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Abstract 
The main aim of this work is to introduce the analytical approximate solutions of the water wave 
problem for a fluid layer of finite depth in the presence of gravity. To achieve this aim, we begun 
with the derivation of the Korteweg-de Vries equations for solitons by using the method of mul-
tiple scale expansion. The proposed problem describes the behavior of the system for free surface 
between air and water in a nonlinear approach. To solve this problem, we use the well-known 
analytical method, namely, variational iteration method (VIM). The proposed method is based on 
the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. 
The proposed method provides a sequence of functions which may converge to the exact solution 
of the proposed problem. Finally, we observe that the elevation of the water waves is in form of 
traveling solitary waves. 
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1. Introduction 
We are concerned with a two-dimensional, irrotational flow of an incompressible ideal fluid with a free surface 
under the gravitational field. The domain occupied by the fluid is bounded from below by a solid bottom. The 
upper surface is a free boundary, so we take the influence of the gravitational field into account on the free sur-
face. Our main interest is motion of the free surface, which is called a gravity wave. 

The Korteweg-de Vries equation (KdV) was originally derived by Korteweg and de Vries from the model 
surface waves in a canal. The key to a soliton’s behavior is a robust balance between the effects of dispersion 
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and nonlinearity. When one grafts these two effects onto the wave equation for shallow water waves, then at 
leading order in the strengths of the dispersion and nonlinearity one gets the KdV for solitons [1]. 

The Korteweg-de Vries equation was obtained by Benjamin [1], for example, assuming that the waves were 
weakly nonlinear and weakly dispersive. In other words, the wave amplitude is much smaller than, for example, 
the upper layer thickness, and the water depth is much smaller than the typical wavelength. Solitons are among 
the most interesting structures in nature. Being configurations of continuous fields, they retain their localized 
shape even after interactions and collisions. Observed originally long ago as stable moving humps in shallow 
water channels, they have been established since then in various physical systems including optical wave guides, 
crystal lattices, Josephson junctions, plasmas and spiral galaxies [2]. Long lasting efforts to theoretically de-
scribe their intriguing properties have culminated in the development of the inverse scattering technique [3] 
which is among the most powerful methods to obtain exact solutions of nonlinear partial differential equations. 
Particularly popular examples for solitons in hydrodynamic systems are the solutions of KdV: 

( ) ( ) ( ) ( ), , , , 0,T X XXXZ X T Z X T Z X T Z X T+ + =                         (1) 

where X stands for a space coordinate, T denotes time, and Z represents the surface elevation of a liquid in a 
shallow duct. This equation can be derived perturbatively from the Euler equation for the motion of an 
incompressible and inviscid fluid [4]. The one-soliton solution of Equation (1) is given by:  

( ) ( )2, sech ,
2 2
c cZ X T X cT

 
= −  

 
                             (2) 

which describes a hump of invariable shape moving to the right with velocity c for all values of 0c > . The 
amplitude of the hump is given by c/2. 

Concerning the Korteweg-de Vries approximation for water waves, we refer to Craig [5], and Craig, et al. [6] 
for the approximation of the Hamiltonian. We remark that the KdV is a model of water waves in the long wave 
regime. The dynamics of the free surface is approximately translation of two waves without change of the shape, 
one moving to the right and the other to the left, for a short time interval. The dynamics of each wave is very 
slow so that it is invisible for the short time interval. Craig [5] gave the justification in the framework of Sobolev 
spaces. Schneider and Wayne gave the justification without assuming the one directional motion of the wave 
and extended it to the capillary-gravity waves. They showed that the interactions between two waves were neg-
ligible so that the solution of the full water wave problem was approximated by a sum of the solutions, which 
were appropriately scaled, of the decoupled KdVs for the long time interval. However, they treated the problem 
in unscaled variables, whereas Craig treated it in the scaled variables called Boussinesq ones. The nonlinear 
surface water waves in perturbed problem is discussed by [7] in the presence of the effect of surface tension. 
Based on the method of multiple scale expansion for a small amplitude, they derived two Korteweg-de Vries 
equations and discussed the two-soliton solution for Korteweg-de Vries equations by using analytical methods. 

Many different methods have recently introduced to solve nonlinear problems such as, VIM [8], Adomian 
decomposition method [9], and homotopy perturbation method [10]. The VIM is strongly and simply capable for 
solving a large class of linear or nonlinear differential equations without the tangible restriction of sensitivity to 
the degree of the nonlinear term and also it reduces the size of calculations besides, its interactions are direct and 
straightforward [11]. The main aim in this work is to effectively derive the Korteweg-de Vries equations and 
employ VIM to establish approximate solutions of waves propagating along the interface between air-water. 

The structure of the paper is organized as follows. In Section 2, we collect the basic equations and boundary 
conditions. In Section 3, the analysis of the VIM is introduced. In Section 4, we implement VIM to investigate 
the two-soliton solutions for Korteweg-de Vries equations. Finally, Section 5 contains some conclusions.  

2. The Physical Problem and Basic Equations  
We consider the unsteady two-dimensional flow of inviscid, incompressible fluid in a constant gravitational 
field. The space coordinates are (x, y) and the gravitational acceleration g is in the negative y direction. Let h be 
the undisturbed depth of the fluid. The bottom of the fluid is assumed to have no topography at y h= − . 

This problem describes the interface dynamics, between air and water waves, under the gravity g (see Figure 1).  
The equation for the surface of water is ( ),y x tη=  where 0y =  represents the equilibrium situation. We 

assume that the motion is irrotational within the wave. Therefore, we can describe the wave inside the water by a 
velocity potential ( ), ,x y tΦ  whose gradient is the velocity field:  
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Figure 1. The set-up of the shallow water wave problem.                         

 

( ), , .v u v
x y

 ∂Φ ∂Φ
= = ∇Φ =  ∂ ∂ 

                             (3) 

The divergence-free condition on the velocity field implies that the velocity potential Φ  satisfies the 
Laplace’s equation:  

( )
2 2

2 2 0, for , .h y x t
x y

η∂ Φ ∂ Φ
+ = − < <

∂ ∂
                          (4) 

On a solid fixed boundary, the normal velocity of the fluid must vanish:  

0, at ,y h
y

∂Φ
= = −

∂
                                 (5) 

which dictates that there is no flow perpendicular to the bottom. 
The boundary conditions at the free surface ( ),y x tη=  are given by:  

,
t x x y
η η∂ ∂ ∂Φ ∂Φ
+ =

∂ ∂ ∂ ∂
                                 (6) 

21 0.
2

g
t

η∂Φ
+ + ∇Φ =

∂
                                (7) 

Now we try to find the approximate solutions by using VIM of following Korteweg-de Vries equations 
(which are derived in details in [12]):  

3

3
1

12 3 0,
3

p p pp
t r r
∂ ∂ ∂

+ + =
∂ ∂ ∂

                               (8) 

3

3
1

12 3 0.
3

q q qq
t
∂ ∂ ∂

− − =
∂ ∂ ∂ 

                                (9) 

3. Analysis of the Variational Iteration Method  
To illustrate the analysis of VIM [13], we limit ourselves to consider the following nonlinear differential 
equation in the type:  

( ) 0,Lu Ru N u+ + =                                 (10) 
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with specified initial conditions, where L and R are linear bounded operators, and ( )N u  is the nonlinear term. 
The VIM gives the possibility to write the solution of Equation (10) with the aid of the correction functional:  

( ) ( )1 1 1 10
d , 1.

t
n n n n nu u Lu Ru N u nλ τ τ− − − − = + + + ≥ ∫                        (11) 

It is obvious that the successive approximations , 1nu n ≥  (the subscript n denotes the thn  order approxima-
tion), can be established by determining λ , a general Lagrange multiplier, which can be identified optimally 
via the variational theory [14]. The function nu  is a restricted variation, which means 0nuδ = . Therefore, we 
first determine the Lagrange multiplier λ  that will be identified optimally via integration by parts. The succes-
sive approximations , 1nu n ≥ , of the solution u will be readily obtained upon using the Lagrange multiplier ob-
tained and by using any selective function 0u . The initial values of the solution are usually used for selecting 
the zeroth approximation 0u . With λ  determined, then several approximations , 1nu n ≥ , follow immediately. 
Consequently, the exact solution may be obtained by:  

lim .nn
u u

→∞
=                                       (12) 

In what follows, we will apply VIM to Korteweg-de Vries Equations (8)-(9) to illustrate the strength of the 
method and to obtain the approximate solutions for this nonlinear problem. 

Now, to illustrate how to find the value of the Lagrange multiplier λ , we will consider the following case, 

which dependent on the order of the operator L in Equation (10), i.e., we study the case of the operator L
t
∂

=
∂

 

(without loos of generality). 
Making the above correction functional stationary, and noticing that 0nuδ = , we obtain:  

( ) ( )

( ) ( )[ ]

1
1 1 10

1 1 10

d

d 0,

t n
n n n n

t
n n nt

uu u Ru N u

u u u
τ

δ δ δ λ τ τ
τ

δ λ τ δ λ τ δ τ

−
− − −

− − −=

∂ = + + + ∂ 

= + − =  

∫

∫

 



 

where nuδ   is considered as a restricted variation i.e., 0nuδ = , yields the following stationary conditions:  

( ) ( )0, 1 0.
tτ

λ τ λ τ
=

= + =                                 (13) 

The first equation in (13) is called Lagrange-Euler equation and the second equation in (13) is called natural 
boundary condition, the Lagrange multiplier, therefore, can be readily identified, ( ) 1.λ τ = −   

Now, the following variational iteration formula can be obtained:  

( )1 1 1 10
d .

t
n n n n nu u Lu Ru N u τ− − − − = − + + ∫                           (14) 

We start with an initial approximation, and by using the above iteration formula (14), we can obtain directly 
the other components of the solution. 

4. Numerical Application  
In this section, we will implement VIM to Korteweg-de Vries Equations (8)-(9), with the initial conditions:  

( ) 2 21,0 7 12 tanh ,
9

p r k k r = −   

( ) 2 21,0 7 12 tanh .
9

q k k = −    

To solve Equations (8)-(9) by means of VIM, we construct the correction functionals which read:  

( ) ( ) ( )1
1 1 1 1 30

3 1, , d , 0,
2 6

t
n n n n nr n rp r t p r t p p p p nτλ τ τ+

 = + + + ≥  ∫                    (15) 
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( ) ( ) ( )1
1 1 1 2 30

3 1, , d , 0.
2 6

t
n n n n n nq t q t q q q q nτλ τ τ+

 = + − − ≥  ∫  

  
                   (16) 

Making the above correction functional stationary, and noticing that ( ) ( ), 0 , 0 0p r qδ δ= = , we obtain:  

( ) ( ) ( )

( ) ( ) ( )[ ]

1

1

1

1 1 1 1 30

1 1 10

3 1, , d
2 6

, d 0,

t
n n n n nr n r

t
n n nt

p r t p r t p p p p

p r t p p

τ

τ

δ δ δ λ τ τ

δ λ τ δ λ τ δ τ

+

=

 = + + +  

= + − =  

∫

∫

  



 

( ) ( ) ( )

( ) ( ) ( )[ ]

1

1

1

1 1 1 2 30

1 2 20

3 1, , d
2 6

, d 0,

t
n n n n n n

t
n n nt

q t q t q q q q

q t q q

τ

τ

δ δ δ λ τ τ

δ λ τ δ λ τ δ τ

+

=

 = + − −  

= + − =  

∫

∫

 

  
 





 

where npδ   and nqδ   are considered as restricted variation i.e., 0n np qδ δ= =  , yields the following stationary 
conditions:  

( ) ( )
1

1 10, 1 0,
tτ

λ τ λ τ
=

= + =                                (17) 

( ) ( )
1

2 20, 1 0.
tτ

λ τ λ τ
=

= + =                                (18) 

The Lagrange multipliers 1λ , 2λ , therefore, can be readily identified: ( ) ( )1 2 1.λ τ λ τ= = −  
Now, the following variational iteration formula can be obtained:  

( ) ( ) 1
1 1 1 30

3 1, , d , 0,
2 6

t
n n n n nr n rp r t p r t p p p p nτ τ+

 = − + + ≥  ∫                   (19) 

( ) ( ) 1
1 1 1 30

3 1, , d , 0.
2 6

t
n n n n n nq t q t q q q q nτ τ+

 = − − − ≥  ∫  

                    (20) 

We start with an initial approximations ( ) ( )0 1, , 0p r t p r= , ( ) ( )0 1, , 0q t q=   and by using the above 
iteration formula (19)-(20), we can obtain directly the other components as:  

( ) ( )2 2 2 2
0 1 0 1

1 1, 7 12tanh , , 7 12 tanh ,
9 9

p r t k kr q t k k   = − = −                   (21) 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

5 2 2
1 1 0 1 1

2 3 4 3 2 3

4, , sech tanh 7 12tanh
9

2 16 sech tanh 8 sech tanh ,
9

p r t p r t t k kr kr kr

k k kr kr k kr k r

= − − −

− − + 

             (22) 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

5 2 2
1 1 0 1 1

2 3 4 3 2 3

4, , sech tanh 7 12 tanh
9

2 16 sech tanh 8 sech tanh .
9

q t q t t k k k k

k k k k k k k

= − −

+ − + 

    

   

             (23) 

Returning to dimensional variables, we get:  

( ) 2 2
0

1, 7 12tanh ,
9

gp x t k k x t
h h

  
= − +      

                         (24) 

( ) 2 2
0

1, 7 12 tanh ,
9

gq x t k k x t
h h

  
= − −      

                         (25) 
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( ) ( ) 5 2
1 0

2 2 3 4

4, , sech tanh
9

27 12tanh 16 sech
9

tanh

g g gp x t p x t t k k x t k x t
h h h h h

g gk x t k k k x t
h h h h

gk x t
h h

       
= − − + +                    

        
  × − + − − +                      

  
× +      

    


   

  3 2 38 sech tanh ,g gk k x t k x t
h h h h

      
+ + +                    

   

    (26) 

( ) ( ) 5 2
1 0

2 2 3 4

4, , sech tanh
9

27 12tanh 16 sech
9

tanh

g g gq x t q x t t k k x t k x t
h h h h h

g gk x t k k k x t
h h h h

gk x t
h h

       
= − − +                    

        
  × − − + − −                      

  
× −      

    


   

  3 2 38 sech tanh ,g gk k x t k x t
h h h h
ε       

+ − −                   

  

    (27) 

In the same manner, we can obtain other components of the solution. In order to verify numerically whether 
the proposed methodology lead to higher accuracy, we can evaluate the numerical solutions using 1n =  term 
approximation. We achieved a very good approximation with the actual solution of Equations (8)-(9) by using 
one term only of the iteration equation derived above. It is evident that the overall errors can be made smaller by 
adding new terms of the iteration formula. The numerical approximation shows a high degree of accuracy and in 
most case ( ) ( ), , ,n np x t q x t , the n-term approximation are accurate for quite low values of n, the solutions are 
very rapidly convergent by utilizing VIM. The obtained numerical results justify the advantage of this method, 
even in the few terms approximation is accurate. It must be noted that VIM used here gives the possibility of 
obtaining an analytical satisfactory solution for which the other techniques of calculation are more laborious and 
the results contain a great complexity. 

From the above solution process, we can see clearly that the approximate solutions converge to its exact 
solution relatively slowly due to the approximate identification of the multiplier. It should be specially pointed 
out that the more accurate the identification of the multiplier, faster the approximations converge to its exact 
solutions.  

After returning to dimensional variables and substitution from (27) into (3) we get the elevation of the water 
surface, the horizontal velocity, the vertical velocity and the phase diagrams of the velocity, which describes the 
physical situation of the system, where: 0.4k = , 0.072 N mσ = , 29.8 m secg = , 0.5 mh = , 0.01= , 
y h= . 

The water wave gradually splits into two solitary waves with increasing 1t >  in Figure 2 and Figure 3, 
which are in excellent agreement with the exact solution. In Figure 4 the elevation of the water waves ( ),x tη  
is always less than depth, and acquires nonlinear solitary characters. We observe that the elevation of the water 
waves are in the form of traveling solitary waves, it increases in amplitude as the wave number increases k, as 
shown in Figure 4 and Figure 5, also the interaction of two equal-amplitude solitary waves by head-on collision 
is illustrated in Figure 4 and Figure 6 at different wave numbers, which are in excellent agreement with the 
exact solution. The parts of the velocity components u and v (horizontal and vertical respectively) also bring a 
nonlinear solitary characters as shown in Figure 6, which are in excellent agreement with the exact solution.  

5. Conclusions and Discussion  
In this study, we present model equations for surface water waves by using a new method of multiple scale 
technique. Multiple scale technique is used to estimate the Korteweg-de Vries equations for the nonlinear theory, 
describing the behaviour of the perturbed system. We observed that the method of multiple scale was one  
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Figure 2. The water wave at 1t =  (left). The water wave at 4t =  (right).                         

 

 
Figure 3. The water wave at 7t =  (left). The water wave at 10t =  (right).                         

 

 
Figure 4. The water wave at 0.4k =  (left). The water wave at 0.2k =  (right).                         

 

 
Figure 5. The water wave at 0.4k =  (left). The water wave at 0.2k =  (right).                         

 
of the modern methods which we used to obtain the Korteweg-de Vries equations because it was relatively short 
in mathematical calculation, more effective and more enlightening. While the Hamiltonian expansions and the 
Dirichlet-Neumann operator expansions are complex in mathematical calculation and relatively long method  
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Figure 6. The horizontal velocity (left). The vertical velocity (right).                          

 
as compared with the method of multiple scale. 

The diagrams are drawn to illustrate the elevation of the water waves that show a solitary character. We 
observed that the elevation of the water waves is in form of traveling solitary waves, which increases in 
amplitude as the wave number increases. 

Finally, the horizontal and vertical velocities of the velocity components have nonlinear characters, which 
describes the physical situation of the system for free surface between air and water. 

The presented examples show that the results of the proposed method VIM are in excellent agreement with 
the exact solution. An interesting point about VIM is that only few iterations or, even in some special cases, one 
iteration, lead to exact solutions or solutions with high accuracy. The main merits of VIM are:  

1) VIM can overcome the difficulties arising in calculation of Adomian’s polynomials in Adomain decomposition 
method.  

2) VIM does not require small parameters which are needed in perturbation method.  
3) No linearization is needed; the method is very promising for solving wide application in nonlinear 

differential equations. 
In our work, we used the Mathematica Package. 
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