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Abstract 
In this article the inherent computational power of the quantum entangled cluster 
states examined by measurement-based quantum computations is studied. By defin-
ing a common framework of rules for measurement of quantum entangled cluster 
states based on classical computations, the precise and detailed meaning of the com-
puting power of the correlations in the quantum cluster states is made. This study 
exposes a connection, arousing interest, between the infringement of the realistic 
models that are local and the computing power of the quantum entangled cluster 
states. 
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1. Introduction 

The quantum computation is essentially mastering and using the quantum mechanics 
laws for information processing. The quantum computers use quantum bits which are 
called qubits. Both states of the qubits 0 and 1 manifest simultaneously and connectedly 
superposition and entanglement. For the microqubits we can use only the Schrodinger 
and Heisenberg equations. The entangled states of groups of quantum particles are the 
key to understanding the implementation of the super huge set of quantum states 
which are implemented in the quantum processors. The superposition is essentially the 
ability of the quantum system to be in several states simultaneously. This study ex-
amines the inherent power of the entangled cluster states that are used in the quantum 
computations model by measurement in an “one-way” or measurement based quantum 
computer (MBQC) with a register initialized in a multi-partite entangled state. Instead 
through gates, MBQC processes the information by single-qubit measurements, the re-
sults of which determine the selection of the subsequent measurements. The arrange-
ment and the selection itself of the measurements determine the algorithm, which is 
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computed. Due to the decisive role of the measurements, the MBQC is irreversible and 
it placed the beginning of a new way of measurement-based quantum information 
processing. Through the determination of a common framework of the importance of 
the computing power of the entangled cluster states, they are presented more accurately. 
For the conduct of this study double entanglements of Bell and triple entanglements of 
Greenberger-Horne-Zeilinger (GHZ) are used; it presents the relations between the 
breach of the realistic models that are local and the computing power of the output en-
tangled states. 

In the following sections it will be shown that the entangled cluster states used in 
measurement-based quantum computations (MBQC) possess remarkable computa-
tional power. MBQC is a method for computations, distinctly different from the model 
of the conventional quantum circuit, where the logical operators of the network 
processed the information. Unlike it in the standard one-way MBQC model a series of 
adaptive single-qubit measurements on a multi-qubit output state that is entangled 
process the information. It is typical for this model that the computational power is de-
termined by entangled classical resources obtained as a result of the measurement and 
not by the quantum computations themselves. In order to derive this computing power 
it is necessary to use a classical computer for control, which performs processing and 
feeding of the preliminary measurement of the outputs and directs the prospective 
adaptive measurements. From this point of view using this computational model, 
through the results of the entangled cluster measurement the classical computer 
achieves considerable exceedance of its own computational capabilities. 

2. Cluster of Controlled Computational Operators 
2.1. Incrementation  

The controlled cluster increment operator increases a value into an additional code, 
computated by a group of lines [1]-[3]. Implementing an increment gate out of NOT 
gates is easy, if you’re allowed to have arbitrarily large numbers of controls. The incre-
ment only propagates the qubits until it run across an 0 bit, see Figure 1. 

At first glance the easiest thing is to apply the construction with large controlled 
cluster NOT-s [4]. Unfortunately, since this construction requires O(n) operators per 
each controlled cluster NOT, in the end a quadratic number of operators is needed 
(because ( )21 2 3 4 n n+ + + + + ∈Θ ). 

2.2. Single Ancilla Bit 

If there is a circuit with n + 1 lines with n incrementing lines and one ancilla line, the 
goal is the incrementation to be broken up into smaller operations. In this section is not 
necessary to get all the way to the operators of Toffoli. Instead, the dimension of the 
implementation simply has to be reduced.  

The bottom lines, depending from n/2 top lines, can be avoided, by caching the 
crossing of these lines in the ancilla bit. In this way the bottom incrementation needs 
only one control, see Figure 2. 
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Figure 1. Circuit using less than O(n) NOT-s. 

 

 
Figure 2. Split incrementer. 

 
The controlled cluster increment operator is equipollent to an increment operator 

with a control line as the new inferior bit. Such an absorbing control is a matter of sub-
sequent switching of the former control line, see Figure 3: 

It should be noted that the intent control bit is treated as the slightly bit, though the 
intented line is in “wrong” position. 

The last case with a single ancilla bit is the case with the adopted bit, see Figure 4. 
This time the solution is much more complicated. 

The trick here is to use a bit-wise addition. When the bits of a number in an additional 
code X are switched, they toggle from storing of X to storing of ( )1 mod .2nX X= − −  

If the complemented value is incremented, after which the complement is taken 
again, then finally is obtained ( )1 1 1 11 .X X X X= − − + = − − − = −+  

In other words, the surrounding of an increment operator with NOT-s turns it into a 
decrementing! (and vice versa.) 

3. Classification of the Computing Power of the with Entangled  
Cluster States 

In the following sections of this report we will give a more precise definition for the  
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Figure 3. The absorption of control. 

 

 
Figure 4. Split incrementer from reset to zero bit. 

 
computational power of the correlated sources, we will discuss the natural classical 
analogue of the measurement-based computation in the context of the quantum 
non-locality. We will point out that the double and triple qubit entanglements of Bell 
and Greenberger-Horne-Zeilinger (GHZ) [5]-[7] may be used in a classical computa-
tion based on measurement (CCBM). 

Framework of MBQC—In this study the computing power of the correlated sources 
is examined in a more common framework from those of the specific MBQC models 
[8]-[11]. For this purpose, by both main structural components we will first define the 
general framework of the computational model: a correlated multi-qubit cluster and a 
classical computer for control. The correlated multi-qubit cluster consists of numerous 
entangled qubits, which performs exchanging of classical information with the com-
puter for control, see Figure 5. The entangled cluster states in their results are initia-
lized at the beginning of the process, then no direct communication between the qubits 
is permitted during the computation. There will be only one exchange of data with each 
qubit. 

The computer for control can preserve classical information, to perform exchanging 
of the information with it with the qubits and to compute some functions. The only  
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Figure 5. The computer for control makes available classical input data to each of the intercon-
nected qubits and obtains one of the results as the output data. 
 
part of the described model, where the active computation occurs is the classical com-
puter for control. Before the start of the computation is necessary the components of 
the system to be pre-programmed in order to specify what computation will be per-
formed. The classical computer obtains the functions that it will assess and the separate 
operators will obtain a certain set of bases for measurement on the basis of which shall 
be carried out the computations.  

This model is comprised only of classical objects-all quantum characteristics are 
hidden in the non-classical quantum nature of the entangled cluster states. The system 
uses the most common single classical system model that operates with the entangled 
cluster states subject to the non-communicational limitation that each particle is 
processed only once. But the inner cluster structure functions with minimum restric-
tions. As a matter of fact, the defined system is so common that it allows models where 
the entangled cluster states between the qubits do not defy strictly to the quantum me-
chanic. 

It is normal to check how the original model fits within this framework. Each particle 
contains one qubit with a cluster state and a device for measurement, programed with 
measurement basis sets 0 e 1ia±  and 0 e 1ia−± , where α is partially dependent 
and is particular for a given computation. In this model k = l = 2, i.e. for each operator 
is sent only a single bit to clarify the angle sign and the bit that is returned is the actual 
measurement result. It is noteworthy that the entire universal quantum computing can 
be accomplished with minimum values of k and l. Since this requirement constitutes 
the essential feature of a given correlation to demonstrate computational power, we ap-
ply it for the rest of this report. 

The classical computer for controlling the computation that uses a cluster state does 
not demand the total power of a given universal classical computer. The only opera-
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tions necessary for control of the measurements are equivalence computations [12]- 
[14], which may be obtained with а logical XOR operator, or for а reversible scheme 
with а CNOT operator. The MBQC with equivalence is а device applying circuits con-
taining only CNOT and NOT operations. It may solve many problems effectively, such 
as computing the equivalence of the bit-circuits, and simulating the deterministic 
quantum circuits [15] [16]. But the MBQC with equivalence cannot compute any logi-
cal function that is not balanced, such as OR or TOFFOLI. 

In order to take note of the various computational complexity levels [4], we will 
make use of the comfortable notations adopted in the computer science. We will ex-
amine only classes of complexity which imply a polynomial computing time-a re-
quirement that is physically realistic. The computing power of the computer with equi-
valence is shown to be laid down in a class of complexity, called Equivalence-L, or ⊕L 
[17] [18], until the classical and quantum computations which are universal are con-
nected respectively to the classes P and BQP. It is considered that ⊕L is weaker than Р, 
which itself is weaker than BQP, but neither of these inclusions are proved as strict. 

The notation ⊕L → BQP points out that the computer with equivalence is developed 
to full quantum universality when the state of the cluster is utilized as an output state. 
The remaining families of output states may be classified easily in our framework, see 
Table 1. Two separate groups can be discovered in the literature. The graph states [16] 
[19] [20], which use the Pauli operator’s algebra in order to guarantee determinism, are 
in Class ⊕L → BQP. Another class is the computation tensor networks (CTN) based on 
quantum computations from random output results. For example, CTN indicates that 
it is impossible to be made a correction using the Pauli’s operators only and using in 
addition the module n > 2. The additional “use” is equal to an AND operation and sim-
ilar arithmetic is not possible on the MBQC with equivalence. Some CTN states in this 
way, probably belong to a different computational power class as opposed to the cluster 
states; and in particular, in class P → BQP, and not ⊕L → BQP (pointed out with ✕? in 
Table 1). This also means that ⊕L → P is not included in these CTN states.  

We can now look at the reverse question of the classical computation based on mea-
surement-considering the computer with equivalence, what output states may be used  

 
Table 1. The cluster and graph states turn the MBQC with equivalence to a quantum universality 
(⊕L → BQP, meaning also P → BQP and ⊕L → P). The CTN states change the universal classical 
computer into a universal quantum computer (P → BQP). The three-qubit GHZ states allow the 
MBQC with equivalence to attain full classical computing (⊕L → P). 

 ⊕L → BQP P → BQP ⊕L → P 

Cluster ✓ ✓ ✓ 

Graph ✓ ✓ ✓ 

CTN ✕? ✓ ✕? 

GHZ ✕ ✕ ✓1 

1The cross (✕) points out that the source cannot provide the specific computational improvement, with the supposi-
tion that the classes of complexity differ—i.e. ⊕L 6 = P 6 = BQP. ✕? indicate an assumption for this. 
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for strengthening its computational power? By the addition of any two-bit deterministic 
operator, which itself is not a NOT and CNOT operations product represents a classical 
set of universal operator. The output state which turns the computer with equivalence 
into a classical universality is of class ⊕L → P [21] [22], i.e. it facilitates the classical 
computation based on measurement (CCBM). It is obvious that the states of the cluster 
(and each state in ⊕L → BQP) appertain to this class. But it has been unsolved which 
characteristics of the state of the cluster facilitate this computational improvement and 
if there are states that turn ⊕L → P but not ⊕L → BQP. A way to turn the computer 
with equivalence (⊕L) into classical universality (P) is by allowing it access to a num-
ber of universal operators that is polynomial, like the NAND operator. One way of 
doing that would be to give an expanded size of the states of the cluster and each to be 
sufficiently large to be implemented NAND or TOFFOLI through standard samples for 
measurement. Naturally, we want to be informed how much the source size can be de-
creased.  

In order to satisfy the condition for non-signaling and to be possible the computer 
with equivalence to decode the outcome, the value of the NAND of the α and β input 
bits have to be encoded in the equivalence of both results m1 and m2, see Figure 2. Let 

( ),Pα β  be the likelihood of success of a similar device acting on the input data α and β. 
Since the operator is deterministic for all input values must be in force: 

( ){ } { } ,, 0,1

1 1
4

Pα βα β ∈
=∑                           (1) 

The theorem of Bell determines the classical upper limitation for that quantity to 0.75 
and its limit values are ( )2 2 4 0.85+ ≈  for all correlations of the biequivalence 
quantum states. A pair of Bell is a two qubits set in a superposition of all states, i.e. in  

the state 1 100 11
2 2

+ . Thus, a biequivalence output state for deterministic com-  

putation of a NAND operator in this framework will require stronger correlations than 
those of the quantum physics, i.e. there is no biequivalence quantum state in which the 
computer with equivalence can act deterministically to reduce NAND to two indepen-
dent input bits. 

A state of GHZ is a three qubits set in the 1 1000 111
2 2

+  state. In the three  

measuring devices the input bits are { }, , 0,1cα β ∈  and then they act on the three qu-  

bits, forming the state of GHZ, 
001 110

2
ψ

−
= . There is independency of the first  

two bits, the third c = a ⊕ b that is input is fixed as an equivalence of the first two. It is 
important that this operation to be able to be carried out on the computer for control 
with equivalence. The measuring devices, which receive bit 0 measure the observed 
Pauli’s values σx, and those receiving 1 measure σy. The state ψ  is the only one of the 
four equations conforming to all four independent selections for incoming data:  

,

,
x x x x y y

y x y y y x

σ σ σ ψ ψ σ σ σ ψ ψ

σ σ σ ψ ψ σ σ σ ψ ψ

⊗ ⊗ = − ⊗ ⊗ = −

⊗ ⊗ = − ⊗ ⊗ = +
            (2) 
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It is important to note that in all cases (−1)NAND(a,b) is the eigenvalue. If we couple to-
gether binary 0 with the eigenvalue +1 that is measured and binary 1 c − 1 and call the 
measured outgoing bits n1, n2 and n3, accordingly this means that n1 ⊕ n2 ⊕ n3 = 
NAND (α, β). The computer with equivalence can easily retrieve NAND (a, b) from the 
results of the measurements mj (i = 1, 2, 3) through a series of CNOT operations. The 
measurements of a single GHZ state of three qubits, which are controlled by the com-
puter with equivalence, facilitate the deterministic computing of NAND.  

From the NAND’s universality and 1 and 2 follows that the polynomial presence of 
Bell and GHZ states is the foundation of the MBQC with equivalence using determinis-
tic operators, which turns it into a classical universality (⊕L → P).  

Although the superposition of the qubits in a state of GHZ is greater, the Bell pair’s 
qubits are more strongly entangled. Due to the monogamy of the entanglement, the Bell 
pair’s qubits are entangled in a greater extent with one another rather than the GHZ 
state’s qubits. In a GHZ triplet the third qubit has a tendency to be rather unnecessary 
than useful. Because the Bell pairs can be utilized for certain tasks, which cannot be 
carried out by GHZ states (e.g. superdense coding), it is good a state of GHZ to be re-
duced to a Bell pair by removing one of the qubits. Previously it was accepted, that the 
only means for this is to find the qubit that is not wanted is with a controlled NOT, 
controlled by one of the remaining participating qubits. This is how the qubit that is 
not wanted is cleared by reversing its value in the part all-ON of the superposition 
while remaining it only in the part all-OFF of the superposition. The approach with a 
controlled NOT works well, but demands the qubit that is not wanted to be in the same 
location as one of the remaining qubits. But probably the payment of this price of the 
quantum bandwidth can be avoided, by closing down the third qubit’s value with a gate 
of Hadamard, performing a measurement on it, and using the result of the measure-
ment to fix the problem with the parity of the phase, for this purpose it is only neces-
sary to be used a classical bandwidth. This is called “erasing” of the qubit. A given qubit 
may be removed by a state of GHZ via its measurement along the axis of spinning that 
is perpendicular to the axis of entanglement and with the aid of the result of the mea-
surement to be made a correction of the phase. 

4. Conclusion 

An important characteristic of our results is that the equivalent measurements may be 
performed in parallel. Another variant to the application of the circuit by multiple GHZ 
states measurements is intended to provide the entire logic circuit in outcomes from 
the measurements of a single entangled state with multiple qubits. This may require 
novel methods for parallelization of the circuit by quantum methods. An important 
specificity in this study is that the measurements must be adaptive. The initiated 
framework for the computational power classification of the entangled cluster states 
based on measurement leaves the qubits internal structure completely unrestricted. We 
have demonstrated that the polynomial supply of two-qubit Bell states presents an op-
timal source of the classical computation based on measurement by restricting the 
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number of particles that share entangled states. The proposed MBQC model with equi-
valence combines the two paradoxes of the non-locality that are most important, pro-
viding them an interpretation as computing tasks and delivering a simple interpretation 
for the obvious infringement of the restriction ( )2 2 4 0.85+ ≈  for GHZ state mea-
surements when using an unconventional definition of the locality used. In a future 
continuation of these studies, limitations on the permitted operations of the qubits 
could be placed, for example the internal dimension or the permissible measurement 
types, and the flow of classical data could be left unrestricted. This can provide further 
structure in the output states classification and allow a communication of higher degree 
(i.e. к, l > 2). Such a class of complexity may characterize the computational power re-
quired for controlling the measurements on certain states that require non-binary 
modular arithmetic. We hope this report will help to improve our understanding of the 
computing power of the quantum entangled states and for the provision of methods for 
further analysis. This examination reveals numerous open questions and emphasizes 
the important link between the quantum computational physics and computer sciences. 
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