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Abstract 
In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for 
Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and 
Computation, 219, 3565-3574], suggested a fourth-order method for solving nonlinear equations. 
Per iteration in this method requires two evaluations of the function and two of its first deriva-
tives; therefore, the efficiency index is 1.41421 as Newton’s method. In this paper, we modified 
this method and obtained a family of iterative methods for appropriate and suitable choice of the 
parameter. It should be noted that per iteration for the new methods requires two evaluations of 
the function and one evaluation of its first derivatives, so its efficiency index equals to 1.5874. 
Analysis of convergence shows that the methods are fourth-order. Several numerical examples are 
given to illustrate the performance of the presented methods. 
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1. Introduction 
In this paper, we consider iterative methods to find a simple root of a nonlinear equation f(x) = 0, where 

:f D R R∈ →  for an open interval D is a scalar function. The classical Newton’s method is given by  
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n n
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This is an important and basic method [1], which converges quadratically. Recently, Noor [2] proposed a new 
fourth-order method defined by 
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where ( ) ( ).n n n ny x f x f x′= −  
It is clear that to implement (2), one has to evaluate the second derivative of the function. This can create 

some problems. In order to overcome this drawback, several techniques have been developed [3]-[6]. In [7], a 
second-derivative-free method is obtained through approximating the second derivative ( )nf y′′  in (3) by 
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                                   (3) 

In a recent paper, Noor and Khan [8] have used the same approximation of the second derivative (3) in (2) to 
suggest the following Iterative methods 
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In this paper, we rederive the method in (4) to obtain a family of fourth-order method free from second deriv-
ative. Moreover, per iteration in these new methods requires two evaluations of the function and just one of its 
first derivatives. 

The rest of this paper is organized as follows. The proposed methods are described in Section 2. In Section 3, 
the convergence analysis is carried out to establish the order of convergence. Finally, in Section 4, the methods 
are tested on some numerical examples and comparisons of the results of our methods. 

2. Description of the Methods 
The following approximations of ( )nf y′  are obtained in [9] 
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where Rβ ∈ . We then apply the approximations (5) and (6) to the method (4). Now, Combining (5) and (4), we 
get the new iterative method 
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Using (6) in (4), we get a new family of iterative method 
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Essentially, we consider the convergence criteria of the new methods in (7) and (8), and this is the main moti-
vation of our next result. 
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3. The Analysis of Convergence 
Theorem 1. Let Iα ∈  be a simple zero of sufficiently differentiable function :f I R→  for an open in-
terval I. If 0x  is sufficiently close to α , where n ne x α= −  and ( ) ( )k

kc f kα= ! . Then the methods de-
fined by (7) and (8) are of fourth-order convergence and satisfy the error equations 

( ) ( )3 4 5
1 2 2 37 ,ne c c c e O e+ = − +  

and 

( )( ) ( )2 2 4 5
1 2 2 2 35 2 , .ne c c c c e O e Rβ β+ = + − + ∀ ∈  

Proof.  
Using Taylor expansion of ( )nf x  about α  and taking into account that ( ) 0f α′ ≠ , we have 

( ) ( ) ( )2 3 4 5
2 3 4 .n n n n n nf x f e c e c e c e O eα  ′= + + + +                        (9) 

Furthermore, we have 
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Substituting (11) in 
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( ) ( ) ( )2 2 3 3 4 5
2 2 3 2 3 2 42 7 4 3 .n n n n ny c e c c e c c c c e O eα− = − − − − − +                  (12) 

Expanding ( )nf y  about α and using (12), we have  

( ) ( ) ( ) ( ) ( )2 2 3 3 4 5
2 2 3 2 3 2 42 7 4 3 .n n n n nf y f c e c c e c c c c e O eα  ′= − − − − − +               (13) 

Using Equations (9)-(13) in method (7) we have the following error equation:  

( ) ( )3 4 5
1 2 2 37 ,ne c c c e O e+ = − +                               (14) 

this means that the method defined by (7) is fourth order. Also, using Equations (9)-(13) in (8) we get the 
following error equation: 

( )( ) ( )2 2 4 5
1 2 2 2 35 2 ,ne c c c c e O eβ+ = + − +                           (15) 

which means that the family defined by (8) is of order four Rβ∀ ∈ .  
This completes the proof of the theorem. 

If we consider the definition of efficiency index as 
1

wp , where p is the order of the method and w is the  
number of function evaluations per iteration required by the method, then the fourth-order method (4) has the 
efficiency index equal to 4 4 1.41421≈ , while for the newfourth order methods (7) and (8) is 3 4 1.5874≈  
which is better than method defined by (4). 

4. Numerical Results 
All computations were done using the Mathematica package using 64 digit floating point arithmetic’s. We ac-
cept an approximate solution rather than the exact root, depending on the precision (ϵ) of the computer. We use 
the following stopping criteria for computer programs: 1n nx x ε+ −   and so, when the stopping criterion is sa-
tisfied, 1nx +  is taken as the exact root α computed. We used the fixed stopping criterion 1510−= . 

It is well-known that the convergence of iteration formula is guaranteed only when the initial approximation 
is sufficiently near to root. In general, it may be divergent when initial approximation is far from the root.  
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We employ the present methods to solve some nonlinear equations, which not only illustrate the methods 
practically but also serve to check the validity of theoretical results we have derived, the following 
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Displayed in Table 1 the number of iterations to approximate the zero (N) and the number of function evalua-
tions (TNFE) counted as the sum of the number of evaluations of the function itself plus the number of evalua-
tions of the derivative. We present some numerical test results for various iterative schemes in Table 1.  

Compared with the Newton method (NM), the method in (4) (NOR), the new methods in (7) (MNR1), and as 
an example of (8) we take β = 0 (MNR2), and β = 1 (MNR3). The test results in Table 1 show that for most of 
the functions we tested. Note that we used NC in Table 1 to mean that the method does not converge to the root. 
The new methods introduced in the present presentation have at least equal performance compared to the me-
thod in (4), and better than Newton method. As far as the results we consider, the new fourth-order methods, 
require the less NFEs as compared to the Newton’s method and method in (4).  

 
Table 1. Comparison of various fourth order schemes and Newton’s method.                                                     

 
N TNFE 

NM NOR MNR1 MNR2 MNR3 NM NOR MNR1 MNR2 MNR3 

1 0, 1.0f x =  5 3 3 3 3 10 12 9 9 9 

1 0, 0.3f x = −  53 38 22 56 17 106 152 66 168 51 

2 0, 2.0f x =  5 3 3 4 3 10 12 9 12 9 

2 0, 3.0f x =  6 3 4 4 4 12 12 12 12 12 

3 0, 1.0f x =  4 2 2 2 2 8 8 6 6 6 

3 0, 2.0f x =  5 3 3 3 3 10 12 9 9 9 

4 0, 1.0f x =  4 2 2 2 2 8 8 6 6 6 

4 0, 1.7f x =  4 3 3 3 3 8 12 9 9 9 

5 0, 0.0f x =  NC 4 3 4 3 - 16 9 12 9 

5 0, 1.0f x = −  12 5 6 5 6 24 20 18 15 18 

6 0, 1.0f x = −  5 3 4 3 4 10 12 12 9 12 

6 0, 2.0f x = −  8 5 5 5 5 16 20 15 15 15 

7 0, 2.0f x =  8 5 5 5 5 16 20 15 15 15 

7 0, 5.0f x = −  4 2 2 2 2 8 8 6 6 6 

8 0, 3.5f x =  12 7 7 7 7 24 28 21 21 21 

8 0, 4.0f x =  19 11 12 11 12 38 44 36 33 36 
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As a conclusion, we can infer that the present method has better performance in accordance with the theoreti-
cal analysis of the order. However, it should be noted that per iteration the methods (MNR1), (MNR2) and 
(MNR32) do require two evaluations of the function and one of its first derivative, whereas the method (4) does 
require two evaluations of the function and two of its first derivative, costing more expensive computation. Thus, 
the present methods can be of practical interest. 

5. Conclusions 
We have proposed new fourth order methods of iterative methods for solving nonlinear equations. Numerical 
results show that the number of iterations of the new method is always less than that of the classical Newton’s 
method and the method in (4).  

Analysis of convergence of methods is supplied in Theorem 2. Analysis of efficiency shows that these me-
thods are preferable to Newton’s method and the fourth order method in (4). The number of function evaluations 
of the new methods is comparable. 
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