. This shows
that dim, Ext (3i,3j): n—j for t=1,2,3,4 and n—j+1 for
t=5n-j=0,n-j+1=0 whichimplies n=j and n+1=].

It follows from the computation of the fifth Ext-group that the condition
Exty (M,N)=0 for n>» 0« Ext;(N,M)=0 for n>0 holds.

We calculate the Ext-groups for the combination (3i,3j + 2) .

Ext,l\((sl,...,ss)t,M)
where M is the module of length 3j+2
EXt}\ ((Sl,...,SS)‘lM) ker(ell\/l L‘Z)) EZM)/S(elM 7,306) elM)

We compute the kernel for

d; :(elM el eZM)

we have
d;((al,az,u-,as,u a.) oo) (0.(0,0,+-,0,8,,,,,2,)',0)

where & is in the coordinate number n—i+1 and therefore a, is in the
coordinate number N—i+S=j+1. Hence S=j+i—n and consequently
S+1= j+i+2-n. This shows that

ker(elM N ezM)

:{((o,o 0,88, ) OO)

Computing the image for

a ek, r=s+1.-- ,j+l}.
df:(elM ), elM)
we have
df((bl,bz,---,bm)t,0,0)z(( 0,0y, ) 10,0,

where b, is in the coordinate number i+1. This shows that

‘:s(elM U BN e1|v|) {((o,o,---,bl,---,bm_i)‘,o,o)‘bt ek,tzl,---,j+1—i}.

We therefore have

dim, Exty ((Sy+++,S:)' \M ) =i+1=(j+i+2-n)=n-(j+1)

for j+1<n.

K2
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Next we have
STH (GRS ,M):ker(eZM Lﬂ)i)eZM)/S(elM v e,M).
We compute the kernel for
d;:(ezM ), eZM),
we have
d;(o,(ai,az,...,aj+1)t ,o)=(o,(o,o,---,o,ai,---,a,.ﬂ_i )t)
where &, isin the coordinate number i+1. This shows that

ker(ezM ), ezM): {(0,(0,0,-“,0,r’:11,~-,¢’alj+l)t ,0)

a, ek,rzl,---,j+1},

where @, isin the coordinate number j+2—i.We compute the image for
d; :(elM _at” oM )
We have

d;((bl,bz,---,bs,---,bjﬂ)t :010):(01(0101"'1b1,b2:"‘1b5)t '0)

where b is in the coordinate number n—i+1 and therefore b, is in the
coordinate number N—i+S= j+1.Hence S= j+1+i—n. This shows that

n—i

S(elM el e2M)={(0,(0,0,"',O,bl,---,bj+l)t,0)‘bt ek,t=1,~-,j+1}.

We therefore have
dim, Ext? (S, 8,)' \M ) =n=i+1=(j+2-i)=n—(j+1) for j+l<n
Next we have

n—i i

EXti((Sll'”!Ss)t,M):ker(ezM M} egM)/S(ezM (eB) ezM).

Similarly, we have;

ker(eZM %%M)={(0,(0,0,---,ai,---,am)t,o) a ek,r=1,---,j+1},

where @, isin the coordinate number j+i+2-n.We also have

3(eM - ezM)={(0,(0,0,---,O,bl,---,bmi)t,o)

b ek t=1--, j+l—i},

where b isin the coordinate number i+1. We therefore have
dim, Bt} (S,+++,S;)' M) =i+1=(j+i+2-n)=n-(j+1) for j+l<n,
Next we have

Exti((Sl,--~,Ss)t,M):ker(eSM e, esM)/S(eZM B, ezM).

We compute the kernel for
d :(e3M ) oM )

We have

%%
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d;(0,0,(al,az, J)) (00(0 S0, J')t)

where @, isin the coordinate number i+1. This shows that

ker(e3M BUCIENPYY ):{(0,0,(0,0,'--,ai,---,aj)t,)

a, ek,r:1,~-,j},
where @, isin the coordinate number j+1-i.We compute the image for
d; '(eZM _plen esM)
We have
( (bl b,,-,b,, J+1) ,O,)(0,0((0,0,---,bl,bz---,bs)l)

where b is in the coordinate number n—i+1 and therefore b, is in the
coordinate number N—i+S= j+1 and therefore S= j+i—n

(e M L) e3M)={(O,O,(O,O,---,bl,---,bj_i)t)‘bt ekt=1-, j}.

t

We therefore have dim, Ext} ((Sl,m,SS)
j £n. Finally, we have

M)=n-i+1-(j+1-i)n-] for

t

ExtS (S, Ss) ,M):ker(eSM M—wm)/s(%m (par) e3|v|).
We compute the kernel for
d; :(egM _ e e1|v|)
we have

dg(0’07(31’a2,...7as7...aj)t):((0,0,...70,317...@5)‘ ,0,0)

where @, is in the coordinate number n—i+2 and therefore a; is in the
coordinate number N—i+1+s=j,s=j+i—n-1 and consequently
S+1= j+i—n. This shows that

ker(eam% ){(oo(oo al,---,aj)t)

a ek r=1., j}.
We compute the image for
d; :(eSM e esM)
we have
t

d; (0.0, (by.b,.-,b, ) ):(o,o,(o,o, 0,b,,b,,+,b, .))

where b, isthe ith coordinate number i+1 and hence
S(e3M e, e3M)z{(O,O,(bl,---,bj_i)t)‘bt ek,tzl,---,j—i}.

We therefore have

dim, Ext, ((S,+++,S:) M ) =i+1=(j+i-n)=n+1-j for j<n+1

K2
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dim, Ext, (3i,3j+2)=n—(j+1) for t=123, n-j for t=4 and
n+l—j for t=5.Wethereforehave n=j+l,n=j and n=j-1.

It follows from the computations of the forth and fifth Ext-groups that the
condition Ext; (M,N)=0 for n>> 0« Ext;(N,M)=0 for n>0 holds.

We now discuss the Ext-groups of the Nakayama algebras with the projectives
of length 3n+2 using the combination (3i+1,3j+1), where 3i+1 and
3j+1 arealso modules of length 3i+1 and 3j+1 respectively.

Let I' be a path with the relations Say---yfa,ypa---ayff and ayf--- Pay
where the length of each relation is 3n+2,n is a positive integer. Let

A=KT/(Bay - ypa, yBa---ayB,ayf--- ay).
The projectives of the above path algebra are as follows:
t t t
Pl 2(51,32,-'-,81,32) !Pz :(Szvsav“'lszvss) ,P3 :(83181"“’53’81) .

The above projectives P,i=1,2,3 each has length n+2. The minimal pro-

jective resolution of module (S,,---,S, )i oflength 3i is given as;

"'Qe - Qs - Q4 — Qs - Qz
2 ,Q —4-5Q, —2->N-0.

where N is the module of length 3i,Q; =Qg. =R, Q. =Q4i.s =B and
Qsiis =Qs.5 =P, for i>0 and d,, isa multiplication by (;/ﬂa)i g, isa
multiplication by pa(yBa)"",dg., is a multiplication by (Bay) ,dg., is a
multiplication by ay( ,b’ay)n_i ,dg,5 is a multiplication by (a;/ﬁ)i and d is
multiplication by yB(ayp )nfi .

The combinations have been reduced to four class because in the above reso-
lution, we see that the module of length 3i is in the same group with the mod-
ule of length 3i+2. The two modules therefore have the same properties with
respect to the condition Ext;(M,N)=0 for n>»0< Ext; (N,M)=0 for
n>0.

From the above resolution we have,

Ae—T 5 Ae, —BsAe, —E>Ae, —%Ae,
%y Ae —2>Ae —25N—2 0

The pdN = since the resolution is periodic. The period is 6. The trunca-

tion of the above resolution is given as:
P..-Ae, —5 5 Ae, —5 5 Ae, —% Ae,
L5 Ae, —2>Ae, —2 5 Ae —% 5 0.

Applying Hom(,M) where M is the module of length 3], we have
0—% Hom, (Ae,,M)—%— Hom, (Ae,,M)—%— Hom, (Ae;,M)
—% 5 Hom, (Ae;,M )d—Z> Hom, (Ae,,M) —%—Hom, (1e,,M)
—% 5 Hom, (Ae, M),

where Hom, (Ae,M)=eM,Hom, (Ae,,M)=e,M and

K2
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Hom, (1e;,M)=¢eM .

We discuss the Ext-groups of the Nakayama algebras with projectives of
length 3n+2 by considering the case: (3i+1,3j+1). 3i+1 is the module
(S,-+,S,)"" of length 3i+1 and 3j+1 is the module (S,---,S,)" of
length 3j+1.

The minimal projective resolution of the module (S,,---,S,)"" of length
3i+1 isgiven as;

o Q—%5Q —%55Q,—%5Q,—5-5Q,
25Q —45Q —2>—>A>0

where Qg = Qg5 = P, Qs = Qei+4 =P, and Q,,=Qs="F for i Q’dem
is a multiplication by oc(;/ﬂoz)”l,dsi+2 is a multiplication by B(ayB)"" dg.s
Hl,d6i+4 is a multiplication by a(yﬂa)nfl v dgiss

n-1

is a multiplication by y(Bay)
is a multiplication by S (057//3)i+1 and dg,, is a multiplication by y(Bay)
and A isthe module of length 3i+1.

Considering the above resolution, we have

_)Ael de Ae3 ds Aez dy \Ael d3 Aes
%5 Ae, —45> Ae,—2 > A 0.

The pdA=o since the resolution is periodic. The period ic 6. The trunca-
tion of the above resolution is given as;
P:-Ag, —% 5 Ae,—5 > Ae, —% > Ag,
%y Ae, —2 5 Ae, —4> Ae, —2 0.

Applying Hom, (M), where M is in the module (Sl,---,Sj)j of length

3j , we have
0 —% Hom, (Ae,, M) —%— Hom, (Ae,,M )
—% 5 Hom, (Ae;,M) —%— Hom, (Ae;,M) —%—Hom, (Ae,,M)
—% 5 Hom, (1e;,M)—%— Hom, (Ae, M),

where Hom, (Ae;,M)=eM,Hom, (Ae,,M)=e,M and

Hom, (1e;,M)=eM .

We compute the Ext-groups for (3i+1,3j+1). The first Ext-group is;

Exti((Sl,---,Sl)M,M):ker(eZM e e3M)/S(e1M el ezM),
where M is the module of length 3j+1. We compute the kernel for
d; :(ezM M) eSMj.
We have
d;(O,(ai,azy"':as:"',aj)t-0)=(0,0,(010:"',O,al,"',as)t):

where @, is in the coordinate number n—i+1 and therefore a, is in the

coordinate number N—i+S= j,S= j+i—n and consequently, s+1= j+i+1-n.
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This shows that

a ek,r=s+1--, .

1 s+l

kereZML))eM):{(O,(OO 10,8,5.3,) 0]

We compute the image

d; :(elM %%M)

We have
t
((bl b, TR J*l) IO!O):(0!(0!01...lolbli...lbj_(i+1)) 10)1
where b, is in the coordinate number i+ 2. Hence
(elM ﬂaezM) {(o( 0B,y g )t,O)‘btek,tzl,--~,j—(i+1)}.

We have dim, Ext;((sl,---,sl)‘,M):i+2—(j+i+1—n):n+1—j for j<n+1.

Next, we compute the second Ext-group.
Ext? (S, 5,) M) = ker(esM 07NN )/\s(ezM s e M )
We compute the kernel for
d; :(eSM BT NNy )

We have

d;(O,O,(al,aZ,-n,aj)t)=((O,0,~-,O,a1,--~,aj7(i+1))t,0,0),

where &, isin the coordinate number i+ 2. This shows that

ker(esM s, elM):{(0,0,(0,0,---,0,a1,--~,aj)t)

a, ek,rzl,---,j},
where @, isin the coordinate number j—i.We compute the image for
d; :(e2 M Ll e3M).
We have
d;(O,(bl,bz,---,bs,m,bj)t 0)=(0,0,(0,0.+,0.8,+-.b,) )

where b, is in the coordinate number n—i+1 and therefore b, is the coor-
dinate number N—i+S=] and S= j+i—n.Thisimplies that

(e M L M)={(0,0,(0,0,-~~,O,bl,---,bj)t)

b, ek,t:l,m,j},
where Db, is in the coordinate number n—i+1. We have
dim, Extj((sl,---,sl)‘,M):n—i+1—(j—i)=n+1—j

for j<n+1.We compute the third Ext-group.

EXti((Sl,...,Sl)t,M):ker(elM &_) ezM)/S(EsM y(par) ™ eM )
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We compute the kernel for
'(elM ™, eZM)
We have
d:((al,ap...,as,.. J+1) 00) (o (o,o,...,o,al,...,as)"0),

where & is in the coordinate number n—i+1 and therefore a, is in the
coordinate number N—i+S=j+1s=j+i+1-n and consequently,
S+1=j+i+2-n.Hence

1A’

ker(elML“)sz) {((oo 0,8, a,) 00)

a ek, r=s+1.- ,j+1}.
We compute the image for
d; (e3M LQM)
We have
d;(0.0,(b,.b,, b ) )- ((0.0.--,0.8,b,. )" 0.0),

where b is in the coordinate number i+ 3. This implies that

S(G3M M—) elM):{((0101"'i01b17"'1bji)t’o’o)

b ek,tzl,-n,j—i}.

We therefore have dim, Ext} ((Sl,---,Sl)t M )i +3—(j+i+2-n)=n+1-]j

for j<n+1.Wediscuss the fourth Ext-group.
Exty ((Sl,---,Sl)t ) ker(e M L M)/S(elM el eZM)
We compute the kernel for
d; :(e2 VLG Y )
We have
d; (Ol(aj_lazv"'yaj)t 10):(0101(0101'”101a11”'1aj,i)t)v

where @, isin the coordinate number i+2.Hence

ker(ezM %%M)

:{(o,(o,o, 0,a,,- Hl))t ,0) a, ek,r=1,---,j—(i+1)},

where @ isin the coordinate number j—i.We compute the image for

dj:(elM —ﬁ’z)—>e M)

to have
dZ((Q,bzw'nbs."',b,—)t ,O,O)=(0,(0,0,~--,0,b1,~-,bs)‘ ,0),

where b is in the coordinate number n—i+1 and therefore b, is in the
coordinate number N—i+S= j,S= j+i—n. Consequently, S+1=j+i+1-n.
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This shows that

3(eM L")%M) {(0,(0,0,~--,O,bl,-u,bj_i)t,0)‘bt ekt=1-, j},

where b isin the coordinate number n—i+1. We have
dim, Ext} ((S,,+++,8;)' M ) =n—i+1-(j-i)=n+1-

for j<n+1.We discuss the fifth Ext-group.

EXt;j\ ((Slv"'nsl)t,M): ker(egM M_)e M )/S(EZM ,5'(0!7[3) > e M )

We compute the kernel for
d; (eSM LQM)
We have
( (a1 a,, s,-",a,—)t)=<(0,0,-",0,al,"',as)t.0,0),

where @, is in the coordinate number n—i+2 and therefore a; is in the
coordinate number N—i+1+S= j,s=j+i—1-n and consequently,
S+1= j+i—n. This shows that

a e(k,r=s+1--, j)}

ker(esMLelM) {(0,0,(00 0,8, '-,aj)[)

We compute the image for
We have

( (Bubyueeesb, ) ) (oo( ~.0,b,-- ,J,),o,o),

where b, is in the coordinate number i+ 2. Hence
(eM%eM):{(oo( ,0,b, b, ‘qekt_ j}

We therefore have
dim, Exti((Sl,m,Sl)t,M):i+2—(j+i—n)=n+2—j for j<n+2.

dim, Ext} (3i +1,3j +1) =n+1-j for t=1,2,3 and 4,and n+2-j for t=5
We therefore have n+1=j and n+2=j.

It follows from the fifth Ext-group that the condition Extj(M,N)=0 for
N0 Ext] (N,M)=0 for n>0 holds.

4. Conclusion

The study found that the Ext-groups of pairs (M,N) of modules over Naka-
yama algebras of type (n,n,n) satisfy the condition Ext;(M,N)=0 for
n>0« Ext{ (N,M)=0 for n>0 and justified the claim with projectives of
lengths 3n+1 and 3n+2 by using combinations of modules of different

lengths.
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