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Abstract

This paper presents a new approach to identify and estimate the dispersion parameters for biva-
riate, trivariate and multivariate correlated binary data, not only with scalar value but also with
matrix values. For this direction, we present some recent studies indicating the impact of over-
dispersion on the univariate data analysis and comparing a new approach with these studies. Fol-
lowing the property of McCullagh and Nelder [1] for identifying dispersion parameter in univa-
riate case, we extended this property to analyze the correlated binary data in higher cases. Finally,
we used these estimates to modify the correlated binary data, to decrease its over-dispersion, us-
ing the Hunua Ranges data as an ecology problem.
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1. Introduction

The dispersion parameter should be the unity in case of the univariate Bernoulli data, but there may be deviation
if there is a sequence of the Bernoulli outcomes included in a study that may lead to a binomial variable. The
over-dispersion is happened if the variance of actual response is more than the nominal variance, Var (Y) >V ( ,u) ,
as a function of the mean, u . The estimation of dispersion parameter in the univariate case can be obtained
easily using the Pearson’s Chi-square or the deviance function. Many studies have devoted the over-dispersion
criteria in the univariate case, namely, when the binomial data are used. It is difficult to extend these methods to
estimate the dispersion parameters in the bivariate case, because in the bivariate case, the association between
correlated response variables may be happened. So, we must take this association into account when estimate
the dispersion parameter. But in the independence case, the estimate of dispersion parameter is performed as in
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the univariate case. The estimate of dispersion parameters for the bivariate correlated binary data can be ob-
tained using different methods. The first one when the dispersion parameter is scalar. The second one when we
have a matrix values of dispersion parameters. These estimates can be extended to the trivariate and multivariate
correlated binary data. So, we present a new approach to identify and estimate the dispersion parameters, in sca-
lar and matrix values, for the bivariate, trivariate and multivariate correlated binary data. Also, after obtaining
these estimates we can modify the correlated binary data, this happens to obtain a dispersion parameter equal or
near to the unity.

This paper can be organized as follows: Some of the previous studies are presented in the Section 2.

A proposed approach for identifying and estimating the dispersion parameters in a scalar and matrix values,
and the impact of over-dispersion in the case of bivariate, trivariate and multivariate binary outcomes associated
with covariates, are demonstrated in the Sections 3, 4 and 5, respectively.

Finally, the numerical examples for the vectorized generalized additive model, VGAM, or vectorized genera-
lized linear model, VGLM, Yee and Wild [2], and the alternative quadratic exponential form, AQEF, measure,
El-Sayed et al. [3], are demonstrated in Section 6.

2. Previous Studies

In this section, we present some studies on the over-dispersion problem as shown below:

(1) Smith and Heitjan [4] provided an appropriate statistical tool to detect extra binomial variation (over-disp-
ersion). To test the nominal dispersion in the i-th (i=1,2,---,d ) margin, it is important to give the relation, for
m; ftrials,

Var(Y,)=¢gmz (1-7,). 1)
The hypothesis testing problem is formulated as
Hy:¢=1 vs H :¢>1.
An appropriate procedure to test H,, is the score statistic suggested by Smith and Heitjan
x°=3AN, )

where J; = (Jli , J2i,---,in) is a random vector that registers the difference between actual information and no-
minal information, in the i-th margin with respect to every j-th (j=1,2,---, p) parameter, for k(k=1,2,---,n)

observations, namely

Jii :%g[(yjik _mi”i)z_mi”i (1_7Z.i):|XJ?ik' (3)

And A is the covariance matrix of J; corrected for estimation of linear predictors, &, where

6 = Iogi . Under the null hypothesis, H,, the asymptotic distribution of statistic (2) is the x> distribution
i
with p degrees of freedom. The eventual rejection of H, will be a clear evidence that Var(Y;)>mz, (1-7,).
(2) Cook and Ng [5] described a bivariate logistic-normal mixture model for over-dispersed two state Markov
processes. The use of these mixed models cause increase in the standard error of marginal probability estimates.
They did not specify the explicit form for the over-dispersion estimate, but display the log-likelihood function
for the full sample of m subjects, as

1(.0)= $g] &, {TT60 (50 e - B (5, 1)

i=12--m, k=l=12,

4)

where, the expectation, E, , is taken with respect to the bivariate normal distribution, hence
a, =(ay,a) ~BYN(1,%), B, (k=1,2),are regression parameters.

()
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(3) Saefuddin et al. [6] showed the effect of over-dispersion on the hypothesis test of logistic regression.

A simple method proposed by William, [7], was used to correct the effect of over-dispersion by taking infla-
tion factor into consideration. This method takes account of adjusting the estimate of the standard error of the
parameter resulting from the over-dispersion. Modeling of the over-dispersion is often expressed in the equation
of the variance of response variable, Y;, for binomial case for n; trials, as follows

Var (Y,) = nz, (1- ;) [1+(n, -1)4 ], (5)

where [1+(ni —1)¢} is the over-dispersion scale and ¢ denote inflation factor. When the over-dispersion
does not occur or very small over-dispersion occurs, ¢ will be approximately equal to zero, so Y, exactly
follows binomial distribution, Bin(n,,7z;), and Var(Y,)=n; (1-7;), Collett [8]. However, when over-dis-
persion exists, ¢ exceeds zero and leads Var (Y ) to be greater than n,; (1— 7Z'i) . The parameter estimate of
¢, is obtained by equating X statistic of the model to its approximate expected value, written as

Xzziw' and E(Xz)zgw(l w.o.d. )[l+(ﬂi—l)¢:|, (6)

where v, =nz; (1-7;), W, is the weight and d; is the diagonal element of the variance-covariance matrix of
the Ilnear predlctor say 7, = Z B;X;i - The value of X? statistic depends on ¢ SO iteration process is
needed to find the optimum value. ThIS procedure was the first introduced by William, [7], and is known as Wil-
liam method.

The algorithm of the William method is described as follows: R

1. Assume ¢ =0, calculate parameter estimate of logistic regression parameter, £, using maximum like-
lihood method. Calculate the X? statistics of fitted model.

2. Compare X’ statistics to 2e., distribution. If X? statistic is too large, conclude that ¢ >0 and cal-
culate the initial estimates of ¢ using following formula

- X*-(n-p)

P = ()
>(n-1)(t-ud,)
3. Using the initial weights
W, :[1+(ni —1)50]_1, ®)

we can recalculate the value of ﬁ and X° statistic.
4.1f X? statistic close to its degrees of freedom, n— p, then the estimated value of ¢ is sufficient. If not,
re-estimate ¢ using following expression:

fo—H ©
ZWi(ni—l)(l Wluldl)

i=1

XZ—Zn:W (1-wod,)
i=1

If X? statistic remains large, return to step (3) until optimum value of estimated ¢ is obtained. Once ¢
has been estimated by ¢, w, = [1+(ni —l) ¢T could be used as weights in fitting the new model, Collett [8],
and William [7]. We conclude that the over-dispersion problem causes lower standard errors of the estimates of
parameters.

(4) Davila et al. [9] introduced a new approach for modeling the multivariate marginals over-dispersed bi-
nomial data. They illustrate this approach by analyzing the data using the Gaussian copula with Beta-binomial
margins. In order to model the over-dispersion, they used the Beta-binomial model, a generalization of binomial
distribution, Casella and Berger [10]. In this model, it is supposed that Y;|P ~ Bin(mI , R) , Whereas
P ~ Beta(q;, ) . Then, they make the assumption that each margin, Y;, follows a Beta-binomial distribution.
Therefore, unconditionally the compound density, with respect to the counting measure of Y,, is given by
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m; \Beta(y, +o;,m -y, + )
f(y,a,B)= .y, €{01-,m}, 10
(e )=[ ) [P M)y o m) @0
where, «; >0, 5, >0. Conditional to P, the expectation is given by
a; .
E(Y,|P)=mz =m, — |, i=12.-,d, 11
(|||) |7T| I[ai+,6ij ( )

The conditional variance is
o, + B +m,

Var (Y, |R)=mz (1-7,) a, +p +1

=mz (1-m)[1+4(m -1)], i=12-.d. (12)

From the relation (12), we see that the marginal dispersion parameter is

1
“a+pel &

Comparing the relation (1) with the relation (12), it is noted that the later has a greater variance. In their study,
as compared with the multivariate normal (MVN), the marginal GLM, and the marginal over-dispersion model
(ODM), they have shown that the model based on the Beta-binomial model (BBM) displayed the higher stan-
dard errors associated to estimated parameters.

(5)-The vectorized generalized additive model (VGAM) introduced by Yee and Wild [2] and implemented by
Yee [11] [12]. The conditional distribution of VGAM function for bivariate correlated binary responses,
(Y,.Y,) given that some covariates, X, is:

log f (Y1, ¥, | X) = Ug (X) + Uy (X) Y1 + Uy (X) Y, + Uiy (X) Y2Ys, (14)
where, uy(x) is the normalizing constant,
u, (x) m(X)
U (x) | =7 (x) =7, (%) |
Uy, (X) 75()

And the 7;, j=1,2,3, are additive predictors. If all the functions are constrained to be linear, then the re-
sulting model is a vector generalized linear model (VGLM).

The conditional distribution of VGAM family function for trivariate binary responses, (Yl,YZ,Y3) given that
some covariates, X, is

log f (V. Yo, ¥ | X) =Ug (X)+ Uy (X) Yy + Uy (X) Y, +Ug (X) Y3 + Uy (X) V1Y, +Ups (X) V15 +Ups (X) Y, Y5 (15)

Note that a third order association parameter, uj,;, for the product, (y,y,y,), is assumed to be zero for this
family, Yee and Wild [2].

The conditional distribution of VGAM (VGLM) function for multivariate correlated binary responses,
(Y,.Y,,Yy,--+,Y, ), given that some covariates, X, is

Iog f (ylvyzl"'lyk |X)=UO(X)+ZUj(X)y]- +Z|:uj|(x)yjy|’ (16)
j=1 j<

where u, (x) is the normalizing constant.

In the next section, we suggest a new approach to estimate the dispersion parameter, ¢, using a scalar and a
matrix values of the dispersion parameters and indicate how the dispersion parameter may influence on the
analysis of correlated binary data, specially on the standard errors, the Wald statistics and the LRTs for the biva-
riate, trivariate and multivariate binary outcomes variables associated with covariates. For fitting the correlated
binary data, we use the log-likelihood function for the alternative quadratic exponetial form (AQEF) measure,
[3], in the bivariate, trivariate and multivariate case, respectively.

Using the following notations which imply to the link functions which enable us to use the regression model:

)
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- oo i—12..
ﬂl_(ﬁm ﬁn)v M(X)_pl(x)_1+eﬁl'x' X_(l Xi)’ |_1’2’ N,
, ) e
P (ﬂzo ,321), :uz(x)_ pZ(X)_1+e/3§x
. ~ ~ eﬁéx
By = (ﬁ3o ﬁal)' :“3()() = p3(X) Tl e @an
0‘1’:(6110 0‘11)’
o :(azo 0‘21)’
o :(0‘30 0‘31)’
a, :(aao a41)’

we have the log-likelihood function for the bivariate AQEF measure as
! ( Y. B B, 0‘) = Z [ﬁfxyn + ByXYqi + XYy Y, —log (1+ e 4 P2 4 ghhixrax )} (18)
i=1
The log-likelihood function for the trivariate AQEF measure is
0(Y, Bra) = BNy + By, + BiXYs + 0XY:Y, + XY Ys + XY, Vs + Xy Y,Ys — 09 A(B,a),  (19)
where,

A(ﬁ, 0{) =1+ eﬂl’x + eﬂéx + eﬂéx + eﬂl’x+ﬂéx+a1’x + eﬂl’x+ﬂ3'x+a’zx + eﬂéx+ﬂéx+a§x + eﬂl’xﬂﬁx+ﬂéx+a1'x+a'2x+aéx+a5x

Finally, the log-likelihood function for the multivariate AQEF measure is
oy, p.a) =iz;: jzk_;ﬂ;xyji +§2Ia},xyji Vi e+ O XYy Yoi - Vi — 109 A(,B,a)}, (20)
where,
A(B,a) :1+gexp[ﬂjx]+§l exp[ﬂjx+ﬂ|’x+a},x}+~--+exp{g(ﬁ;x)+~--+a1’23,“kx}. (21)
3. Dispersion Parameters in Bivariate Case

In this section, we determine the identification and estimation of a fixed value for dispersion parameter, ¢, and
also a matrix of dispersion parameters to extend the effect of over-dispersion on the analysis of bivariate corre-
lated binary data.

3.1. Scalar Dispersion Parameter

We can use the variance-covariance matrix of Y, and Y, to estimate a scalar dispersion parameter, ¢, in the
bivariate binary outcomes. So, we can define the response vector

Y, . Y,

Y = and its mean vector Y = .
Y2 Y2

Following the GLM property, the variance-covariance matrix of Y is

On Op (,uz,,ul) v (/12)

where,

O = E(Y1_:u1)2' O = E(Yz_luz)zl 01, =05 = E(Yl_ll'll)(YZ_lle)'
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And,

V(m)=m(-m), V()= (1= 1), Cov(py, ) =Cov (s )= puV (14)V (447),

Then, the estimator of ¢, for n observations, is

L Sy ] ) Cov<zai,zz2i>ﬂyﬂ—zﬂ ’
¢ n_pé[yll i Yy ﬂzl]{cov(ﬁzwﬁli) V(/&m) Vo i | (22)
Hence, we can show that

¢;: - 1 Zn:(yu _/Z}ﬂ) V(ﬁzi)+(y2i_ﬁ2i) V(/Alq.i)_zcov(ﬁuvﬁzi)()ﬁi_[‘n)(yn_ﬂzi)_ (23)

P V (fy )V (f) — [COV(/Aﬁi e )]2
Then,
% V (14 Cov (£t 13 ) N Yii — A
é[)ﬁi‘/‘ﬁi yZi_ﬂZi]{COV(ﬂZi,ﬂn) V(1) } {yzi_ﬂzj

Follows the non-central ;(rffp. Under independence, this quantity follows, approximately, ;(n{p . An estima-
tor of ¢ in this case is

24
n-pia /[Lli(l_/[lli) ﬁzi(l_[’ﬁ) =

¢?: 1 il:(yli_[ﬁi)z_’_(yZi_/}Zi)z].

3.2. Matrix of Dispersion Parameters

Now, we use different values for dispersion parameter, such that ¢,,4,,,4, and @&, , here, @, =¢, . The va-
riance-covariance matrix of Y is

o, Op A oV (1, 1y
= [021 Uzj ) Lﬁmv (/E:ﬁ!)ﬁ) ¢zz\(/(ﬁ:“2) )} )
The estimator of dispersion parameters matrix is
oy o
Vn q V(i) Cov(ia.is)
by b Gy Gy '
Cov( iy, ity V(i)
Then,
" (Y~ i)’ 0 (Vs = iy ) (Vi = i)
l:%n %\12:| _ 1 ; V(i) ; Cov ( iy fly; ) (26)
b ol NP (Ya—) ) g (Ya— i)
T Cov(/iy fhy) T V(i)

From the equation (26), we have

n
io1

¢V (Mi ) ¢12iCOV(:u’li 1 My )}1{ Yii — A }
b, COV (1t 1117 bV (1431 Yoi = Hyi

_Follows the non-central an_p . Under independence, this quantity follows, approximately, Zf_p A
b, =0, =0,and ¢, =@, =4, then the estimator of ¢ issameas (24).
We can correct the data using the estimates of dispersion parameters, ¢;,#,, , and Equation (25), for the i-th

observation, in the bivariate case as

[Vui — 44y yzi—ﬂzi]{
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Var (Y, ) = ¢11|V(pl|)<:>Var(\/;TiJ V (145,

Var (Y, ) = ¢V (45) < Var( Y )=V (t), (27)

Do

COV(Yli’YZ) ¢12|C0V(/"1uﬂ2| C:’COV[ J COV /u:|_|1/uZ|)
i

4. Dispersion Parameters in Trivariate Case

We can define the response vector

Yy H
Y =Y, | and its mean vector u=|, |.
Yy Hs

4.1. Scalar Dispersion Parameter

The variance-covariance matrix of Y can be written as
011 Oy Oj3 \ (ﬂl) Cov(ﬂpﬂz) COV(,ul,,u3)
L=|0oy 0, O0xp|= COV(,uZ, /u’.l) Vi (u,) COV(ﬂzrﬂa) ' (28)
O3 Oxp Oy Cov (s 1) Cov(pts pty) V (1)

where,
Vi(m)=ml=m), V()= (1= 1), V(s)=p(1=ss),
Cov(ph, 1) = PV (1 )V (#12), COV(s1,415) = oV (1)V (1), COV (s ) = paaV (122 )V (15)-
The estimator of ¢, for n observations, is
(Ai) V([ﬁiv[‘zi) V (0 i) * Yai — A
) V(i) V(i) | | Yo~ i |- (29)
\Y

L i
/Uu) \ (/&Si ; /&Zi) ( Aai) Yai = A

\Y

é:_Z[Yn_[ﬁi Yaoi = iy ysi_ﬁai]v(
n-p

V (4

i=1

Since,
-1
. V(1) Cov (s, i) Cov(ay, i) Vi — 4
le[yli —Hi o Yo T My Vs _ﬂsi] Cov (pty, 1ty \ (ﬂZi) COV(ﬂzwﬂsi) Yoi = iy
" Cov (g, 1ty)  Cov( g, ) V (#5) Yai — Mg
Follows the non-central anfp . Then, under independence, this quantity follows, approximately, anfp . Under
independence, the estimator of ¢ is
1 Q& (yli_t&li)z+(y2i_1&2i)2+(y3i_:&3i)2 . (30)
N—piT| iy (1= Ay)  dy (1= fy) iy (1= )

é=

4.2. Matrix of Dispersion Parameters
The variance-covariance matrix of Y can be displayed as

Op; O O3 v (/”1) #,Cov (/ulv Hy ) $,Cov (/uii M )
L=\0, 0y, 0y,|=|¢,Cov (,Uz ) ﬂl) PV (,Uz ) #,,Cov (ﬂz , /13) . (31)
O3 Oz Oz ¢, Cov (ﬂa ol ) ¢,,Cov (/”3 My ) PV (/”3 )
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b bo s
The estimator of dispersion parameters, | ¢,, @, @ | are
(1;31 stz ¢?33
I : (Y1| ;U1|) 2 (yli _I&Ii)(yZi _[l2i) 2 (yli _[‘n)(Ym _ﬁsi)_
2 V(@) & Cod)  E Cov(iada)
o 1 . (yzi_/uzi)(yli_/}’li) 2 (YZi_lAJZi)Z : (yzi_ﬂzi)()’a_ﬂsi) 32
’ n-p ; Cov ( fiy;, f1y;) ; V (i) é Cov ( iy, f15; ) ' (32
: (Y3i _ﬁsi)(Yn _:[ﬁi) 2 (Y3i _ﬁ3i)(Y2i _t&2i) 2 (Y3| ,U3|)
_igl: COV([‘aivﬁﬁ) Izzll COV(I&S.iU&Zi) 121: (ﬂs.)

Since,

. #aV (1) $aiCOV (1t 1) PiCOV 1ty 11y ) B Vi — My
Z[)ﬁi i Yo T My Vs _ﬂai] $COV (113, 113 GV (1) B COV (i, 1) | | Vi — Moy

= G COV (1, 1) P30 COV (125, 115, bV (1) Yai — M

Follows the non-central zZ » - Under independence, this quantity follows, approximately, ;{n{p. If
¢12 ¢13 ¢23 0 and ¢11 By =Py = ¢ then the estimator of ¢ is same as (30),

Similarly, we can correct the data using the estimates of dispersion parameters, d,,, ¢zzz and ¢33, and the eg-
uation (31), for the i-th observation, in the trivariate case as

Var (Y, ) =,V (14 )@Var(\/%]:V(;ﬁi),

Var( ) PV (ﬂzi)bvar[

22i

%}vmi),

Var (Yy) = g5V (/13i)<:>Var[%J=V(,u3i),

33i

(33)

Cov (Yli Yy ) = gCov(uy;, 1) & COV[

\/a \/@\] COV /ulu,uzl)

COV i1 /730
e
COV(YZi,Y3i):¢Z3iCOV(,uZi,,ugi)<:>C0V[\/g @J Cov (fyi, )

5. Dispersion Parameters in Multivariate Case

Cov(Yy,Ys ) = AaCoviuy, iy) = COV[

We can define the response vector

\4 H
Y.

Y =| ?| and its mean vector u= |
Yy Hy
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5.1. Scalar Dispersion Parameter
The variance-covariance matrix of Y can be written as
V(m)  Cov(mp) v Cov(m)

Oy O *° Oy
s |2 0'.22 O-:2k _ COV(,L:IZ,/jl) V(:ﬂz) COV(:‘:‘Z'ﬂk) ’ (34)
O Ok O Cov (s, t4) COV(pty, ty) - V (4)

where,

V()= (1= )V (1) = py (1= 1),V () = g (1= 14, ),
()V (15),+,Cov (4o ) = PayV (#4c2)V (44)-

Cov (1, 1) = praV (14)V (112),COV (14, 115) = s

The estimator of @, for n observations, is

V(i) V(i) oV die) | e A
TR AR MY B M LR N S

V(Bd) Vada) o V() ] YA
Since,

V() V(tmis) o V(o t) Yii — #4
é[yli —Hyi Yo My - Vi _ﬂki] Y (ﬂz;v/ﬁi) v (ﬂZI) v (luzsi”uki) Ya _E‘UZi .
V(g0 at5) V(g ) - V() Y — Hi

Follows non-central ;(n{p. Then, under independence, this quantity follows, approximately, ;(n{p. Under
independence, the estimator of ¢ is

- 1 & (yli_/"zli)z (y2i_/32i)2 (Y3i_ﬁ3i)2 (Yki_/[lki)2 36
’ n-pia ta’li(1_/:[1i)+1[12i(1_ﬁ2i)+t&3i(l_ﬁ3i)+ +:&ki(l_/}ki). (%)

5.2. Matrix of Dispersion Parameters
The variance-covariance matrix of Y can be displayed as

Oy O 0 Oy A% (/”1) ¢12C0V(,ul,,u2) ¢1kC0V(/Jil/uk)
s 0121 0'.22 Ok _ ¢21COV€,”21M) ¢22V:(,”2) ¢2kcovg/'l2uuk) . 37)
O Oy ° Ok ¢k1C0V(/ukHul) ¢k2COV(:ukl/u2) Y (,Uk)

¢A§u @2 @k
¢21 ¢22 ¢2k ,are

The estimator of dispersion parameters,

¢?k1 ¢?kz ¢kk
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e A) SO A a ) Y ) (e =) |
IZ]; V(lull) lzll COV(/”:LU/uZl) lzl: COV(/J’.LU/Jkl)
A 0 (Yai = flai ) (Yu = fhy) % (Y2i_ﬂ2i) N (Vai = i) (Vi = i)
$= n} 0 12:1: Cov ( iy, fly) é V() 12:1: Cov(ﬁzil:&ki) : (38)
2 (yki _,[lki)(yli _[ﬁi) 2 (yki _ﬁki)()’m _I&Zi) 2 (ykl ﬂk.)
_iZ:1: Cov(ﬁki’:&li) 12:1: Cov(ﬁki’:&Zi) 121: (,Ukl)

Since,

-1

m% (xun) ¢12icov(lulithi) ¢1kiC0v(:ulil/uki) Vi — 4

. 30 COV ( 14y;, 143 PV (b o GOV Ly Yoi = Hyi
Z[yli_,uli yzi_;uzi yki_/uki] 21] ( 2 ) 22 :( 2) N 2ki ( 2 k) 2 : 2
i=1 : : . : :
¢k1iC0V(/Uki , /ﬁi) ¢k2iCOV(/uki , ﬂzi) Y (ﬂki) Y — A
Follows non-central ;(rf_p . Under independence, this quantity follows, approximately, ;(nz_p Af
bo=ths=" =@ 1, =0 and @, =g, = =g, =4, then the estimator of ¢ is same as (36). Similarly, we

can correct the data using the estimates of dispersion parameters, ¢?11,¢?22,--',(/;kk , and the equation (37), for the
i -th observation, in the multivariate case as

Var (Yy;) = ¢,V (1 )<:>Var[\/%]=v(!ﬁi)*

Var (Y,) = ¢,V (ﬂzi)cvar[%J:V(/w‘Zi)'

Var( ) PV (ﬂki)avari\/%]zv(ﬂki)’

(39)

COV(Yli’YZI) ¢12|COV(MU/U2| <:>COV£

v H Covls ),
v Jch Corlsa i)

COV(Y1ivY3|) ¢13|C0V(/11|,y3| QCOV(

COV(Yk-lu |) ¢k1k.cov(ﬂk 1 M @Cov[m M] Cov(luk—l,iwuki)'

6. Numerical Examples

In this section, we present two examples. The first one applies to the bivariate correlated binary data. This ex-
ample presents the results obtained by using AQEF measure and the VGLM measure which are similar in the
bivariate case. The second one applies on the trivariate binary data. However, the third association is absent in
the VGAM (VGLM) measure. In both examples, we will use the Hunua Ranges data, Yee [11] [12]. These data
were collected from the Hunua Ranges, a small forest in the Southern Auckland, New Zealand.

At 392 sites in the forest, the presence/absence of 17 plant species was recorded along with the altitude.
Each site was of area size 200 m?. The Hunua Ranges data frame has 392 rows and 18 columns. Altitude is a
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continuous variable, and there are binary responses (presence = 1, absence = 0) for 17 plant species. These data
frame contains the following columns: agaaus, beitaw, corlae, cyadea, cyamed, daccup, dacdac, eladen, hedarb,
hohpop, kniexc, kuneri, lepsco, metrob, neslan, rhosap, vitluc and altitude (meters above the sea level).

6.1. Application to Bivariate Case

Hence, we will use the first two columns, agaaus and beitaw, as correlated binary outcome variables, Y, and
Y, , respectively. A third column, corlae, is used as the explanatory binary variable, X.

We will use the estimates, 4, and 4, , to modify the correlated data according to the relationship (27).

From Table 1 and Table 2, we demonstrate the conclusions after modifying the correlated data by the esti-
mates of dispersion parameters, as follows:

1. The estimates of the regression parameters are changed.

2. The standard errors are decreased for the estimates of association parameters. This leads to a significant
association between the two outcomes binary variables, (Y,,Y,), associated with covariate, x.

3. The Wald statistic test shows lower values, this confirms a significant association between the two out-
comes binary variables, (Y,,Y,), associated with covariate, X.

4. The LRT is increased, this also confirms the conclusion observed from the Wald statistic.

5. The estimate of a scalar dispersion parameter, ¢, is increased.

6. The estimates of the matrix of dispersion parameters, ¢,,4,, and d,, increased and close to the unity.

7. The scaled deviance value is increased.

6.2. Application to Trivariate Case

We will use the columns, cyadea, beitaw and kniexc, as the dependent correlated binary variables, Y;,Y, and
Y, , respectively. On the other hand, we will use the column “altitude™, meters above sea level, as the continuous
explanatory variable, X. The estimates of the regression parameters and their tests for the association parameters
can be determined for the AQEF and VGLM measures, before and after modifying the correlated data by the es-
timates of dispersion parameters, ¢,,4,, and g, as shown in Table 3.

Table 1. Results of AQEF and VGLM before modifying the data.

Parameters Estimates Standard Errors Wald Statistic Parameters/Tests Estimates
P —0.9320 0.1487 —6.2663 @ 1.4458
L -1.0139 1.0793 —0.9393 S. Deviance 13.8206
Lo —0.2389 0.1191 —2.0057 LRT: =0 14,5761
P 1.0656 0.4686 2.2742 N 0.8579
a,, —0.9598 0.2876 —3.3377 b 0.9906
a, —10.9504 154.7484 —0.0708 b, 0.7977

Hence, the LRT’s will be compared with y? (0.05,1) = 3.8415 . Log-likelihood = ~454.1039.

Table 2. Results of AQEF and VGLM after modifying data.

Parameters Estimates Standard Errors Wald Statistic Parameters/Tests Estimates
B —-0.8212 0.1456 —5.6397 [ 1.4748
B —1.0256 1.0457 —0.9808 S. Deviance 26.5973
Bro —0.2106 0.1203 —1.7503 LRT: =0 16.1546
B, 1.0645 0.4720 2.2552 4, 0.9549
a, -0.9820 0.2788 -3.5225 b 1.0853
a, -10.9610 149.3405 -0.0734 by 0.8361

Hence, the LRTs will be compared with * (0.05,1) =3.8415 . Log-likelihood = —461.6315.
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Table 3. Results before and after modifying data.

Estimates and Tests Before modifying the data After modifying the data
Model AQEF VGLM AQEF VGLM
,Bw —-0.2910 —0.9517 —0.2917 —1.0348
,én —0.0023 —0.0006 —0.0026 —0.0002
B, -0.5336 ~2.8037 -0.4942 -0.6708
ﬁu 0.0009 0.0093 0.0009 0.0062
B -0.0139 ~0.7867 -0.0724 ~0.6435
ﬁm 0.0015 0.0048 0.0010 0.0032
2o —0.1245 0.9098 —0.1340 0.6782
2 —0.0014 —0.0016 —0.0003 —0.0013
ay, —0.1180 —0.1369 —0.1269 0.0400
a, —0.0007 0.0016 —0.0006 0.0008
&, 0.0443 2.2313 0.0184 1.5890
ay, 0.0006 —-0.0072 0.0007 —0.0048
a, 0.0438 None 0.0243 None
a, 0.0053 None 0.0044 None
Scaled Deviance 248.8728 119.2507 272.9934 134.7810
Log-likelihood —762.1282 —738.9422 —767.4405 —717.1155
LRT: «, =0 34.6890 53.2214 31.8918 112.5485
LRT: a,=0 2.7690 47.3497 0.4542 143.5384
LRT: a,=0 6.4283 57.8120 76.6875 136.8635
LRT: a, =0 23.9190 None 3.8179 None
¢?11 1.0600 1.2202 1.0235 0.9937
b 0.9802 2.4209 0.9336 1.8922
¢333 1.1670 1.2720 1.0416 0.9494
é, 1.1933 1.8250 1.1978 1.0703
é. 1.1767 1.6050 1.1295 1.0700
b, 0.9434 1.7933 0.8912 0.9673
(;3 1.8424 3.3679 1.6760 2.0798

Hence, the LRT’s will be compared with z*(0.05,1)=3.8415 .

From Table 3, we demonstrate the conclusions after modifying the data by the estimates of dispersion para-
meters, as follows:

1. The estimates of regression parameters in the two measures are changed.

2. The scaled deviance is increased for the two measures.

3. The estimate of a scalar dispersion parameter, ¢, is decreased for the two measures.

4. The estimates of values of dispersion parameters, ¢,, ¢, and d,,, are decreased for the two measures,
but close to the unity for the AQEF measure. On the other hand, the estimates of dispersion parameters, ¢, ,
¢, and ¢,,, are decreased for the two measures, but close to the unity for the VGLM measure.

5. For the VGLM measure, the LRTSs reflect significant association between the pairwise outcome variables,
(Y..Y,), (Y.,Yy) and (Y,,Y,), associated with covariates, X.

For the AQEF measure, the LRTSs also reflect significant association between the pairwise outcome variables,
(Y,.Y,) and (Y,,Y;), associated with covariates, x.

However, no significant association is observed between the correlated binary outcome variables, (Yl,Yg),
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associated with covariates, X.

6. The LRT for the third association, which is observed from the AQEF measure, reflects no significant asso-
ciation between the correlated binary outcome variables, (Y,,Y,,Y,), associated with covariates, x.

So, when modifying the correlated data, the estimates of dispersion parameters, ¢,, ¢,, and ¢, tend to
the unity. This leads to no significant association between the outcome variables, Y,,Y, and Y;, associated
with covariates, X.
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