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Abstract 
Using subdivision potential approach and mean-field theory for a ferromagnetic 
cluster, we obtained nanothermodynamic properties for a ferromagnetic nanocluster 
in the presence and also the absence of the magnetic field. The subdivision potential 
and the magnetic field both makes Gibbs and Helmholtz free energies of the ferro-
magnetic nanocluster stand at a lower level compared to those of the ferromagnetic 
cluster. Our main conclusion is that the presence of the magnetic field leads to de-
crease in the amount of specific heat capacity for the ferromagnetic cluster. On the 
other hand, this effect leads to increase in the amount of specific heat capacity for the 
ferromagnetic nanocluster. 
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1. Introduction 

Science and technology at nanoscale are of great importance in the twenty-first century 
[1], because the first level of organization of all structures, whether physical or living 
and intelligent organisms, namely physical nanostructures and bio-nanostructures is at 
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nanoscale (one billionth of a meter). As a result, the rules governing their dynamics and 
growth are developed at this level [2]. 

Nanostructural materials which their constitutive structural units’ size, are at a few 
nanometers scale, compared to ordinary materials have much advanced, preferable and 
completely different mechanical, thermal, electronic and optical properties. For exam-
ple, electrical resistance of ferromagnetic materials such as iron and nickel consisting of 
nanostructural fine-graineds, is 55% and 35% higher than the corresponding values for 
the same materials but consisting of microstructural fine-graineds, respectively. The use 
of nanostructures in devices at nanoscale, requires a deep and comprehensive under-
standing of their stability and mechanical, electrical and thermal performance in inter-
active mode. Using the application of thermodynamics for big devices (classic thermo-
dynamics), works have been done in the field of energy studies and thermal properties 
of these structures. 

Given the close correlation between properties of nanostructures and their size, na-
turally one cannot expect that classic thermodynamics can offer a correct modeling for 
thermal properties of the nanostructures. For example, calculation of melting point in 
structures at nanoscale, has been encountered with some problems which in turn are 
caused by the application of classic thermodynamics relations developed for thermo-
dynamic limit [3]. Thermodynamic limit for a physical device, consisting of N particles, 
means that when N →∞ , then  V →∞ , in such a way that 1 ConstantNV ρ− = = , 
where ρ  is the density of particles [4]. For applicability of this limit, the device must 
have an infinite number of particles. In practice, for macroscopic devices that their 
number of particles is of order of 1023, this condition is well satisfied. Basically at this 
limit, the intensive properties of the device become size independent [5]. If in a device, 
because of its small size, thermodynamic limit is not established, then one cannot ex-
pect the validity of common classical relations of thermodynamics in this device [6]. 

For the first time in the early sixties, American chemist, Terrell Hill, through pub-
lishing a paper [7] and a book [8] introduced nanothermodynamics (first introduced in 
the sense mentioned above by his Colleague, Chamberlain, in an article in Nature 
Journal [9]). The nanothermodynamic properties of a device are size dependent [10]. 

Statistical standpoint of Evans fluctuation theory [11] predicts that for small devices 
consisting of the finite number of particles, the second law is reversible. However, by 
increasing the device size or prolonging its observation time, we enter the validity zone 
of the second law. This argument about nanothermodynamics has been evolved through 
entering energy fluctuations in paper [12].  

In this paper, using the partition function obtained from mean-field theory for fer-
romagnetic nanocluster and the application of nanothermodynamic relations, transi-
tion energy from classical thermodynamics to nanothermodynamics is calculated. 
Then, the effects of this energy on Helmholtz and Gibbs free energies, chemical poten-
tial and specific heat capacity are investigated in the presence and the absence of the 
magnetic field. 
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2. Theoretical Method 
2.1. Nanothermodynamic and Subdivision Potential Approach 

Nanothermodynamics can explain thermodynamic properties of small enough devices 
[13]. These devices are those in which the effects of small size in them are significant 
and they influence their physical properties. Generally, characteristics of these devices 
are as follows: first, the number of their particles is countable (finite) and second, their 
surface to volume ratio is significant (this is a very important property in small devices 
that are considerably used in nanotechnology). 

In thermodynamics, a macroscopic device’s energy is given by following relations: 
E TS PV Nµ= − +  

d d d dE T S P V Nµ= − +  

Generally, in classical thermodynamics, except internal energy, one can enumerate 
seven thermodynamic potentials that all of them are obtained through Legendre trans-
form of E with respect to corresponding variables [14]. Two of these potentials that 
have been used until today are: 

A E TS PV Nµ= − = − +  

G Nµ=  

Generally, in nanothermodynamics, relations such as E TS PV Nµ= − +  are not 
valid and in order to correct them, the effects due to the small size of device must be 
taken into account. Nowadays, these devices are called nanometric devices. 

Terrell Hill approach, in investigation of thermodynamics of small devices, is called 
subdivision potential approach. In investigation of conductive thermodynamics of 
small devices, we only consider devices that satisfy two conditions: First, they are so 
small that macroscopic thermodynamics is not applicable on them. Second, they are so 
big that their properties can be assumed to be continuous. 

In this approach, first as a principle, we accept that without any fundamental changes 
we can use common statistical mechanics for small devices. The basis of our work is as 
follows: we divide a macroscopic device into B independent subdevices. B represents 
the number of small subdevices resulting from subdividing a big device. If B is big, then 
we are sure that each subdevice is small enough and the effects of their size become 
important. Common thermodynamic relations are not valid on each individual small 
device, but we can take all of these small devices as a macroscopic device and therefore 
we can use classical thermodynamic relations [7]. Equation dE TdS PdV dNµ= − +  
can be rewritten for the entire subdivided macroscopic device as follows: 

d d d dt t t tE T S P V Nµ= − +                       (1) 

where the index t represents the corresponding properties on all small devices. 

( ), , ,tX BX X E S N V= =                      (2) 

Nt represents the number of all particles in the macroscopic device and B represents 
the number of particles in a small subdevice. 
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The energy of this particular macroscopic device also is a function of B; therefore, the 
correct form of Equation (1) is as follows [15]: 

d d d d dt t t tE T S P V N Bµ ε= − + +                     (3) 

Using Equation (3), we have: 

, ,t t t

t

S V N

E
B

ε
∂ =  ∂ 

                           (4) 

This means that the subdivision potential, ε , is equal to the energy variation of the 
big device consisting of a large number of small devices. Therefore, we can define ε  as 
a type of a chemical potential that appears in transition from classical thermodynamics 
to nanothermodynamics [8]. 

Since Equation (3) is written for a macroscopic device, then using Euler’s theorem 
[16], we have: 

t t t tE TS PV N B
E TS PV N

µ ε
µ ε

= − + +

= − + +
                      (5) 

One can obtain Helmholtz and Gibbs free energies for nanomaterials in nanother- 
modynamic state as: 

A E TS PV Nµ ε= − = − + +                      (6) 

G E TS PV Nµ ε= − + = +                       (7) 

Finally, if we define nanothermodynamic chemical potential as the common relation 
G Nµ=  , the chemical potential variations in nanothermodynamic state become equal 
to 1Nµ µ ε −= +  [17]. 

Through a series of calculations, we obtained subdivision potential in terms of Helm- 
holtz free energy as: 

Given that d d d dA S T P V Nµ= − − +  and using Equation (6), one can obtain subdi-
vision potential in terms of A as follows: 

2

1d d d dA S T P N
N N N

ε
ρ

   = − − −  
   

                 (8) 

From Equation (8), one can obtain: 

2

,T

A
NN
N

ρ

ε

  ∂     = −
∂ 

  

                       (9) 

2.2. Mean-Field Theory of Ferromagnetism 

Consider a physical device consisting of N clusters of particles. Each particle can be 
aligned in either of two 1iS = ±  directions. The mean energy for each particle in the 
mean-field in the presence of the magnetic field is approximated by [18]: 
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( ) ( )
( )

4 12 4, , 1 1
2 1

L LL CJ LH L N h
N N N N

ε
 − = − − − − +   −    

            (10) 

where 0 mh Hµ µ= , 0µ  is the magnetic permeability of vacuum, mµ  is the magnetic 
moment of spin, H is the magnetic intensity, J is the magnitude of exchange interac-
tion, C is the coordination number of the lattice and L is the number of particles in the 
up state ( )1iS = + . In macroscopic limit, 1N L≥  , and in the absence of the mag-
netic field, Equation (10) is simplified to: 

( )
2

2
CJmmε ∞ = −  

where 
1

2 1
N

i
i

Lm S
N=

= = −∑ , is the mean value of spin vector of particles [19]. 

In this limit, thermodynamic potential is very big and we have 

( ) ( ), ,
N

Z H L N Z T∞ ∞ =    

where: 

( ) ( )
2

22e cosh
CJm

Z T CJm
β

β
−∞ =                     (11) 

If we take partition function as Equation (11), all thermodynamic properties are va-
nished above the critical temperature. Note that for this partition function, subdivision 
potential is always vanished. The critical temperature at macroscopic state is defined as 

C
CJT
kβ

∞ =  [20]. 

In the case of a limited cluster, canonical partition function is obtained as [9] [21]: 

( ) ( )
( ), ,

0

!, , e
! !

N
N H L N

L

NZ H L N
L N L

β ε−

=

=
−∑                 (12) 

3. Results and Discussions 
3.1. Thermodynamic Properties of Ferromagnetic Cluster 

For partition function mentioned above, one can obtain thermodynamic properties 
such as internal energy and entropy as follows: 

( )

( ) ( )
( )

( )
( ),

0

, ,

2 11 ! 2 e
, ! ! 1 2

N
N L NC

L

U H L N

L LTN Nk T L
Z T N L N L T N

β ε
β

∞
−

=

  − −
= + −    

− −      
∑

       (13) 

( ) ( )( )

( ) ( )
( )

( )
( ),

0

, , ln ,

2 1! 2 e
, ! ! 1 2

N
N L NC

L

S H L N k Z T N

k L LTN N L
Z T N L N L T N

β

β β ε
∞

−

=

=

 − 
+ − + −   

− −    
∑

  (14) 

The temperature dependence per particle of internal energy as well as the entropy for 
the ferromagnetic cluster is shown in Figure 1(a) and Figure 1(b), both in the presence 
and the absence of the magnetic field for N = 20, 50, 100 ( )1 0h hk −= = . 
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Figure 1. (a) Internal energy and (b) entropy per particle in the presence and also the absence of 
the magnetic field for a size-limited ferromagnetic cluster. 
 

In addition, in the presence of the magnetic field, there is a sharp decline in the level 
of internal energy. The presence of the magnetic field makes the spins to be polarized in 
the same direction and leads to decrease in the internal energy of the system.  
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Above the critical temperature, the entropy of the ferromagnetic cluster is vanished, 
but in the presence of the magnetic field for small N, the entropy is vanished just after a 
short time interval. Since degeneration depends on all up and down spin states, then we 
have 

( ) 20 lnS k
Nβ=  

Also, chemical potential is: 

( ) ( )

( ) ( ) ( ) ( )
( )

( ), ,
2

0

1, ,
, ,

2 1! 11 1 e
! ! 21

N
N H L NC

L C

H L N k T
Z H L N

L LTN hN N L
L N L T kTN

β

β ε

µ

ψ ψ
∞

−
∞

=

= −

   −   × + − − + + + −
 −  −   

∑
 (15) 

where ( )xψ  is the digamma function. ( ) ( )d ln
d

x x
x

ψ = Γ 
 

 

(Direct working with derivatives of the digamma function or the factorial function is 
inappropriate, but taking natural logarithm from the factorial and also from derivative 
of the factorial function is well-defined [22]). 

Gibbs and Helmholtz free energies and chemical potential for a ferromagnetic cluster 
are presented in Figure 2 and Figure 3. 

As can be seen from Figure 2 and Figure 3, the presence of the magnetic field leads 
to decrease in chemical potential, Gibbs and Helmholtz free energies of the ferromag-
netic cluster. 

3.2. Nanothermodynamic Properties of Ferromagnetic Nanocluster 

If we divide this ferromagnetic cluster into B independent subdevices, subdivision po-
tential is obtained as: 

( )
( )

( ) ( )

( ) ( ) ( ) ( )
( )

( )

2

,

,
2

0

1 ,
, ,

,
,

2 1! 11 1 e
! ! 21

T

N
N L NC

L

ln Z T N
NH L N k TN

N

Nk T lnZ T N
Z T N

L LTN N N L
L N L T N

β

ρ

β

β ε

ε

ψ ψ
∞

−

=

  ∂     =
∂ 

  


= × − +


   −    + − − + + +

  −  −   
∑

  (16) 

This is the energy which is important in dividing a big device into small pieces. The 
temperature dependence per particle of this quantity is shown in Figure 4 for N = 20, 
50, 100 for ferromagnetic nanocluster in the presence and also the absence of the mag-
netic field. 

According to Figure 4, it is obvious that the subdivided potential is highly influenced 
by the magnetic field so that only for temperatures below the critical temperature, this 
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Figure 2. (a) Chemical potential and (b) Gibbs free energy per particle in the presence and the 
absence of the magnetic field for a size-limited ferromagnetic cluster. 
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Figure 3. Helmholtz free energy per particle in the presence and the absence of the magnetic field 
for a size-limited ferromagnetic cluster. 
 

 
Figure 4. Subdivision potential per particle for a ferromagnetic nanocluster in the subdivision 
potential approach. 
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potential has a nonzero value. By using a large sample, i.e. by increasing the number of 
particles, this potential is vanished.  

Finally, by using the Hill’s approach, the temperature dependence of nanothermo- 
dynamic properties such as chemical potential, Gibbs and Helmholtz free energies, per 
ferromagnetic nanocluster particle are shown in Figure 5 and Figure 6 for N = 20, 50, 
100. 
 

 
 

 
Figure 5. (a) Chemical potential and (b) Gibbs free energy per particle for a ferromagnetic na-
nocluster in the subdivision potential approach. 
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Figure 6. Helmholtz free energy per particle for a ferromagnetic nanocluster in the subdivision 
potential approach. 
 

For more detailed analysis, we have found that the chemical potential variations 
compared to the initial state in the subdivided device (Figure 5(a)) shows fundamental 
changes in the properties of ferromagnetic clusters. 

As shown in Figure 2(a), for a ferromagnetic cluster limited to CT T ∞> , chemical 
potential undergoes a sharp decline. This behavior is also presented for a subdivided 
device (Figure 5(a)) and is more significant for small N. Comparing Figure 5(b) and 
Figure 2(b) and also Figure 3 and Figure 6, we see that the subdivision potential 
makes Gibbs and Helmholtz free energies of the ferromagnetic nanocluster stand at a 
lower level compared to those for the ferromagnetic cluster. The magnetic field in fer-
romagnetic and ferromagnetic nanoclusters always leads to decrease in Gibbs and 
Helmholtz free energies, but such variations for a ferromagnetic nanocluster state are 
different from those for a ferromagnetic cluster state. To see the effects of the subdivi-
sion potential, we study the specific heat capacity in both thermodynamic and nano- 
thermodynamic states. The specific heat capacity in nanothermodynamic state is: 

2 2 2 2

2 2 2 2
, , ,,

V
N V N V N VN V

A PC T T V N
T T T T

µ ε        ∂ ∂ ∂ ∂
= − = − − + +        ∂ ∂ ∂ ∂         



       (17) 

The last term includes the size effects which is absent in the thermodynamic state (It 
exists only in the nanothermodynamic state). Temperature dependence of the specific 
heat capacity per particle in the case of N divided ferromagnetic nanoclusters is shown in 
Figure 7 for N = 20, 50 and is compared to that of the ferromagnetic state. Experimental 
data [23] [24] show that the specific heat capacity of ferromagnetic nanomaterials in-
creases with respect to ferromagnetic ones which is in agreement with our results. 
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Figure 7. Specific heat capacity per particle for a ferromagnetic (a) nanocluster in the subdivision 
potential approach, and (b) cluster. 

4. Conclusions 

We study the properties of the ferromagnetic nanocluster by dividing a cluster of fer-
romagnetic materials into a set of small independent devices. When the size effects in 
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each small device become important, a series of particular energies are generated in 
each small device. The diagram of this energy per particle for the ferromagnetic cluster 
in subdivision potential approach is shown in Figure 4. This energy is comparable to 
the internal energy of the device and even at some cases is equal to it. Therefore, when 
we are investigating the properties of the ferromagnetic nanocluster, we should take 
into account the energy. It is obvious that this energy is able to influence the properties 
of the ferromagnetic materials such as iron, nickel, etc. in small dimensions and espe-
cially at temperatures below the critical temperature. Therefore, for nanoscale mate-
rials, the classical thermodynamics is not applicable. With the enlargement of the de-
vice, the subdivision potential is vanished. 

Using mean-field theory that provides us by the canonical partition function of the 
ferromagnetic cluster, we obtain the variations of Gibbs and Helmholtz free energies 
for the ferromagnetic cluster in terms of temperature. On the other hand, the size ef-
fects that are developed at nanostate, are not considered in mean-field theory. There-
fore, it does not give us any information about the ferromagnetic cluster at nanoscale 
that is subdivided by taking into account the size effects. 

Finally, we study the effect of the subdivision potential on the specific heat capacity 
of ferromagnetic and ferromagnetic nanoclusters. As shown in Figure 7, subdivision 
potential increases the specific heat capacity and in the presence of the magnetic field, 
makes shift into the maximum amount of the specific heat capacity. In other words, 
subdivision potential decreases the specific heat capacity for a ferromagnetic cluster 
and increases the specific heat capacity for a ferromagnetic nanocluster. 
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