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Abstract 
A new stochastic epidemic model, that is, a general continuous time birth and death 
chain model, is formulated based on a deterministic model including vaccination. 
We use continuous time Markov chain to construct the birth and death process. 
Through the Kolmogorov forward equation and the theory of moment generating 
function, the corresponding population expectations are studied. The theoretical re-
sult of the stochastic model and deterministic version is also given. Finally, numeri-
cal simulations are carried out to substantiate the theoretical results of random walk. 
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1. Introduction 

Recently, a great interest in the analysis and prediction of consequences of public health 
strategies designed to control infectious disease, particularly tuberculosis and (Acquired 
Immune Deficiency Syndrome) AIDS [1], has arised. The epidemic model includes 
vaccination and is referred to as an (Susceptible-Infected-Vaccinated-Susceptible) SIVS 
epidemic model, where the classes contain susceptible, infective, and vaccinated in- 
dividuals [1] [2]. The deterministic model was analyzed by Christopher M. Kribs-Zaleta 
[3]. Transmission and control of infections disease are affected by many uncertain 
factors, then become a stochastic process. Trend of the spread of the disease is usually 
only with a certain current state. That is to say, under certain conditions, each class 
number changes is the nature of the Mrakov process.  

Birth and death process [4] is a kind of important and wide application of Markov 
process, the theoretical results are systematical, mature and in-depth. But various 
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studies focused on the birth and death process itself, few people use it. Birth and death 
process in random environment have been researched by L. J. S. Allen and P. S. Mandal 
[5] [6].  

Plentful well-known stochastic epidemic models have been used to investigate 
questions regarding the dynamics of an epidemic [7]-[13]. There are many studies have 
been investigated using stochastic models [8] [14]. Our goal in this investigation is to 
compare the dynamics of the deterministic and the stochastic epidemic model. The 
stochastic models are a continuous-time Markov chain model and a stochastic dif- 
ferential equation model [4] [14] [15]. The stochastic differential equation model is a 
new formulation that is derived from the Markov chain model.  

In this paper, the continuous time Markov chain model and the stochastic dif- 
ferential equation model based on birth and death process [4] [14] [16] are formulated 
based on the deterministic epidemic model. We use the cumulative generating function 
to express the moment equation of the numerical characteristics of random variables 
and Itô stochastic differential equation [4] [14] [16] of continuous time and discrete 
state. In addition, at the disease-free equilibrium, it is shown that the expected values of 
the random variables agree with the solution to the deterministic model. Finally, 
through extensive numerical simulations, the comparison of deterministic model and 
stochastic model is given. 

2. Deterministic Epidemic Model  

Consider a model for an (Susceptible-Infected-Susceptible)SIS disease where a vacci- 
nation program is in effect, which was analyzed by C. M et al. [3]. The model consists 
of three differential equations, one for each of the three disease states: susceptible, 
infective, and vaccinated, with the number in each class denoted by S(t), I(t), and V(t), 
respectively. The system of differential equations for the deterministic epidemic model 
is  

( )

( )

( )

d ,
d
d ,
d
d ,
d

S SIN S cI V
t N
I SI VI c I
t N N
V VIS V
t N

βµ µ φ θ

β σβ µ

σβφ µ θ

 = − − + + +

 = + − +

 = − − +

                  (1) 

where N is the constant total population size; thus we can reduce the size of the model 
by letting ( ) ( ) ( )S t N I t V t= − −  and get the new model as  

( )( ) ( )

( ) ( )

d 1 ,
d
d ,
d

I IN I V c I
t N
V VIN I V V
t N

β σ µ

σβφ µ θ

 = − − − − +

 = − − − − +


                 (2) 

note that the parameters are all non-negative, and β  is the transmission rate, φ  is 
the vaccination rate, µ  is the natural death or birth rate, c is the recovery rate, θ  is 
the rate of vaccine waning. The vaccine is assumed to be useful but imperfect. Thus the 
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vaccine efficacy denoted by 1 σ− , σ  measures the efficiency of the vaccine as a 
multiplier to the infection rate: when 0σ = , vaccination is hundred percent effective; 
and when 1σ = , the vaccine is totally useless. 

Although model (1) can well describe the development of the disease, in the spread 
and control of disease there still exist some uncertain factors such as temperature, 
environment of the hospital symptomtesting, etc. And the effect produced by these 
factors is particularly important. Based on the deterministic model (2) after dimension 
reduction, we take the influence of random factors on the spread of disease into 
considering, and establish the continuous time Markov chain (CTMC) model, namely 
the birth and death process.  

3. The Birth and Death Process under CTMC  

In this section, we construct a CTMC model under birth and death view for the epi- 
demic model based on the ordinary differential equation model (2). Let ( )1Y t  and 

( )2Y t  denote the discrete random variables for the number of infected and vaccinated 
cells at time t, the random variables ( ) { }0,1, 2,iY t ∈   and t R+∈ , 1, 2i = . Let the 
initial values be fixed, ( )1 100 0Y n= >  and ( )2 200 0Y n= > . The corresponding pro- 
babilities associated with the bivariate process ( ) ( ){ }1 2,Y t Y t  are as follows:  

( ) ( ) ( ) ( ){ }1 2, 1 1 2 2 1 10 2 20, | 0 , 0 ,n np t Prob Y n Y t n Y n Y n= = = = =           (3) 

where { }0,1, 2,in ∈  , 1, 2i = . Set ( ) ( ) ( )i i iY t Y t t Y t∆ ≡ + ∆ −  and t∆  be 
sufficiently small such that { }1,0,1iY∆ ∈ −  for 1, 2i = . We formulate the continuous 
time Markov chain model as a birth and death process in each of the variables [4]. 
When time is sufficiently small, there is  

{ }
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 2 1 1 2 2

1

2

1

2

, | ,
                            , 1,0 ,
                            , 0,1 ,
                          , 1,0 ,
                          , 0,

Prob Y i Y j Y n Y n
b t o t i j
b t o t i j
d t o t i j
d t o t i j

∆ = ∆ = = =
∆ + ∆ =
∆ + ∆ =

= ∆ + ∆ = −
∆ + ∆ = −( )
( ) ( ) ( ) ( )1 2 1 2

1 ,
1   , 0,0 ,b b d d t o t i j







− + + + ∆ + ∆ =

             (4) 

where 1 2
1 1

n nb n
N

β σβ= + , 2b Nφ= , ( )2
1 1 1 2 1d n n n c n

N N
β β µ= + + + ,  

( )1 2
2 1 2 2

n nd n n n
N

φ φ σβ µ θ= + + + + . The probabilities 
1 2,n np  satisfy the forward  

Kolmogorov differential equation [4]. Then, we have  

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )

1 2
1 2 1 2

1 2

1 2

1

,
1 1 2 , , 1

2
1 1 2 1 1,

1 2 1 2 2 , 1

2
1 1 2 1 1 2 1 1 2 1 2 2 ,

d
1 1

d

1 1 1

1 1 1

n n
n n n n

n n

n n

n n

p
n n n p t Np t

t N

n n n c n p t
N N

n n n n n p t
N

n n n N n n n c n n n n n n p
N N N N

σββ φ

β β µ

σφφ φ µ θ

σβ β β σββ φ µ φ φ µ θ

−

+

+

 = − + − +  
 + + + + + + +  
 + + + + + + + +  
 − + + + + + + + + + + +  

( )
2

,t

 (5) 
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where 1 2, 1, 2, .n n =   
In addition, when 2 0n = , we have  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

1
1 1

1 1

2,0
1 1,0 1 1 1,0

2
1 1 ,1 1 1 1 1 ,0

d
1 1 1

d

,

n
n n

n n

p
n p t n c n p t

t N

n n p t n n c n N n p t
N N

ββ µ

σφ βφ φ µ θ β µ φ φ

− +
 = − + + + + +  

   + + + + + − + + + + +      

 (6) 

where 1 1, 2, .n =   
When 1 0n = , we have  

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2
2 2

2

2

0,
0, 1 2 1,

2 2 0, 1

2 2 0,

d
d

1 1

,

n
n n

n

n

p
Np t n c p t

t N N
n n p t

N n n p t

β βφ µ

φ µ θ

φ φ µ θ

−

+

 = + + + +  
+ + + + +  
− + + +  

              (7) 

where 2 1, 2, .n =   For 1 2 0n n= = , there is  

( ) ( ) ( ) ( ) ( )0,0
1,0 0,1 0,0

d
.

d
p

c p t p t Np t
t N

β µ φ µ θ φ = + + + + + −    
         (8) 

The moment of the distribution corresponding to the bivariate process can be 
derived directly from the preceding forward Kolmogorov differential equation. The 
form of the moment generating function is  

( ) ( ) 1 1 2 2
1 2

1 2

1 2 3 ,
0 0

, , e en z n z
n n

n n
M z z z p t

∞ ∞

= =

= ∑∑                     (9) 

for some 1 2,z z R∈ , the moment generating function is a solution of the partial 
differential equation by follows [4] [17] [18]:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 1

1 1 2

2 2 2

2 2
1 2

2
1 1 2 1

2

1 2 1 1
2

2 1 2 2

, ,
e 1 e 1 e 1 e 1

e 1 e 1 e 1

e 1 e 1 e 1 .

z z z z

z z z

z z z

M z z t M M MN M
t z N z z N z

M M Mc
N z z z z

M M M
z N z z z

σβ ββ φ

β µ φ

σβφ µ θ

−

− − −

− − −

∂ ∂ ∂ ∂
= − + − + − + −

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ − + + − + −

∂ ∂ ∂ ∂

∂ ∂ ∂
+ − + − + + −

∂ ∂ ∂ ∂

 (10) 

By applying the product rule for differentiation, and differentiating both sides of the 
preceding differential Equation (10) with respect to 1z , we get  

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 1 1 1 2

1 1 1 1

1 1

2 2 2 3
1 2

2 2
1 1 1 2 11 1 2

2 3 2 3

2 3 2
1 21 1 1 2

2

2
1 1

, ,
e e 1 e e 1 e 1

e e 1 e e 1

e e 1

z z z z z

z z z z

z z

M z z t M M M M MN
z t z N z z zz z z

M M M M
N N z zz z z z

M Mc
z z

σββ φ

β β

µ

− − − −

− −

∂    ∂ ∂ ∂ ∂ ∂
= + − + + − + −   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂   

   ∂ ∂ ∂ ∂
+ − + − + − + −   ∂ ∂∂ ∂ ∂ ∂   

 ∂ ∂
+ + − + −

∂ ∂
( ) ( )

( ) ( ) ( )

2 2

2 2

2 2

2
2 22

3 2

2
1 21 2

e 1 e 1

e 1 e 1 .

z z

z z

M M
z zz

M M
N z zz z

φ φ

σβ µ θ

− −

− −

 ∂ ∂
+ − + −  ∂ ∂∂

 ∂ ∂
+ − + + − ∂ ∂∂ ∂  

 (11) 
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Take 1 20z z= =  in Equation (10), the equations for expectation of 1Y  is:  

( ) [ ] [ ] [ ] ( ) [ ]1 2
1 1 2 1 1 2 1

d
.

d
E Y t

E Y E Y Y E Y E Y Y c E Y
t N N N

σβ β ββ µ
    = + − − − +       (12) 

Differentiating both sides of the preceding differential Equation (10) with respect to 

2z , it shows that  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1 2 2

1 1 1

2 2 2 2

2 2 3
1 2

2
2 1 2 21 2

3 3 2

2 2
1 21 2 1 2

2 2

2
1 1 2 2 2

, ,
e 1 e 1 e e 1

e 1 e 1 e 1

e e 1 e e 1

z z z z

z z z

z z z z

M z z t M M MN M
z t z z N zz z

M M Mc
N N z zz z z z

M M M M
z z z z z

N

σββ φ

β β µ

φ φ

σβ

− − −

− − − −

∂  ∂ ∂ ∂
= − + − + + − ∂ ∂ ∂ ∂ ∂∂ ∂  

∂ ∂ ∂
+ − + − + + −

∂ ∂∂ ∂

  ∂ ∂ ∂ ∂
+ − + − + − + −  ∂ ∂ ∂ ∂ ∂   

+ − ( ) ( ) ( )2 2 2 2
2 3 2

2 2
1 2 21 2 2

e e 1 e e 1 .z z z zM M M M
z z zz z z

µ θ− − − −   ∂ ∂ ∂ ∂
+ − + + − + −   ∂ ∂ ∂∂ ∂ ∂   

 (13) 

Equation (10) then gives the following differential equations for the expectation of 

2Y  by substituting 1 20z z= = :  

( ) [ ] [ ] [ ] ( ) [ ]2
1 2 1 2 2

d
.

d
E Y t

N E Y E Y E Y Y E Y
t N

σβφ φ φ µ θ
   = − − − − +        (14) 

From all of the above, we get  

( ) ( ) [ ] [ ] [ ] ( ) [ ]

[ ] [ ] [ ] ( ) [ ]

1 2 2
1 1 2 1 1 2 1

1 2 1 2 2

d d
d d

.

E Y t E Y t
E Y E Y Y E Y E Y Y c E Y

t t N N N

N E Y E Y E Y Y E Y
N

σβ β ββ µ

σβφ φ φ µ θ

        + = + − − − + 

+ − − − − +

   (15) 

To enlarge type on the right side, it follows that  

[ ] [ ]( ) ( ) ( )1 2
1 2

d
.

d
E Y E Y

N c Y Y
t

φ φ µ β φ µ θ
+

≤ − + + − − + +          (16) 

Take  

{ }ˆ min , ,cφ φ µ β φ µ θ= + + − + +                    (17) 

then  

[ ] [ ]( ) [ ] [ ]( )1 2
1 2

d ˆ .
d

E Y E Y
N E Y E Y

t
φ φ

+
≤ − +                (18) 

This represents that 1Y  and 2Y  are constrained by certain conditions, so the ex- 
pectations of the random variables lie in the region  

[ ] [ ]( )1 2d
0 .ˆd

E Y E Y N
t

φ
φ

+
≤ ≤                        (19) 

For the above φ̂ , the number of infected and vaccinated also lies in this region. And 
the set  

0 ˆ
NI V φ
φ

≤ + ≤                              (20) 
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is invariant. Therefore, the expectations have the same property as the variables in the 
deterministic model.  

4. Itô Stochastic Differential Equations  

Based on the CTMC model, Itô SDEs can be derived by applying the methods in [17] 
[19]. The possible changes of CTMC model are given in Table 1, similar to the Markov 
chain model. 

Let ( )1X t  and ( )2X t  denote continuous random variables for the side of I and V, 
respectively. Then ( ) ( ) ( )( )T

1 2,t X t X t=X  is a vector random variable defined on an 
appropriately defined sample space, where  

[ ) [ )1 2, 0, , 0, .X X t∈ ∞ ∈ ∞                        (21) 

As in the CTMC model, it is assumed that the time interval t∆  is sufficiently small, 
so that at most one birth or death occur in this time interval. Let  

( ) ( ) ( )( )1 2,t X t X t∆ = ∆ = ∆X X , where ( ) ( ) ( )i i iX t X t t X t∆ = + ∆ − , 1, 2i = . The ith 
change is denoted by ( )i∆X . Terms ( )o t∆  are neglected. For sufficiently small t∆ , 
the expectation vector of ∆X  is  

( ) ( ) ( ) ( ) ( )T T T T
1 1 2 21,0 1,0 1,0 1,0 .E b d t b d t   ∆ ≈ + − ∆ + + − ∆   X         (22) 

In addition, the variance of iX∆ , 1, 2i =  is defined as  
( ) [ ]2 22

i ii i iE X tσ σ µ = = ∆ − ∆  , then the covariance of 1X∆  and 2X∆  is  
( ) ( )2

12 1 2 1 2E X X tσ µ µ= ∆ ∆ − ∆ . The covariance matrix for ∆X  is  

[ ] [ ]( ) [ ]( ) ( )T T T ,t E E E E  Σ∆ = ∆ ∆ − ∆ ∆ ≈ ∆ ∆ X X X X X X           (23) 

where [ ] [ ]( )TE E∆ ∆X X  is neglected since it is ( )2o t∆ .  

( )
( )

2
1 1 2 11 12

2
21 221 2 2

,
X X X

t E
X X X

σ σ
σ σ

 ∆ ∆ ∆   Σ∆ = ≈   ∆ ∆ ∆   
                (24) 

hence  

( ) ( ) ( )2 2 21 1 ,ii i i iE X b d tσ    = ∆ ≈ + − ∆                    (25) 

 
Table 1. Possible changes in ∆X . 

i ( )T

i
∆x  ip t∆  (The probability) 

1 (1, 0) 1 1 1 1 2p t b t X X X t
N
σββ ∆ = ∆ = + ∆ 

 
 

2 (0, 1) ( )2 2p t b t N tφ∆ = ∆ = ∆  

3 (−1, 0) ( )2
3 1 1 1 2 1p t d t X X X c X t

N N
β β µ ∆ = ∆ = + + + ∆ 

 
 

4 (0, −1) ( )4 2 1 2 1 2 2p t d t X X X X X t
N
σβφ φ µ θ ∆ = ∆ = + + + + ∆ 

 
 

5 (0, 0) ( )4

5 1 2 1 21
1 1ii

p t p t b b d d t
=

∆ = − ∆ = − + + + ∆∑  
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where 1, 2i = . In addition, we also have  

( ) ( ) 0,ij i jE X Xσ  = ∆ ∆ ≈                        (26) 

for i j≠ . Therefore, the covariance matrix Σ  can be approximated as follows [19]:  

1 1 2

2 2

0
.

0
b d

B
b d

+ 
Σ = = + 

                     (27) 

For sufficiently small t∆  and large ( )tX , ( )t∆X  has an approximate normal 
distribution with mean tµ∆  and covariance matrix 2B t∆ , where ( )ijB B= , see [15] 
[19]. Let ( ) ( )T

1 2, ~ 0,N Iη η=η . Then there is ( ) ( )2~ ,t B t N B t∆ + ∆ ∆µ η µ  and the 
approximation to ( )t t+ ∆X :  

( ) ( ) ( ) ( ) ( ) .t t t t t t B t+ ∆ = + ∆ = + ∆ + ∆X X X X µ η           (28) 

Due to that the preceding expression is an Euler-Maruyama approximation to a 
system of Itô stochastic differential equation [20], that is to say, the system (28) can 
converge in the mean square sense to the system of Itô stochastic differential equation 
as follows:  

d d d ,t B= +X Wµ                          (29) 

where µ  and B mean the drift term and the diffusion matrix, respectively. Thereby 
the system can be represented by the following formula:  

( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( )

( )

( ) ( )

1 1 1 1 1 1

2
1 1 2 1 1 2 1

2
1 1 2 1 1 2 1 1

2 2 2 2 2 2

1 2 1 2 2

1 2 1 2 2 2

d d d

d

d ,

d d d

d

d ,

X b d t b d W t

X X X X X X c X t
N N N

X X X X X X c X W t
N N N

X b d t b d W t

N X X X X c X t
N

N X X X X c X W t
N

σβ β ββ µ

σβ β ββ µ

σβφ φ φ µ

σβφ φ φ µ

 = − + +

  = + − − − +  

 


+ + + + + +



= − + +


  = − − − − +   


+ + + + + +      

 (30) 

where ( )1W t  and ( )2W t  are two independent Wiener processes. 
Note 1: The form of the Itô stochastic differential equation is not unique. From the 

reference [18], the form of Equation (30) can be expressed in other ways as the 
equivalent stochastic differential equations with the same joint probability density like  

*d d d ,t T= +X Wµ                            (31) 

where T 2TT B= = Σ  and  

1 1

2 2

0 0

0 0

b d
T

b d

 
 =
 
 

                      (32) 

with ( )T* * *
1 4, ,W W=W   a vector of four independent Wiener process [4] [19] and it 

represent independent standard Brownian motion respectively. 
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Note 2: Birth and death rates can be varied in forms. In the preceding formulations, 
we have assumed that the per capita birth and death rates of the population are positive 
and negative, respectively. In fact, we can take the birth and death rates from the Itô 
stochastic differential equation. 

For example, let  

( ) ( )

( ) ( )

2
1 11 12 1 11 12

2 21 22 2 21 22

, , , ,

, , , ,

b I V a I a V d I V b I b V I
N

b I V a I a V d I V b b V I IV
N

β

βφ

= + = + +

= + = + + +
         (33) 

where ija  and ijb  are positive constants, , 1, 2i j = , and satisfy the following re- 
lations:  

( ) ( )( ) ( ) ( )

1 1 2 2
T

TT T
1 2 1 2
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, , , , , ,

i i i i i i

i i

a b b
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α α β

σβ βα α α β µ φ β β β φµ θ

− = − =

− = = − + = = − + 
 

  (34) 

for redefined ib  and id , we can get the following Itô stochastic differential equation 
by a similar method. 
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
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

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

  = − − − − +   

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     (35) 

it is clear that the terms in the Wiener processes of the Itô stochastic differential 
equation are greater in model (35) since 1 1i i ia b α+ > , 2 2i i ia b β+ >  for 1, 2i = .  

5. Numerical Simulation  

Numerical simulations are used to illustrate the dynamics of the deterministic model, 
continuous time Markov chain model and stochastic differential equation model. We 
simulate the birth and death process perspective of infectious disease model by ap- 
plying MATLAB. Throughout the paper, we choose the parameters as: 0.01µ = , 

0.01c = , 0.01θ = , 0.02σ = , 0.27β = , 0.1φ = , 500N = . Take initial values 
( ) ( )10 20, 300,150n n = . The stable equilibrium in the deterministic model is  

( ) ( )* * *, 320.4,145.4718E I V= =  which is a global attractor.  
Figure 1(a) and Figure 1(b) respectively display two sample paths of the stochastic 

model graphed with the ordinary differential equation. It can be clearly seen from the 
dashed line in Figure 1 that with the change of time, infected number are gradually  
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Figure 1. The solution curves of deterministic model and stochastic model. In (a) and (b), the ordinary differential equation solution is 
attracted to the equilibrium ( ) ( )* * *, 320.4,145.4718E I V= =  with initial conditions ( ) ( )10 20, 300,150n n = . Parameter values are given as 

follows: 0.01µ = , 0.01c = , 0.01θ = , 0.02σ = , 0.27β = , 0.1φ = , 500N = . 
 

increased and close to the equilibrium value. At the same time, vaccinated number are 
gradually reduced. One sample path for the stochastic differential equation models (30) 
and (35) is graphed in Figure 1(a) and Figure 1(b) with the solid line. Figure 1 shows 
the solution of the stochastic model fluctuates around the solution of deterministic 
model due to weak noise intensities which reflects that the disease will persistent.  

At t = 1000, 15,000 sample paths are used to compute probability histograms for the 
stochastic equation models (30) and (35). The initial conditions lie in the basin of 
attraction for the stable endemic equilibrium for the deterministic model is  
( ) ( )10 20, 300,150n n = . The two models of the probability distributions are visible in 
Figure 2(a) and Figure 2(b). The graphs in Figure 2(a) and Figure 2(b) are computed 
from the CTMC model. 

The number of infected people is represented by the horizontal axis and vaccinated 
people is represented by the vertical axis. A two-dimensional random walk is given in 
Figure 3. It’s easy to see the path of the random walk around the equilibrium point 

( ) ( )* * *, 320.4,145.4718E I V= = . 

6. Conclusions  

In this paper, two new stochastic epidemic models, namely, a continuous time Markov 
model and a stochastic differential epidemic model, are formulated to account for the 
variability inherent in the birth, death, and infection process. Our goals are to provide 
the solution of the stochastic model and CTMC model fluctuates around the endemic 
disease equilibrium *E , and the average fluctuations around the endemic disease 
equilibrium *E  in time are small due to the weak noise intensities. Furthermore, we 
get the path of the random walk of infected number and vaccinated number also  
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Figure 2. Probability histograms for infected number and vaccinated number distribution for taken 1000 sample path. The parameter 
values are 0.01µ = , 0.01c = , 0.01θ = , 0.02σ = , 0.27β = , 0.1φ = , 500N = , and the initial condition is ( ) ( )10 20, 300,150n n = . 

 

 
Figure 3. Random walk picture of infected number and vaccinated number in 
Markov model. Parameter values are 0.01µ = , 0.01c = , 0.01θ = , 0.02σ = , 

0.27β = , 0.1φ = , 500N = , and the initial condition is ( ) ( )10 20, 300,150n n = . 

 
around the equilbrium point. 

The continuous time Markov chain model is preferred over the stochastic differential 
equation model because the continuous time Markov chain model preserves the 
discrete population values. We also derived the formula for the fluctuation of the 
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solution around the endemic equilibrium and obtained the ergodicity of the stochastic 
model. Computer simulations are presented to verify our theoretical results. Based on 
the parameter value, simulations of the CTMC model show for a population size N = 
500 and depending on the initial values, introduction of a small number of infective 
individuals into a population can have similar long term outcomes in the stochastic 
model. We found that weak noise intensities affect long term behavior of each state 
slightly. These results regarding population size and choice of deterministic versus 
stochastic model apply to the pertussis model but may hold for more general epidemic 
models when the population is homogeneously mixed. 
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