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Abstract 
We apply a Fourier pseudospectral algorithm to solve a 2D nonlinear paraxial 
envelope-equation of laser interactions in plasmas. In this algorithm, we first use the 
second order Strang time-splitting method to split the envelope-equation into a 
number of equations, next we spatially discrete the filed quantity and its spatial de-
rivatives in these equations in term of Fourier interpolation polynomials (FFT), fi-
nally we sequentially integrate the resultant equations by means of a discrete integra-
tion method in order to obtain the solution of the envelope-equation. We carry out 
several numerical tests to illustrate the efficiency and to determine accuracy of the 
algorithm. In addition, we conduct a number of numerical experiments to examine 
its performance. The numerical results have shown that the algorithm is highly effi-
cient and sufficiently accurate to solve the 2D envelope-equation, furthermore, it 
yields an optimal performance in simulating fundamental phenomena in laser inte-
ractions in plasmas. 
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1. Introduction 

The envelope-equation is the equation that describes the evolution of the slowly varying 
laser-envelope under the static transformation of the laser coordinate (Quasi Statics 
Approximation QSA) [1]. In laser interactions in plasmas, the envelope-equation is 
widely employed to study a number of fundamental phenomena, such as self-focusing 
[2], parametric instability [3], modulation instability [4], laser-based acceleration [5], 
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high-order harmonic generation [6], and filamentation of femtosecond laser in air 
plasma [7]. Over decades of noteworthy studies, the envelope-equation has succeeded 
to present an elaborate analysis for these phenomena at varying interactions conditions, 
furthermore, the equation has shown a great potential for illustrating advanced phe-
nomena in this interactions. 

Since the early studies of laser interactions in plasmas, the envelope-equation has 
been subject to several analytical attempts. Preliminary, the Source-Dependent Expan-
sion (SDE) was proposed to analyze the equation, also the ray tracing was applied to 
follow the frequency evolution and wave number in the first order envelope-equation, 
as well the variation approach was used to construct an exact Hamiltonian formulation 
for the high order envelope-equation. It has been noted that these attempts present an 
insufficient analysis for the multi dimensional phenomena of the high frequency and 
high intensity filed, besides it comes with an ambiguous interpretation for strongly 
nonlinear phenomena as plasmas turbulence and plasma complexity. Because of this 
incomplete analysis and in order to improve the interpretation, the numerical modeling 
has been considered. 

Over the last few years, various numerical models have been applied to solve the 
envelope-equation, such as the finite difference time domain (FD) [8], the standard and 
advanced Peceaman Rachford ADI [9], the direct integral [10], the Quasi-PIC [11], the 
envelope-kinetic scheme [12], the fluid three wave model [13], and the spectral method 
[14]. In the spectral method, the solution is approximated by a series of expansions us-
ing a trial function with a number of degrees in space and time. For examples the tau 
function is used as a trail function is the Tau spectral method, the Chebyshev polyno-
mials in the Chebyshev spectral method, the Hermite function in the Hermite pseu-
dospectral method, and the Fourier series in the Fourier pseudospectral method. It has 
been realized that, among the mentioned spectral approximations, the Fourier pse-
duospectral is most suited method to solve the envelope-equation. 

The Fourier pseudospectral method has been verified as an accurate and effective 
technique for solving the envelope-equation in nonlinear optics [15], soliton physics 
[16], Bose-Einstein condensates [17], and plasma physics [18], therefore in the present 
article we apply a Fourier pseudospectral algorithm to the solve a 2D paraxial envelope- 
equation of laser interactions in plasmas. The article in organized as follow: In Section 2, 
we present the envelope-equation with its main mathematical approximations and 
physical assumptions. In Section 3, we describe the Fourier pseudospectral algorithm. 
In particular, we explain the solution procedures and introduce the boundary condi-
tions. In Section 4, we illustrate the efficiency and determine the accuracy of the algo-
rithm through several benchmark convection tests. Finally in Section 5, we examine the 
performance of the algorithm in a series of numerical experiments. 

2. The Envelope Equation 

The following is the envelope-equation that is employed to study the laser interactions 
in plasmas: 
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( ) ( )2 0.xx yy
ai D D a N a a
t

∂
+ + + =

∂
                  (1) 

As seen above, the equation is a 2D Nonlinear Schrödinger Equation-type (2D 
NLSE-type), where a is vector potential, t is the time, ( ) ( )1N a n γ= −  is the non- 

linear source term, n is the electron density, and 1 aγ = +  is the relativistic factor. 

The envelope-equation is derived using three distinct approximations: first, the Quasi 
Static Approximation (QSA) [19] that assumes the laser evolution in time and space is 
much larger than the typical time and space of the plasma respond; second, the slowly 
varying approximation in which the envelope amplitude changes much less than 

( )0a t aω∂ ∂   the laser carrier frequency ω0; third, the paraxial approximation that 
considers no variation along the direction of propagation ( )0z z∂ ∂ = . Regarding the 
physical assumptions, the above equation presents a fluid description for laser interac-
tions in underdense and collisions less plasma, in addition, in this equation two nonli-
nearities; which are the ponderomotive nonlinearity that is represented by n and the 
relativistic nonlinearity that it is given by γ, are considered, while the wake nonlinearity 
is ignored. 

3. The Fourier Pseudospectral Algorithm 

As a matter of fact, the Fourier pseudospectral algorithm (FPSA) is a modified ap-
proach for the standard Fourier Pseudospectral method [20]. To explain this context, in 
the standard spectral method the solution procedures for any envelope-equation are 
almost started by expanding the field quantity a and its spatial derivatives in this equa-
tion in term of Fourier interpolation polynomials, but in our FPSA, we initially split the 
envelope-equation into a number of equations using the Strang time-splitting method 
before carrying out the expansion. The particular purpose of this splitting is to transfer 
the envelope-equation into simple equations where the physical variables; the nonlinear 
source term ( )( )N a  and the spatial operators ( ),xx yyD D  are separated, and hence 
more simple solution procedures can be carried out. The Strang time-splitting process 
for the envelope-equation and the solution procedures including the boundary condi-
tions of the resultant equations are explained in this section. 

3.1. The Strang Time-Splitting 

Within the Strang time-splitting method, the envelope-equation can be optionally 
splitted into two/three equations, the two equations splitting is called the first order 
Strang time-splitting, while the three equations splitting is called the second order 
Strang time-splitting. It has been found that the second order splitting provides con-
vergence accuracy when it is applied to the Shrödinger equation (the envelope-equation) 
[21], thus in our algorithm we consider the second order Strang time-splitting to split 
the envelope-equation. 

Using the second order Strang time-splitting, our envelope-equation is splitted into 
the following equations: 
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( )2 0,ai N a a
t

∂
+ =

∂
                        (2) 

2 0,xx yy
ai D a D a
t

∂
+ + =

∂
                    (3) 

( )2 0.ai N a a
t

∂
+ =

∂
                        (4) 

As noted, the above equations are classified into two sets of equations: a) two ordi-
nary differential equations (ODE); Equations (2) and (4); which include the source 
term, b) one 2D partial differential equation (PDE); Equation (3), that contains the spa-
tial operators only. Each set defines different physics, and hence each requires different 
numerical solution procedures as it will be explained in the coming part. 

3.2. The Solution Procedures 

In the first place, we carry out the solution procedures of Equations (2)-(4) in the time 
domain t n t= ∆ ; where t∆  is the time-step size and n is the number of time steps, 
and in the 2D spatial domain [ ], ,x x y yL L L L − × −  ; where 1xL m x= ∆ , 2yL m y= ∆ , 

x∆ , and y∆  are the grid size and m1, m2 are the maximum number of grids along 
x± −  and y± −  direction, receptively. In our procedures, we consider x yL L L= = , 
x y h∆ = ∆ = , and 1 2m m m= = , upon that, at any time step n Equations (2)-(4) can be 

re-written in the spatial domain as[21] 

( )
*
, , *

, ,2 0,
n

i j i j n
i j i j

a a
i N a a

t
−

+ =
∆

                        (5) 

** *
, , ** **

, ,2 0,i j i j
xx i j yy i j

a a
i D a D a

t
−

+ + =
∆

                    (6) 

( )
1 **

, , ** 1
, ,2 0,

n
i j i j n

i j i j

a a
i N a a

t

+
+−

+ =
∆

                       (7) 

for 

1 1 1 1, 1, , 2, 1,0,1, 2, , 1, ,i m m m m= − − + − − −   

and 

2 2 2 2, 1, , 2, 1,0,1, 2, , 1, .j m m m m= − − + − − −   

Equations (5)-(7) are the final splitted form of the envelope-equation, and its solu-
tion procedures are entirely explained below. 

The solution procedures of Equations (5)-(7) start at the time step n in order to ob-
tain 1na +  in the time interval ( )1, 1n nt n t t n t+= ∆ = + ∆    through the following three 
sequential steps: 

Equation (5) is solved to obtain *
,i ja  based on the initial input ,

n
i ja . 

As it is ordinary differential equation, Equation (5) has the following straight forward 
solution: 

( ),* 2
, ,e .

n
i j

tm m iN a n
i j i j

i m j m
a a

∆

=− =−

= ∑ ∑  
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Equation (6) is solved to obtain **
,i ja  based on the initial input *

,i ja . 
To obtain the solution of Equation (6), in the beginning the field quantities **

,i ja  and 
*
,i ja  in this equation are expanded and transfered to the wave number domain ( **

,ˆi ja  
and *

,ˆi ja ) using the Discrete Fast Fourier Transform (DFT) as 

( ) ( )* *
, ,ˆ e e ji

m m i k yi k x
i j

i m j m
a a βµ
µ β

−−

=− =−

= ∑ ∑  

( ) ( )** **
, ,ˆ e e ,ji

m m i k yi k x
i j

i m j m
a a βµ
µ β

−−

=− =−

= ∑ ∑  

for 

, 1, , 2, 1,0,1, 2, , 1, ,m m m mµ = − − + − − − 
 

and 

, 1, , 2, 1,0,1, 2, , 1, .m m m mβ = − − + − − − 
 

where πk Lµ µ=  and πk Lβ β=  are the wave numbers along x± −  and y± −  
direction, receptively. As a consequence to the above transformation, the spatial opera-
tors become 

( ) ( )** 2 **
, ,

** 2 **
, ,

ˆ e e ,

ˆ ˆ ,

ji
m m i k yi k x

xx i j
i m j m

xx

D a k a

D a k a

βµ
µ β µ

µ β µ µ β

−−

=− =−

= −

= −

∑ ∑
                  (8) 

and 

( ) ( )** 2 **
, ,

** **
, ,

ˆ e e ,

ˆ ˆ .

ji
j mi m i k yi k x

yy i j
i m j m

yy

D a k a

D a k a

βµ
µ β β

µ β β µ β

== −−

=− =−

= −

= −

∑ ∑
                  (9) 

Then, Equations (8) and (9) are substituted in Equation (6) to give 

( )
** *

, , 2 2 **
,

ˆ ˆ
ˆ2 0.

a a
i k k a

t
µ β µ β

µ β µ β

−
− + =

∆
                   (10) 

Equation (10) has the following solution: 

( )2 2
** *2

, ,ˆ ˆe .
tm m i k k

m m
a aµ β

µ β µ β
µ β

∆
− +

=− =−

= ∑ ∑  

In the above equation, the solution is presented in the wave number domain. There-
fore, we have to transfer it back to the physical domain using the Inverse DFT as 

( )
( ) ( ) ( )2 2

** *2
, ,2

1 ˆe e e ,
2

, 1, , 2, 1,0,1, 2, , 1, ,
, 1, , 2, 1,0,1, 2, , 1, .

ji
tm m i k k i k yi k x

i j
m m

a a
m

i m m m m
j m m m m

µ β βµ
µ β

µ β

∆
− +

=− =−

=

= − − + − − −
= − − + − − −

∑ ∑

 

 

            (11) 

Equation (7) is solved to obtain 1
,
n
i ja +  based on the initial input **

,i ja . 
Similarly to Equation(5), Equation (7) is ODE, so it has the solution given below 
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( )**
,1 **2

, ,e .i j
tj mi m iN an

i j i j
i m j m

a a
∆==

+

=− =−

= ∑ ∑  

The time step n is constantly increment by one and the above three steps are sequen-
tially repeated unit we reach the maximum computational time and allocate the field 
quantity ,i ja  in each time step. 

3.3. The Boundary Conditions 

In the FPSA; as in the other spectral methods, the boundary conditions are restricted to 
be periodic, in addition, by these conditions the physical property of the laser-envelope 
should be preserved for a very long evolution time. To comply with these requirements, 
we introduce the following boundary conditions: 

( ) ( )
( ) ( )

, , , , 0 for , and 0,

, , , , 0 for , and 0,

a L y t a L y t L y L t

a x L t a x L t L x L t

− = = − ≤ ≤ ≥

− = = − ≤ ≤ ≥
 

and 

( ) ( )

( ) ( )

, , , , 0 for , and 0,

, , , , 0 for , and 0.

a L y t a L y t L y L t
x x

a x L t a x L t L x L t
y y

∂ ∂
− = = − ≤ ≤ ≥

∂ ∂
∂ ∂

− = = − ≤ ≤ ≥
∂ ∂

 

As it is clear above, the boundary conditions are periodic. Furthermore, within these 
conditions, the soliton solution is valid. It is necessary to know that, in the soliton solu-
tion the field quantity a and its spatial derivatives are vanished at L± , at this circums-
tance, the laser energy is always consuming on the envelope and absorbing in the 
boundaries, which is the property has to be kept preserved over the time. 

4. Numerical Tests 

The numerical test is fundamentally required in order to illustrate the efficiency and to 
determine the accuracy of the FPSA, therefore in this section we conduct this test. In 
fact, we perform two tests, in the first test we benchmark the algorithm against the ana-
lytical solution of a 1D Cubic Nonlinear Shrödinger Equation [22] to illustrate the effi-
ciency, and in the second one we apply the algorithm to evaluate the absolute error of a 
2D Nonlinear Shrödinger Equation to determine the accuracy. The details of the two 
tests are presented in the following subsections. 

4.1. Illustrating the Efficiency 

The equation given below is the Cubic Nonlinear Shrödinger Equation (CNLS). 
2

2
2 0 0.u ui q u u x R t

t x
∂ ∂

+ + = ≥
∂ ∂

                (12) 

The CNLS is a general envelope-equation that describes critical phenomena in plas-
ma, such as the optical propagation in dispersive medium, the waves generation, and 
the self-focusing of laser beam. As shown above, the equation is 1D time-dependent, 
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where u is the complex amplitude, ( )2 2u x∂ ∂  is the spatial derivative which governs 
the nonlinear effect, and ( )2q u u  is the cubic term that maintains the dispersion 
phenomena. As known, the CNLS presents the solution when the nonlinear effect is 
balanced with the dispersion phenomena, at this balance both of the single soliton solu-
tion, the multi-soliton solution, and the boundary soliton solution are valid. Among 
these valid solutions, we selected the single soliton solution of the following analytical 
solution to run the current test: 

( ) ( ){ }21 1, 2 exp sec .
2 4

u x t q i cx c t h x ctα α α
   = − − −      

 

To run the test, we numerically solved the CNLS using the FPSA in the space domain 
40 40x− ≤ ≤ , for α = 1, q = 1 and c = 1, with the following initial profile: 

( ) { }1,0 2 exp sec ,
2

u x q icx h xα α =  
 

 

and the following boundary conditions: 

( ), 0 at , , and 0.u x t x L L t= = − ≥  

To illustrate the efficiency, we plotted the analytical solution together with the ob-
tained numerical solution at different grid sizes in Figure 1 and at different time-step 
sizes in Figure 2. In theses figures, the analytical solution is plotted in solid-lines and 
the numerical solution is given in dashed-lines. 
 

 
Figure 1. Comparison between the analytical solution (solid lines) and the numerical solution 
(dashed lines) of the 1D CNLS equation at different grid sizes at time-step size Δt = 0.05 and time 
t = 21. 
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As shown in Figure 1, the numerical solution is continuous in the spatial domain, 
furthermore this solution is smoothly converging towards the analytical solution as the 
grid size deceases. It is also noted in Figure 1 that, at h = 0.5, 0.1 and 0.05 the numeri-
cal solution is converging more faster at small x ; in the middle of the domain, than at 
large x ; near the wall, meanwhile at h = 0.01 this solution becomes relatively close to 
the physical one for all values of x . 

In Figure 2, as it is clear the numerical solution is also continuous in the space do-
main, moreover this solution is gradually converging towards to the analytical solution 
as the time-step size decreases. It is also seen in Figure 2, at Δt = 0.25, 0.125 and 0.05, 
the numerical solution is converging more slower at small x  than at large x , while 
at Δt = 0.01 the numerical and the physical solution retains relatively similar. 

As we mentioned before, the CNLS is time-dependent equation, because of this de-
pendence, illustrating the efficiency of the FPSA at advanced time has to be undertaken. 
For this purpose, we re-conducted the comparison between the analytical and the nu-
merical solution at different advanced times, the optimum grid and time-step size pre-
viously obtained in Figure 1 and Figure 2 are regarded in this comparison, and the re-
sult is plotted in Figure 3. 

It is clear in Figure 3 that, the numerical solution is stable, and the most important, 
this solution perfectly matches the analytical one even at such a very long time. 
 

 
Figure 2. Comparison between the analytical solution (solid lines) and the numerical solution 
(dashed lines) of the 1D CNLS equation at different time-step sizes at grid size h = 0.01 and time 
t = 17. 
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Figure 3. Comparison between the analytical solution (solid lines) and the numerical solution 
(dashed lines) of the 1D CNLS equation at different times at grid size h = 0.01 and time-step size 
Δt = 0.01. 

4.2. Determining the Accuracy 

The equation listed below is the Nonlinear Shrödinger Equation (NLSE) [20]. 

( ) ( ) 21 , .
2 xx yyi V x y

t
ψ ψ ψ ψ ψ ψ∂

= − + + +
∂

              (13) 

The NLSE is a Gross-Pitaevskii equation that solves the Bose-Einstein condensate at 
a very low temperature. As noted above, the equation is 2D time-dependent, where ψ is 
the wave function and ( ) ( )2 2, 1 sin sinV x y x y= −  is the trapping potential. 

To conduct the present test, we applied the FPSA to numerically solve the NLSE in 
the spatial domain [ ] [ ]0, 2π 0, 2π× , where the following initial condition is applied: 

( )0 , sin sin .x y x yψ =  

To determine the accuracy, we evaluated the absolute error ( ) ( )exac num, , , ,x y t x y tψ ψ−  
between the following exact solution: 

( ) ( )exac , , sin sin exp 2 ,x y t x y itψ = −  

and the numerical solution ( )num , ,x y tψ  for 2π 128h =  and Δt = 0.01. The eva-
luated errors are listed in Table 1 at different computational times, and in order to 
perform a realistic benchmark comparison, we columned in the same table absolute 
errors of the Split-Step Finite Difference (SSFD) and the Split-Step Fourier Spectral 
(SSFS) methods that are previously applied to solve the 2D NLSE at the same grid size, 
time-step size, and computational times. 
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Table 1. The absolute error of the SSFD, SSFS, and FPSA for 2D NLSE at 2π 128h =  and Δt = 
0.01. 

t SSFD SSFS FPSA 

4 4.057E−4 3.244E−12 3.167E−12 

8 8.115E−4 1.250E−11 2.821E−12 

12 1.217E−3 2.792E−11 2.246E−12 

16 1.623E−3 4.951E−11 1.853E−12 

20 2.029E−3 7.728E−11 1.569E−12 

24 2.434E−3 1.113E−10 8.334E−11 

28 2.840E−3 1.520E−10 5.821E−11 

32 3.246E−3 2.008E−10 3.774E−11 

 
It is noted in Table 1 that: first, both of the FPSA and SSFS resolve such high accu-

rate solution over the SSFD method; second, the FPSA retains a slightly higher accuracy 
than the SSFS as the computational time is advancing. The superiority of the FPSA and 
SSFS over the SSFD is a common feature for the most spectral methods, likely, it is now 
confirmed for the FPSA, for the second note, although the FPSA is slightly more accu-
rate than the SSFS, in truth, the obtained accuracy degree is high enough to demon-
strate a sufficiently accurate solution for the 2D NLSE and to preserve the physical be-
havior of this equation at a long evolution time. 

5. Numerical Experiments 

After we illustrated the efficiency and determined the accuracy of the FPSA in the pre-
vious section, herein we examine its performance. To examine this performance, we 
carry out a number of numerical experiments [23] to study selected phenomena in laser 
interactions in plasma, these phenomena are the self-focusing, the multiple filament- 
tation, and the periodic self-focusing and defocussing of a femtosecond laser beam in 
air plasma. 

In these experiments, we apply the FPSA to numerically solve the envelope-equation 
in the transverse plane (x − y plane) for an incident linearly polarized laser beam with  

an initial Gaussian profile ( )2 2 2

0e
ox y r

a a
− +

= ; where a0 is the initial complex amplitude  

and r0 = 1 μm is the spot size. Also in these experiments, to consider the QSA, the speed 
of light frame is used through the following transformation: 

( ) ( ), , , , , , ;x y z t x y η τ→  

where 0 pez k c tη ω= − , k0 is the wave number of the applied beam, c is the speed of 
light, and peω  is plasma frequency, and to work under the paraxial approximation, 

0η∂ ∂ =  is assumed. Moreover, in our experiments the time τ is normalized by 
2

0petω ω , the complex amplitude a is normalized by 2mc e ; where m and e are the 
electron mass and charge, receptively, the co-ordinates x and y are normalized by 

pec ω , the electron density n is normalized by the unperturbed density n0, and the 
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power P is normalized by the critical power for self-focusing Pcr. 

5.1. The Self-Focusing 

The self-focusing or channeling is a basic nonlinear phenomenon in laser interactions 
in plasmas [24], two different self-focusing processes due to two separate effects are 
demonstrated in this interaction, namely the ponderomotive self-focusing (PSF) and 
relativistic self-focusing (RSF). The PSF is a contribution to an induced ponderomotive 
force, while RSF emerges in the presence of an applied super-intense Gaussian laser 
beam, in the present experiment we study PSF to examine the FPSA performance. 

To study the PSF, we presented in Figure 4 the absolute-amplitude a  of a laser 
beam at different simulation times, the initial complex amplitude of this beam is given 
in this figure. Note that, the given amplitude is selected to be sufficient enough to 
demonstrate the PSF and below the relativistic limit to avoid the RSF. As shown in 
Figure 4, at τ = 60 a peak beam intensity with a relatively small spot-size that is highly 
localized around its initial centroid is clearly observed. We point out that, the observed 
structure is the self-focusing in the formation stage, and in order to preciously study the 
PSF, we have to follow the evolution of this structure at different times. At τ = 75, the 
self-focusing structure is significantly enhanced, as displayed, its intensity is more fo-
cused and its spot-size is more narrowed. The determined enhancement in both of the 
intensity and spot-size of the self-focusing structure is known as the self-focusing de-
veloping, in reality, the self-focusing developing is an effective stage in the PSF process, 
since during this stage the focused-intensity is being much intensified and the spot-size 
is getting much more narrowed as seen at τ = 85. Next at τ = 95, neither increase in the 
focused-intensity nor decrease in the spot size is observed in the structure, according to 
this observation we can say that the self-focusing developing is halted, but since this 
static behavior of the invariant focused-intensity and the constant spot-size is extended 
further as seen at τ = 120, one can conclude that the self-focusing is stabilized. The sta-
bilized self-focusing stage is crucially necessary in the diagnostics and wide range of la-
ser plasmas applications, however, this stage can be remained longer or vanished shortly 
depending on the balance of the PSF with the plasma ionization. 

5.2. The Multiple Filamentation 

In laser interactions in plasmas, when the power of a focused beam exceeds the critical 
value for beam collapse (Pc) in the presence of a spatial-temporal perturbation on this 
beam profile, the focused beam is suddenly collapsed and turned into narrow patterns 
of small filaments. This process is called the Multiple Filamentation (MF). Under-
standing the MF phenomena is essential in the supercontium radiation production and 
lighting control, from that point on, the MF is an extremely interested phenomenon to 
be studied. 

To study the MF phenomena, we presented in Figure 5 the transverse filamentation 
dynamics of the absolute amplitude a  of a laser beam at initial complex amplitude 
given in this figure. We have to keep in mind that, the initial amplitude given in this 
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Figure 4. The absolute amplitude a  of a laser beam at initial complex amplitude a0 = 0.15 at 

different simulation times. 
 

 
(a)                (b)                (c)                (d)                (e) 

Figure 5. The transverse filamentation dynamics of the absolute amplitude a  of a laser beam at 

initial complex amplitude a0 = 0.4 at different simulation times. τ = 50 in (a), τ = 55 in (b), τ = 65 
in (c), τ = 90 in (d), and τ = 120 in (e). 
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figure is selected to be high enough not only to demonstrate the self-focusing, but to 
reach a focused power above the critical power for collapse. As shown in Figure 5, atτ = 
50, a highly localized self-focused spot is seen, shortly at τ = 55, this spot is collapsed 
into narrow filaments. The collapse is demonstrated due to the reason explained before, 
even though, this collapse is carrying on as long as each of these filaments consumes a 
power P > Pc, thus at τ = 65, the narrow filaments are more collapsed and its number is 
more increased. Later at τ = 90, the filaments are stagnate, as no more collapse is ob-
served beside the filaments number remains approximately constant. Owing to the fact 
that, these stagnated filaments are a subject to various dynamics; depending on the dis-
tortion on the initial beam profile and the period between the beam shots, in examples 
including the mutual attraction where the separation-distance among the filaments de-
ceases until the filaments are fused, or the mutual repulsion where this separation- 
distance increases and consequently the filaments are more widely spread. In our result, 
it is clear that the mutual repulsion is the most dominated dynamics, as seen at τ = 120 
the narrow filaments run away from one another and spatially spread. Although the 
mutual repulsion would reduce the effectiveness of generation of strong filaments, this 
dynamics gives a better understanding for the physics of the soliton vortices and spi-
raling. 

5.3. The Periodic Self-Focusing and Defocussing 

The filamentation of a femtosecond (fs) laser in air plasma [7] is the most modern and 
rapidly developing research topic in laser interactions in plasma. In this topic, the for-
mation of a fs filament that stably propagates over a long propagation-distance is com-
pulsory for particular applications [25], such as Light Detection and Ranging (LiDAR), 
remote sensing of atmospheric pollution, pulse compression, electric charge triggering 
and guiding, and remote Terahertz pulse generation. Among various phenomena asso-
ciated with the filamenation process, the periodic self-focusing and defocussing is the 
principle phenomena that exposes the filament formation, and combined with other 
dynamics at specific input beam parameters, this phenomena can stably control the 
properties of the formed filament over a lengthen distance. In this experiment, we apply 
the FPSA to simulate the periodic self-focusing and defocussing of a fs laser filament- 
taion in air plasma. 

To simulate the periodic self-focusing and defocussing, we applied a 1D FPSA to 
solve the envelope-equation. This is simply because this phenomena is a 1D dynamics 
which demonstrates along the direction of propagation (z−) only. In addition, in this 
simulation we considered the fs parameters [26], particularly the pulse duration f = 
10−15, the wavelength λ = 800 nm, the spot size r0 = 17 mm, and the critical power Pcr = 
3.32 GW, the simulation results are presented in Figure 6 and Figure 7. 

Figure 6 shows the filamentaion of a fs laser beam in air plasma at initial input 
power P0 = 200Pcr, as seen in this figure, a periodically unbalanced and instable fs fila-
ment is clearly formed, as noted the defocsuing period of this filament is longer than 
the self-focusing term, and at an advanced propagation-distance the formed filament is 
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Figure 6. The filamentation of a fs laser in air plasma at initial input power P0 = 200Pcr. 
 

 
Figure 7. The filamentation of a fs laser in air plasma at initial at input power P0 = 500Pcr. 

 
gradually decayed and finally disappeared. The balance between the self-focusing and 
defocsuing period is subject to the balance between the filament intensity-converging 
rate during the self-focusing period and the intensity-diverging rate in the defocussing 
one, as long as these two rates are comparable, a periodically balanced self-focusing and 
defocussing periods can be achieved, otherwise, unsatisfactory results as seen in Figure 
6 are obtained. Since the two rates are input power dependence, we repeated the pre-
vious simulation at another input power, and the result is shown in Figure 7. 

Figure 7 shows the filamentaion of fs laser in air plasma at input power P0 = 500Pcr, 
as shown in this figure, a fs filament with periodically balanced self-focused and defoc-
sued periods that stably propagates over a long propagation-distance is clearly formed. 
In the fs filamentation in air plasma, the stable propagation-distance is changeable from 
application to another; depending on the input parameters, in our experiment a stable 
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propagation-distance of few meters is satisfactory. 

6. Conclusions 

We successfully applied a Fourier pseudospectral algorithm to solve a 2D nonlinear pa-
raxial envelope-equation of laser interactions in plasmas. In this algorithm, we used the 
second order Strang time-splitting method to split the envelope-equation into three 
equations; two ordinary differential equations where the source term is included and 
one 2D partial differential equation (PDE) where the spatial operators only are existing. 
To obtain the solution, we spatially discreted the field quantity and its spatial deriva-
tives in term of the Fourier polynomials, and then we integrated the resultant equations 
sequentially using the discrete time integration. 

We illustrated the efficiency and determined the accuracy of the proposed algorithm 
in two numerical tests. In the first test, the algorithm was shown to be valid for solving 
the 1D Coupled Nonlinear Schrödinger Equation (CNLS) and sufficiently efficient to 
present stable and accurate results over a sufficiently long computational time. In the 
second test, the evaluated absolute error confirmed that the algorithm provides suffi-
ciently accurate solution for the 2D Nonlinear Schrödinger Equation (2D NLSE) and 
compares more accurately with other available schemes. 

We examined the performance of the algorithm in a series of numerical experiments. 
In these experiments, the algorithm showed considerable potential for studying funda-
mental and advanced phenomena in laser interactions in plasmas. At low input laser 
intensity, the algorithm efficiently depicts the ponderomotive self-focusing formation 
and smoothly follows the self-focusing developing and stabilization. Furthermore, at a 
focused power over the critical power for self-focusing, the algorithm clearly images the 
sudden self-focused beam collapse and the multiple filaments formation. Moreover, by 
tunning the input power of an input femtosecond beam, the FPSA successfully simu-
lates the formation of a fs filament that stably propagates over a long propagation- 
distance in air plasma. 
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