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Abstract 
This article is devoted to studying of the problem of prosecution described by differential equa-
tions of a fractional order. It has received sufficient conditions of a possibility of completion of 
prosecution for such operated systems. 
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1. Introduction 
The dynamics of the systems described by the equations of fractional order is the subject of research experts 
from around the middle of the XX century. The study of dynamical systems with fractional order management is 
actively developing in the last 5 - 8 years [1] [2]. The growing interest in these areas is due to two main factors. 
Firstly, by the middle of the last century it has been adequately worked out the mathematical foundations of 
fractional integro-differential calculus and the theory of differential equations of fractional order. Around the 
same time, it began to develop a methodology and application of fractional calculus in applications, and we 
started to develop numerical methods for calculating integrals and derivatives of fractional order. Secondly, in 
fundamental and applied physics by this time, it had accumulated a considerable amount of results, which 
showed the need for fractional calculus apparatus for an adequate description of a number of real systems and 
processes [3]. Examples of real systems will mention electrochemical cells, capacitors fractal electrodes, the 
viscoelastic medium. These systems have typically not trivial physical properties useful from a practical stand-
point [4]-[7]. For example, the irregular structure of the electrodes in capacitors allows them to reach a much 
larger capacity, and the use of electrical circuits with elements having a transfer characteristic of fractional- 
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power type, provides more flexible configuration of fractional order controllers used in modern control systems. 
For such control systems of fractional order as of today, there are no similar results Pontryagin type [8]-[11]. 

2. Methods 
Let driving of object in a finite-dimensional Euclidean space of nR  be described by a differential equation of a 
fractional order of a look  

( )0 ,C
tD z Az Bu G f tα υ= + − +                             (1) 

where , 1;nz R n∈ ≥  0
iC

tDα —operator of fractional derivation, 0α > , [ ]0,t T∈ , A — n n× , B — p n×  
and G — q n×  constant matrixes, ,u υ —the operating parameters, u —the operating parameter of the pur-
suing player, pu P R∈ ⊂ , υ —the operating parameter of the running-away player, qQ Rυ ∈ ⊂ , P  and Q - 
compact, ( )f t -known measurable vector function. We will understand a fractional derivative as left-side frac-
tional derivative Kaputo [1]-[6]. Let’s remind that fractional derivative Kaputo of the random inappropriate or-
der 0α >  from function ( ) [ ] ( )1 1, , ,z t C a b a b Rα +∈Α ∈ , is defined by expression 
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[ ] ( )

[ ] ( ){ }

1

1

d1 d .
1 d

t
C

a t
a

z
D z t

t

α
α

αα

ξ ξ
α ξ ξ

+

+ +
=
Γ − −

∫                       (2) 

Besides in space nR  the terminal set M is allocated. The running-away player seeks to place the aim of the 
pursuing player to bring z to a set M, to it. The problem of prosecution about rapprochement of a trajectory of 
the conflict operated system (1) with a terminal set M for terminating time from the standard initial positions 0z  
is considered. Let’s say that differential game (1) can be finished from initial situation 0z  during ( )0T T z=  
if there is such measurable function ( ) ( )( ) [ ]0 , , 0,u t u z t P t Tυ= ∈ ∈  that the solution of the equation 

( ) ( ) ( ) ( )0 0, 0C
tD z Az Bu t G t f t z zα υ= + − + =  

belongs to a set M at the time of t T=  at any measurable functions ( ) ( ), ,t t Qυ υ ∈  0 t T≤ ≤ . 
This work is dedicated to the receipt of sufficient conditions for the completion of the prosecution managed 

fractional order systems adjacent to the study [12]-[22]. Some results of this paper were announced at the Inter-
national Labour Conference [16] [17]. In such a setting the pursuit problem was studied in [8]-[11], but it was 
devoted to the study of control systems of the whole order. In this sense, this paper summarizes these works. 

3. Results and Discussion 
Let’s pass to the formulation of the main results. Everywhere further: 1) the terminal set M has an appearance 

0 1M M M= + , where the 0M —linear subspace nR , 1M —subset of a subspace of L—orthogonal addition 
0M ; 2) π —operator of orthogonal projection from nR  on L; 3) operation *  is understood as operation of a 

geometrical subtraction [8]. 

Let 
( )( )

1

0 1

k
At k

k

te t A
k

α
α

α α

∞
−

=

=
Γ +∑ -matrix α —an exponential curve [1] and 0,r ≥  ( )ˆ ,rAu r e BPαπ=   

( )ˆ ,rAr e GQαυ π=  ( ) ( ) ( )* ˆˆ ˆw r u r rυ= ; 

( ) ( ) ( ) ( )1 1
0

ˆ d , 0, .W w r r W M W
τ

τ τ τ τ= > = − +∫                        (3) 

Theorem 1. If in game (1) at some 1τ τ= , inclusion is carried out 

( ) ( ) ( )0 0 1
0

dA rz e Az f r r W
τ

τ
απ π τ−− − + ∈  ∫                          (4) 

That from initial situation 0z  is possible will finish prosecution during 1T τ= .  
Let now the ω -arbitraries splitting a piece [ ] { }0 10, , 0 kt t tτ ω τ= = < < < = , 1, 2, , ,i k=   и 0 1A M= − , 

( ) ( ) ( ) ( )
1 1

*
1 2, , d d , 1,2, , , , .
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      (5) 
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Theorem 2. If in game (1) at some 2τ τ= , inclusion is carried out 

( ) ( ) ( )0 0 2
0

dA rz e Az f r r W
τ

τ
απ π τ−− − + ∈  ∫                            (6) 

That from initial situation 0z  is possible will finish prosecution during 2T τ= . 

Let’s designate through ( )ˆ ,w r τ  set ( ) ( )*
1

1 ˆˆM u r rυ
τ

 − +  
 defined at all 0, 0r τ≥ > . Let’s consider  

integral 

( ) ( )3
0

ˆ , d .W w r r
τ

τ τ= ∫                                   (7) 

Theorem 3. If in game (1) at some 3τ τ= , inclusion is carried out 

( ) ( ) ( )0 0 3
0

dA rz e Az f r r W
τ

τ
απ π τ−− − + ∈  ∫                          (8) 

that from initial situation 0z  is possible will finish prosecution during 3T τ= .  
Proof of the theorem 1. Two cases are possible: 1) 1 0τ = ; 1 0τ > . Case 1) trivial as at 1 0τ =  of inclusion 

(4) we have 0 1z Mπ− ∈−  or 0 1z Mπ ∈  that is equivalent to inclusion 0z M∈ . Let now 1 0τ > . After a  

theorem condition ( ) ( ) ( )0 0 1
0

dA rz e Az f r r W
τ

τ
απ π τ−− − + ∈  ∫ , then there will be vectors 1d M∈  and  

( )
0

ˆ dw w r r
τ

∈ ∫  such that (see (3), (4)) ( ) ( )0 0
0

dA rd w z e Az f r r
τ

τ
απ π −+ = − − +  ∫ . Further, according to deter-

mination of integral ( )
1

0

ˆ dw r r
τ

∫  there is a summable function ( ) ( ) ( )1 ˆ,0 ,w r r w r w rτ≤ ≤ ∈  that ( )
1

0

dw w r r
τ

= ∫ .  

Considering this equality, we will consider the equation 
( ) [ ] ( )1

1
A te Bu G w tτ
απ υ τ− − = −                              (9) 

Relatively u P∈  at fixed [ ]10,t τ∈  and Qυ ∈ . As ( ) ( )ˆw r w r∈ , the equation (9) has the decision. We 
will choose the least in lexicographic sense from all solutions of the equation (9) and we will designate it 
through ( ),u t υ . Function ( ) 1, , 0 ,u t t Qυ τ υ≤ ≤ ∈ , is lebegovsk measurable on t  and borelevsk measurable 
on υ  [7]. Therefore for any measurable function ( ) ( ), 0 ,t t t Qυ υ υ= ≤ < ∞ ∈ , function ( )( ) 1, , 0u t t tυ τ≤ ≤ , 
will be lebegovsk measurable function [7]. Let’s put ( ) ( )( ) 1, , 0u t u t t tυ τ= ≤ ≤  and we will show that at such 
way of management of the parameter of u the trajectory ( ) ( )( )0, ,z u zυ⋅ ⋅  gets on a set M in time, not surpass-
ing 1T τ= . 

Really, on (9) for the decision ( ) , 0z t t≤ < ∞ , the equation 
( ) ( ) ( ) ( )0 0, 0 ,C

tD z Az Bu t G t f t z zα υ= + − + =  
we have ([1], p. 414) 
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As ( ) ( )
1

1
0 0

0

dA rd w z e Az f r r
τ

τ
απ π −+ = − − +  ∫ . Further we have ( )1 1 1,z d M d Mπ τ = − ∈− ∈ . From here we 

will receive that ( )1z Mτ ∈ . The theorem is proved completely. 
Proof of the theorem 2. In view of a case triviality we will begin 2 0τ =  consideration with a case 2 0τ > .  

We have (see (5), (6)) ( ) ( ) ( )
2

2
0 0 2 2

0

dA rz e Az f r r W
τ

τ
απ π τ−− − + ∈  ∫ . ( )2 2W τ  is alternating integral with an  

initial set 0 1A M= −  [8]. Therefore for it semigroup property [4] is executed 

( ) ( )
2 2

2 2

*
2 2 2 2 d d ,rA rAW W e BP r e GQ r

τ τ

α α
τ ε τ ε

τ τ ε π π
− −

 
⊂ − +  
 

∫ ∫                   (10) 

where the ε —arbitraries positive fixed number 20 ε τ< ≤ ; ( )0 rυ ,the 2 2rτ ε τ− ≤ ≤ —arbitraries measura-
ble function with values from Q. 

Let ( ) , 0 ,t tυ υ= ≤ < ∞ —arbitrary measurable function ( )t Qυ ∈ . According to theorem conditions in an 
instant 0t =  is known a narrowing ( ) , 0t tυ ε≤ ≤ , functions ( ) , 0 ,t tυ ≤ < ∞  on a piece [ ]0,ε . Follows 
from inclusion (10) that for the arbitrary function ( ) ( )2 2 2 2, ,r r r Qυ τ τ ε τ υ τ− − ≤ ≤ − ∈  , we have 

( ) ( ) ( ) ( )
2 2 2

2

2 2

0 0 2 2 2
0

d d .A r rA rAz e Az f r r W e BPdr e G r r
τ τ τ

τ
α α α

τ ε τ ε

π π τ ε π π υ τ−

− −

− − + ∈ − + − −  ∫ ∫ ∫          (11) 

Thus, for the arbitrary function ( ) , 0s sυ ε≤ ≤ , inclusion takes place (12). Therefore, at  
( ) ( ) , 0s s sυ υ ε≡ ≤ ≤ , inclusion is fair (12). From here existence of measurable function ( ) , 0u s s ε≤ ≤ , such 

follows that ( )u s P∈  and 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 2
0 0 2 2

0 0 0

d d d ,A r s A s Az e Az f r r W e Bu s s e G s s
τ ε ε

τ τ τ
α α απ π τ ε π π υ− − −− − + ∈ − + −  ∫ ∫ ∫         (12) 

Then 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 2
0 0 2 2

0 0 0

d d d .A r s A s Az e Az f r r e Bu s s e G s s W
τ ε ε

τ τ τ
α α απ π π π υ τ ε− − −− − + − + ∈ −  ∫ ∫ ∫         (13) 

Further we argue similarly. As  

( ) ( )
2 2

2 2

*
2 2 2 2

2 2

2 d d ,rA rAW W e BP r e GQ r
τ ε τ ε

α α
τ ε τ ε

τ ε τ ε π π
− −

− −

 
− ⊂ − +  

 
∫ ∫                (14) 

Let’s receive 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
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2 2

2 2

0 0
0 0 0
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d d
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− − + − +  

∈ − + − −
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∫ ∫







           (15) 

For the arbitrary measurable function ( ) ( )2 2 2 2, 2 ,r r r Qυ τ τ ε τ ε υ τ− − ≤ ≤ − − ∈ 

  . Therefore, there is a 
measurable function ( ) , 2u s sε ε≤ ≤ , such that ( )u s P∈  and 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 2 2

0 0
0 0 0

2 2

2 2 2

d d d
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A r s A s A

rA rA
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∫ ∫







          (16) 

Follows from a ratio (16) that 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 2
2 2

0 0 2 2
0 0 0

d d d 2 ,A r s A s Az e Az f r r e Bu s s e G s s W
τ ε ε

τ τ τ
α α απ π π π υ τ ε− − −− − + − + ∈ −  ∫ ∫ ∫      (17) 

etc. It is clear, that there is a natural number j it that: 1) ( ) 21j jε τ ε− < ≤ ; 2) on the known function 
( ) 2, 0s sυ τ≤ ≤ , where the ( ) 2, 0s sυ τ≤ ≤  narrowing of function ( ) , 0s sυ ≤ < ∞ , on a piece [ ]20,τ , will 

be the measurable function ( ) ,u s  ( ) ( )2 21 ,j u s Pε τ τ− < ≤ ∈  meeting a condition ((17)) 

( )( ) ( )( )
( )

( )

( )

( )2 2
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1 1
*
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2 1 d d ,
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rA rA
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W j W j e BP r e GQ r
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 
 − − ⊂ − − +
 
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∫ ∫          (18) 

But 
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d d d
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τ ε τ ετ
τ τ τ

α α α

τ τ
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π π π π υ
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− − − −

− − + − +  

∈ − − + − −
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∫ ∫







       (19) 

Therefore ((18), (19))  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2 2 2

2 2 2
0 0 2 2

0 0 0

d d d 1 .A r s A s Az e Az f r r e Bu s s e G s s W j
τ τ τ

τ τ τ
α α απ π π π υ τ ε− − −− − + − + ∈ − −  ∫ ∫ ∫    (20) 

Similarly on formulas (18), (19), (20) finally we receive 
( ) ( )( ) ( ) ( ) ( )2 2 2 2 1 2 1 2 11 0 , , .z W j W M z M z Mπ τ τ ε π τ π τ− ∈ − − ⊂ = − − ∈− ∈  

Thus, for any point 0z  we have ( )2z Mτ ∈ , that is the trajectory, left a point 0z , in an instant 2t τ=  turns 
out M on a set. The theorem is proved completely. 

Proof of the theorem 3. Owing to a condition of the theorem (8) we have  

( ) ( ) ( )
3

0 0 3 3
0

dA rz e Az f r r W
τ

τ
απ π τ−− − + ∈  ∫ . Therefore (7), there is such measurable function  

( ) ( ) ( )3 ˆ, 0 ,w r r w r w rτ≤ ≤ ∈ , that 

( ) ( ) ( ) ( ) ( )
3 3

0 0 3 3
0 0

ˆd d , , .A rz e Az f r r w r r w r w r
τ τ

τ
απ π τ τ−− − + = ∈ −  ∫ ∫                (21) 

Let ( ) ( )3, 0 ,t t t Qυ υ τ υ= ≤ ≤ ∈  arbitrary measurable function, by definition of subtraction operation *  
we will receive 

( ) ( ) ( ) ( )3
1 3 3

3

1 ˆ , 0 .A rw r e G r M u r rτ
απ υ τ τ

τ
−+ ∈− + − ≤ ≤                   (22) 

From here owing to a condition of measurability existence of the measurable functions ( ) ( ), ,d r u r  defined 
on a piece 30 r τ≤ ≤  follows and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3
1 3 3

3

1 ˆ, , , 0 .A rd t M u r u r w r e G r d t u r rτ
ατ π υ τ

τ
−∈− ∈ − + = + ≤ ≤          (23) 

We will determine function by the found measurable function ( )u r  

( ) ( ) ( ) ( )3
1 3 3

3

1 ˆ , 0 .A ru r e G r M u r rτ
απ υ τ τ

τ
−= ∈− + − ≤ ≤                  (24) 

 For the decision ( ) 3, 0 ,z t t τ≤ ≤  corresponding to functions ( ) ( ), ,u t tυ  we have (21)-(24)  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 3 3 3

3 3 3
3 0 0 1

0 0 0 0

d d d d .A r s A s Az z e Az f r r e Bu s s e G s s d M
τ τ τ τ

τ τ τ
α α απ τ π π π π υ τ τ− − −− = − − + − + = ∈−  ∫ ∫ ∫ ∫
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From here ( ) ( )3 1 3,z M z Mπ τ τ∈ ∈ , that is the trajectory which left a point 0z  in an instant 3t τ=  turns 
out M on a set. The theorem is proved completely. 

4. Conclusion 
Summarizing the results, we conclude that the differential game of pursuit of fractional order (1), starting from 
the position can be completed in time, respectively. Thus, to solve the game problem kind of persecution (1), we 
used a derivative of fractional order Caputo, which is determined by the expression (2). Many (3) analogue of 
the so-called first integral Pontryagin, including (4) gives the first sufficient condition for the possibility of the 
persecution of the task. Many (5)—an analog of the second integral Pontryagin, inclusion (6) gives the second 
sufficient condition for the possibility of the persecution of the task. Lots (7)—analogue N. Satimova third me-
thod, and the inclusion (8) gives a sufficient condition for the third opportunity to end the game. In Theorems 1 - 
3, we obtain sufficient conditions for the solution of relevant problems in this form. 
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