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Abstract 
In this article, we develop numerical method by constructing ninth degree spline function using 
extended cubic spline Bickley’s method to find the approximate solution of seventh order linear 
boundary value problems at different step lengths. The approximate solution is compared with 
the solution obtained by eighth degree splines and exact solution. It has been observed that the 
approximate solution is an excellent agreement with exact solution. Low absolute error indicates 
that our numerical method is effective for solving high order linear boundary value problems. 
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1. Introduction 
Consider the linear seventh order differential equation 

( ) ( ) ( ) ( ) ( )7y x f x y x r x+ =  

with the boundary conditions 

( ) ( ) ( ) ( )0 0, , , ,n ny x y x y x y xα β α β′ ′ ′ ′= = = =  
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( ) ( ) ( )0 0, , .ny x y x y xα β α′′ ′′ ′′ ′′ ′′′ ′′′= = =  

Generally, this problem is difficult to solve analytically. Several numerical and semi-analytical methods have 
been developed for solving high order boundary value problems. For instance, a different approach of solving 
linear two-point boundary value problem has first been suggested by Bickley in 1968 [1]. He used cubic spline 
interpolation to model the solution curve and applied the differential equation as well as the boundary conditions 
to solve for the unknown constants. As a result, a set of equations can be produced approximating the analytical 
solution. Numerical methods based on spline functions generate solutions of ordinary and partial differential 
equations of high accuracy. The first place that the word “spline” is used in connection with smooth, piecewise 
polynomial approximation with mathematical reference has been made in the year 1946 by Schoenberg [2]. In 
late 1960’s, there were no handful of articles mentioning spline functions. Maclaren [3], Rubin and Khosla [4], 
Sastry [5], Schoenberg [6] made great contributions in the development of splines. Convergence properties of 
the cubic spline method have been discussed by Ahlberg and Nilson [7]. Univariate splines have been studied 
intensely in 60’s. By the mid 70’s, splines were well understood to permit a fairly comprehensive treatment in 
the form of books. Some of the books which discuss splines include Ahlberg et al. [8], deBoor [9], Prenter [10], 
Schumaker [11], Shikin and Plis [12], Spath [13]. The earlier studies [14]-[16] employed spline functions for the 
smooth approximate solution of ordinary and partial differential equations. Spline functions of various degrees 
have been demonstrated by them using approximate methods of solving second, third, fourth and fifth order li-
near boundary value problems. There are number of research articles published on this subject, yet it remains an 
active research area. Techniques such as quadratic, cubic, quartic, quintic, sextic, septic and higher degree 
splines are used to discuss the numerical solution of linear and nonlinear BVPs. Kumar and Srivastava [17] have 
given a survey on recent spline techniques for solving boundary value problems in ordinary differential equa-
tions using cubic, quintic and sextic polynomial and non-polynomial splines. Thomas [18] presents extensive 
use of splines for Boeing. 

In the present paper, the seventh order boundary value problems are solved using ninth degree spline ap-
proximation and compared with the solution obtained by eighth degree spline solution [19]. 

2. Construction of Ninth Degree Spline 
We divide the interval [ ]0 , nx x  into n subintervals with grid points 10 32, , , ,, nx x x x x , starting at x0, the func-

tion y(x) in the interval [ ]0 1,x x  is represented by ninth degree spline S(x), which is an approximate solution of 
y(x). 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 3 4 5
0 0 0 0 0

6 7 8 9
0 0 0 0 0

– – – – –

– – – –

S x a b x x c x x d x x e x x g x x

h x x j x x k x x l x x

= + + + + +

+ + + +
 

proceeding to the next interval [ ]1 2,x x , we add a term ( )9
1 1–l x x , proceeding in to the next interval [ ]2 3,x x  

we add another term ( )9
2 2–l x x  and so on until we reach xn. Thus the function y(x) is represented in the form 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3 4 5
0 0 0 0 0

1
6 7 8 9

0 0 0
0

– – – – –

– – – –
n

i i
i

S x a b x x c x x d x x e x x g x x

h x x j x x k x x l x x
−

=

= + + + + +

+ + + +∑
             (1) 

It can be shown that S(x) and its first six derivatives are continuous across nodes. 

Method of Obtaining the Solution of Seventh Order Boundary Value Problems  
Using Ninth Degree Spline Function 
Consider the linear seventh order differential equation 

( ) ( ) ( ) ( )7y x f x y x rx+ =                                   (2) 

with the boundary conditions 
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( ) ( ) ( ) ( )
( ) ( ) ( )

0 0

0 0

, , , ,

, , .
n n

n

y x y x y x y x

y x y x y x

α β α β

α β α

′ ′ ′ ′= = = =

′′ ′′ ′′ ′′ ′′′ ′′′= = =
                        (3) 

From (3), and taking spline approximation in (2) at ix x=  for 0,1, 2,3, 4, ,i n=  , we get (n + 8) equations 
in (n + 9) unknowns , , , , , , , ,a b c d e g h j k , 0 1 2 1, , , , nl l l l − . To have the solution for the unknowns one more eq-
uation is required. So we assume that 1 2n nl l− −= , after determining these unknowns we substitute them in (1) and  
thus we get ninth degree spline approximation of ( )y x . Putting 1 2 3, , , , nx x x x x=   in the spline function thus 
determined we get the solution at the grid points. The system of equations to be satisfied by the coefficients

, , , , , , , , ,a b c d e g h j k  0 1 2 1, , , , nl l l l −  is derived below. From Equation (1) we get  

( )7 5040 40320s x j= +  

( ) ( ) ( )217
0 05040 40320 181440 n

i iis x j x x l x x−

=
= + − + −∑                      (4) 

Substituting (1) and (4) in the differential Equation (2) at mx x=  we get  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2 3 4 5
0 0 0 0 0

6 7 8
0 0 0 0

91
0 00

5040 40320

181440 , 0,1,2, ,

m m m m m m m m m m m m

m m m m m m m m

n
i m m m mi

S af bf x x cf x x df x x ef x x gf x x

hf x x j f x x k f x x x x r

l f x x x x r m n−

=

= + − + − + − + − + −

   + − + − + + − + −   
 + − + − = ∑ 

      (5) 

where ( ) ( ),m m m mf f x r r x= =  and ( )m ms S x= . 
Since S(x) approximates ( )y x , from (1) and from the boundary conditions (3) we obtain 

,a α=                                         (6) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3 4 5
0 0 0 0 0

1
6 7 8 9

0 0 0
0

– – – – –

– – – –
n

i i
i

a b x x c x x d x x e x x g x x

h x x j x x k x x l x x β
−

=

+ + + + +

+ + + + =∑
                 (7) 

,b α′=                                          (8) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 3 4 5
0 0 0 0 0

1
6 7 8

0 0
0

2 3 4 5 6

7 8 9
n

i i
i

b c x x d x x e x x g x x h x x

j x x k x x l x x β
−

=

+ − + − + − + − + −

′+ − + − + − =∑
              (9) 

2c α′′=                                        (10) 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 3 4
0 0 0 0

1
5 6 7

0 0
0

2 6 12 20 30

42 56 72
n

i i
i

c d x x e x x g x x h x x

j x x k x x l x x β
−

=

+

+

− + − + − + −

′′+ − + − − =∑
                 (11) 

6d α′′′=                                       (12) 
From (5)-(12) we have (n + 8) equations, if these equations are taken in the order (7), (9), and (11) with 

, 1, ,0m n n= −  , (12), (10), (8) and (6) the coefficient matrix of the unknowns, 1 1 0,?n nl l l l−  , k, j, h, g, e, d, c,  
b, a will be an upper triangular matrix with two lower sub diagonals. The forward elimination is then simple 
with only two multipliers at each step, and back substitution is correspondingly easy. 

3. Numerical Illustrations 
In this section we consider three linear boundary value problems. Their numerical solution and absolute errors 
are given at different step lengths. The approximate solution, exact solutions and absolute errors at the grid 
points are summarized in tabular form. Further the approximate solution and exact solution have been shown 
graphically. The comparison of maximum absolute errors at different step lengths has been presented in tabular 
form. 
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3.1. Example 1 
Consider the linear non homogeneous seventh order boundary value problem with constant coefficients. 

( ) ( ) ( )7 2e 35 12 2 , 0 1xu x u x x x x x= − − + + ≤ ≤                      (13) 

With the boundary conditions 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 3

2

0 0, 0 1, 0 0, 0 3

1 0, 1 e, 1 4e

u u u u

u u u

′= = = = −

′= = − = −
                       (14) 

The exact solution is 

( ) ( )1 e .xu x x x= −  

We find the solution of (13)-(14) by taking step lengths h = 0.2 and h = 0.1 at equal subintervals.  
Solution with h = 0.2 
The ninth degree spline S(x) which approximates y(x) is given by 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 3 4 5
0 0 0 0 0

6 7 8 94
0 0 0 0 i ii

S x a b x x c x x d x x e x x g x x

h x x j x x k x x l x x
=

= + − + − + − + − + −

+ − + − + − + −∑
          (15) 

where 0 0x = , 1 0.2x = , 2 0.4x = , 3 0.6x = , 4 0.8x = , 5 1x = . 
We have 13 unknowns 0 41 2 3, , , , , , , , , , , , ,a b c d e g h j k l l l l l  and the conditions to be satisfied by these unknowns 

are 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 3
0 5 0 50 5 01, e0 , 0, 4e,, , 30S x S x S x S x S x S x S x′ ′= = − == = − = −=  

( ) ( ) ( )7 2e 35 12 2 , for 0,1,2,3,4.ix
i i i i is x S x x x x i= − − + + =                 (16) 

Since ( )0 0S x = , ( )0 1S x′ = , ( )0 0S x′′ = , ( ) ( )3
0 3S x = − , it follows that a = 0, b = 1, c = 0 and d = −0.5, 

hence the spline S(x) reduces to the form  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

3 4 5 6
0 0 0 0 0

7 8 94
0 0 0

0.5

i ii

S x x x x x e x x g x x h x x

j x x k x x l x x
=

= − − − + − + − + −

+ − + − + −∑
             (17) 

Differentiating (17) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 3 4 5
0 0 0 0

6 7 84
0 0 0

1 1.5 4 5 6

7 8 9 i ii

S x x x e x x g x x h x x

j x x x x l x x
=

′ = − − + − + − + −

+ − + − + −∑
               (18) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 3 4
0 0 0 0

5 6 74
0 0 0

3 12 20 30

42 56 72 i ii

S x x x e x x g x x h x x

j x x k x x l x x
=

′′ = − − + − + − + −

+ − + − + −∑
               (19) 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 3
0 0 0

4 5 4

0

6
0 0

3 24 60 120

210 336 504 ii i

S x e x x g x x h x x

j x x k x x l x x
=

′′′ = − + − + − + −

+ − + − + −∑
                (20) 

and the seventh derivative is  

( ) ( ) ( )27
0

4

0
5040 40320 181440

i i is x j k x x l x x
=

= + − + −∑                    (21) 

Solving set of equations obtained from (16) we get the following values, 
0.333336938451e = − , 0.001189612320k = − , 3 0.000104846937l = −  

0.124993192353g = − , 0 0.000190223498l = − , 4 0.000104846937l = −  
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0.033335683705h = − , 1 0.000069129326l = −  

0.006944444444j = − , 2 0.000059468625l = −  

Substituting these values in Equation (15) we get the spline approximation ( )S x  of ( )u x . 
The values of ( )S x , ( )u x  and the corresponding absolute errors at 1 2 3 4, , ,x x x x  have been given in the 

Table 1 and the comparison has been shown in Figure 1. 
Solution with h = 0.1 
Since h = 0.1 we suppose the grid points x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, where, x0 = 0, x1 = 0.1, x2 = 0.2, 

x3 = 0.3, x4 = 0.4, x5 = 0.5, x6 = 0.6, x7 = 0.7, x8 = 0.8, x9 = 0.9, x10 = 1. 
From Equation (1) ninth degree spline S(x) which approximate s u(x) becomes 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 3 4 5
0 0 0 0 0

6 7 8

0

9
0 0 0

9

i i i

S x a b x x c x x d x x e x x g x x

h x x j x x k x x l x x
=

= + − + − + − + − + −

+ − + − + − + −∑
             (22) 

From Equation (22) and the boundary conditions we get the following values 
0.333329053989e = − , 0 0.002337817833l = − , 5 0.004265136252l =  

0.125006230461g = − , 1 0.004280966493l = , 6 0.004351989532l = −  

0.033377848548h = − , 2 0.004334132039l = − , 7 0.003471663012l =  

 

 
Figure 1. Comparison of approximate solution and exact solution for example 1 with h = 0.2.         

 
Table 1. Numerical solution ( )S x , exact solution ( )u x  and absolute error of example 1with h = 0.2.                      

x S(x) u(x) Absolute Error 

0.0 0.00000000000 0.000000000000 0.000000000 

0.2 0.19542437561 0.195424441305 3.74400E−09 

0.4 0.35803789382 0.358037927433 3.36110E−08 

0.6 0.437308436394 0.437308512093 7.56990E−08 

0.8 0.356086488213 0.356086548558 6.03450E−08 

1.0 0.000000000000 0.000000000000 0.000000000 
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0.006944444444j = − , 3 0.004274000045l = , 8 0.001235877131l = −  

0.000219994881k = − , 4 0.004341991663l = − , 9 0.001235877131l = −  

Substituting these values in Equation (22) we get the spline approximation ( )S x  of ( )u x . The values of 
( )S x , ( )u x  and the corresponding absolute errors at x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 have been given in the 

Table 2 and the comparison has been shown in Figure 2. 

3.2. Example 2 
Consider non-homogeneous linear seventh order boundary value problem with variable coefficients 

( ) ( ) ( )7 2e 2 6 , 0 1xu x xu x x x x= + − − ≤ ≤                          (23) 

 

 
Figure 2. Comparison of ( )S x  and ( )u x  for example1 with h = 0.1.                         

 
Table 2. Numerical solution ( )S x , exact solution ( )u x  and absolute error of example 1 with h = 0.1.                  

x S(x) u(x) Absolute Error 

0.0 0.000000000000 0.000000000000 0.00000000 

0.1 0.099465382958 0.099465382626 −3.3200E−10 

0.2 0.195424444859 0.195424441305 −3.5540E−09 

0.3 0.283470361956 0.283470349590 −1.2366E−08 

0.4 0.358037954657 0.358037927400 −2.7224E−08 

0.5 0.412180361425 0.412180317675 −4.3750E−08 

0.6 0.437308566741 0.437308512093 −5.4648E−08 

0.7 0.428881204050 0.42888068568 −5.1837E−08 

0.8 0.356086581653 0.356086548558 −3.3095E−08 

0.9 0.221364288517 0.221364280004 −8.5130E−09 

1.0 0.000000000000 0.000000000000 0.00000000 
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Subject to the boundary conditions  

( ) ( ) ( ) ( )
( ) ( ) ( )
0 1, 0 0, 0 1, 0 3

1 0, 1 e, 1 2e

u u u u

u u u

′ ′′ ′′′= = = − = −

′ ′′= = − = −
                        (24) 

The exact solution is 

( ) ( )1 e .xu x x= −  

We find the solution of (23)-(24) by taking the step lengths h = 0.2 and h = 0.1 at equal sub intervals. 
Solution when h = 0.2 
Since h = 0.2 we suppose the grid points 0 0x = , 1 0.2x = , 2 0.4x = , 3 0.6x = , 4 0.8x = , 5 1x =  
From Equation (1) ninth degree spline S(x) which approximates u(x). 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 3 4 5
0 0 0 0 0

6 7 8

0

9
0 0 0

4

i i i

S x a b x x c x x d x x e x x g x x

h x x j x x k x x l x x
=

= + − + − + − + − + −

+ − − + − −+ +∑
            (25) 

From S(x) and boundary conditions we get the following values. 
a = 1, b = 0, c = −0.5, d = −0.333333 Equation (25) reduces to the form  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 3 4 5
0 0 0

4

0

0

6 7 8 9
0 0 0

1 0.5 0.333333

i i i

S x x x x x e x x g x x

h x x j x x k x x l x x
=

= − − − − + − + −

+ − + − + − + −∑
              (26) 

From equation 

( ) ( ) ( )07
0 0 0

2
00 e 2 6xs x x u x x x− = − −  

we get j = −0.00119047619047 and from the remaining conditions we have the following values 
0.125011015552e = − , 0.001190476190j = − , 1 0.000004737182l = − , 4 0.000004658016l = −  

0.033311297448g = − , 0.000173008441k = − , 2 0.000003893449l = −   

0.006956208579h = − , 0 0.000024317513l = − , 3 0.000004658016l = −  

Substituting these values in Equation (25) we get the spline approximation S(x) of u(x). The values of S(x), 
u(x) and the corresponding absolute errors at x1, x2, x3 and x4 has been given in Table 3 and the comparison has 
been shown in Figure 3. 

 

 
Figure 3. Comparison of approximate solution and exact solution of example 2 with h = 0.2.           
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Table 3. Numerical solution S(x), exact solution u(x) and absolute error of example 2 with h = 0.2.                       

x S(x) u(x) Absolute Error 

0.0 1.000000000000 1.000000000000 0.00000000 

0.2 0.977122197869 0.977122206528 8.6590E−09 

0.4 0.895094735449 0.895094818584 8.3135E−08 

0.6 0.728847331127 0.728847520156 1.8903E−07 

0.8 0.445108018183 0.445108185698 1.6752E−07 

1.0 0.00000000000 0.000000000000 0.00000000 

 
Solution when h = 0.1 
Since h = 0.1 we suppose the grid points x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 where  
x0 = 0, x1 = 0.1, x2 = 0.2, x3 = 0.3, x4 = 0.4, x5=0.5, x6 = 0.6, x7 = 0.7, x8 = 0.8, x9 = 0.9, x10 = 1 
From Equation (1) ninth degree spline S(x) which approximates u(x) becomes 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 3 4 5
0 0 0 0 0

6 7 8

0

9
0 0 0

9

i i i

S x a b x x c x x d x x e x x g x x

h x x j x x k x x l x x
=

= + − + − + − + − + −

+ − + − + − + −∑
              (27) 

From S(x) and boundary conditions we get the following values. 
a = 1, b = 0, c= −0.5, d = −0.333333, with these values (27) reduces to the form  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 3 4 5
0 0 0

9

0

0

6 7 8 9
0 0 0

1 0.5 0.333333

i i i

S x x x x x e x x g x x

h x x j x x k x x l x x
=

= − − − − + − + −

+ − + − + − + −∑
              (28) 

proceeding as in the above, we get the following values 
0.125049990637813e = − , 0 0.000025112018076l = − , 5 0.000000909345915l = −  

0.033253352807342g = − , 1 0.000000834757197l = , 6 0.000007629408480l = −  

0.006977804974566h = − , 2 0.000006702827825l = − , 7 0.000003171741363l = −  

0.001190476190j = − , 3 0.000000146740426l = , 8 0.000008022104888l = −  

0.000172613927990k = − , 4 0.000007470638178l = − , 9 0.000008022104888l = −  

The values of S(x), u(x) and the corresponding absolute errors at x1, x2, 𝑥𝑥3, x4, x5, x6, x7, x8, x9, x10 has been 
given in Table 4 and the comparison has been shown in Figure 4. 

3.3. Example 3 
Consider the linear non-homogeneous seventh order boundary value problem with constant coefficients. 

( ) ( )7 7e , 0 1xu x u x x= − ≤ ≤  

subject to the boundary conditions 

( ) ( ) ( ) ( ) ( ) ( )0 1, 0 0, 0 2, 1 0, 1 e, 1 2eu u u u u u′ ′′ ′ ′′= = = − = = − = −                 (29) 

The exact solution is 

( ) ( )1 e .xu x x= −  

We find the solution of (29) by taking the step lengths h = 0.2 and h = 0.1 at equal sub intervals. 
The values of S(x), u(x) and the corresponding absolute errors at x1, x2, x3 and x4 have been given in Table 5 

and the comparison has been shown in Figure 5. The values at x1, x2, 𝑥𝑥3, x4, x5, x6, x7, x8, x9 and x10 have been 
given in Table 6 and the comparison has been shown in Figure 6. 
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Figure 4. Comparison of approximate solution and exact solution of example 2 with h = 0.1.             

 

 
Figure 5. Comparison of approximate solution and exact solution of example 3 with h = 0.2.           

 

 
Figure 6. Comparison of approximate solution and exact solution of example 3with h = 0.1.            
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Table 4. Numerical solution S(x), exact solution u(x) and absolute error of example 2 with h = 0.2.                        

x S(x) u(x) Absolute Error 

0.0 1.000000000000 1.000000000000 0.000000000 

0.1 0.994653825368 0.994653826268 9.00000E−10 

0.2 0.977122206669 0.977122206528 2.98590E−10 

0.3 0.944901160432 0.944901165303 4.87100E−09 

0.4 0.895094814647 0.895094818584 3.93700E−09 

0.5 0.824360636278 0.824360635350 −9.28000E−10 

0.6 0.728847525865 0.728847520156 −5.70900E−09 

0.7 0.604125874632 0.604125812241 −6.23910E−08 

0.8 0.445108198680 0.445108185698 −1.29820E−08 

0.9 0.245960300626 0.245960311115 1.04890E−08 

1.0 0.000000000000 0.000000000000 0.000000000 

 
Table 5. Numerical solution S(x), exact solution u(x), absolute error of example 3 with h = 0.2.                          

x S(x) u(x) Absolute Error 

0.0 1.000000000000 1.000000000000 0.000000000 

0.2 0.977122202945 0.977122206528 3.58300E−09 

0.4 0.895094784979 0.895094818584 3.36050E−08 

0.6 0.728847097431 0.728847520156 4.22725E−07 

0.8 0.44510798551 0.445108185698 1.71470E−07 

1.0 0.00000000000 0.000000000000 0.000000000 

 
Table 6. Numerical solution S(x), exact solution u(x) and absolute error of example 3 with h = 0.1.                         

x S(x) u(x) Absolute Error 

0.0 1.000000000000 1.000000000000 0.0000000000 

0.1 0.994653826178 0.994653826268 9.000000E−11 

0.2 0.977122205542 0.977122206528 9.860000E−10 

0.3 0.944901150816 0.944901165303 1.448700E−08 

0.4 0.895094780191 0.895094818584 3.839200E−08 

0.5 0.824360562443 0.824360635350 7.290630E−08 

0.6 0.728847490727 0.728847520156 2.942900E−08 

0.7 0.604125798479 0.604125812241 1.376200E−08 

0.8 0.445108155996 0.445108185698 2.970200E−08 

0.9 0.245960126066 0.24596011115 −1.491600E−08 

1.0 0.000000000000 0.00000000000 0.0000000000 

4. Comparative Study of Eighth Degree Spline and Ninth Degree  
Spline Approximation 

The numerical results obtained by ninth degree spline approximation are compared with the numerical results 
obtained by eighth degree spline approximation [11] at different step lengths. Comparison is given in tabular 
form and shown graphically (Tables 7-9, Figures 7-9). 
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Figure 7. Comparison of the absolute error [11] and ninth degree spline ap-
proximation for example 1 at h = 0.1.                                     

 

 
Figure 8. Comparison for absolute error of [11] and ninth degree spline ap-
proximation for example 2 at h = 0.1.                                    

 

 
Figure 9. Comparison for absolute error of [11] and ninth degree spline ap-
proximation for example 3 at h = 0.1.                                     
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Table 7. Comparison of absolute errors [11] and absolute errors obtained by our method for example 1 at h = 0.1.          

x Exact Solution Absolute Error [11] for 9th Degree Absolute Error 

0.0 0.0000000 0.00000000 0.00000000 

0.1 0.09946538 7.9999E−08 −3.3200E−10 

0.2 0.19542444 9.8000E−07 −3.5540E−09 

0.3 0.28387034 2.3654E−05 −1.2366E−08 

0.4 0.35803792 7.4400E−06 −2.7224E−08 

0.5 0.41218031 1.1289E−05 −4.3750E−08 

0.6 0.43730851 1.3459E−05 −5.4648E−08 

0.7 0.42288806 1.4430E−05 −5.1837E−08 

0.8 0.35608654 2.0369E−05 −3.3095E−08 

0.9 0.22136428 4.7770E−05 −8.5130E−09 

1.0 0.00000000 0.00000000 0.00000000 

 
Table 8. Comparison of absolute error [11] and absolute error obtained by our method for example 2 at h = 0.1.              

x Exact Solution Absolute Error [11] for 9th Degree Absolute Error 

0.0 1.0000000000 0.00000000 0.00000000 

0.1 0.994653826 −7.9999E−09 9.0000E−10 

0.2 0.9771222065 −7.8799E−08 −1.4100E−10 

0.3 0.8950948185 −2.32699E07 4.8710E−09 

0.4 0.8950948185 −3.85500E07 3.9370E−09 

0.5 0.8243606350 −4.1000E−07 −9.2800E−10 

0.6 0.7288475201 −1.3900E−07 −5.7090E−09 

0.7 0.6041258122 3.87499E−07 −6.2391E−08 

0.8 0.4451081856 8.12699E−07 −1.29820E08 

0.9 0.2459603111 7.56099E−07 1.04890E−08 

1.0 0.0000000000 0.000000000 0.000000000 

 
Table 9. Comparison of absolute error [11] and absolute error obtained by our method for example 3 at h= 0.1.                

x Exact Solution Absolute Error [11] for 9th Degree Absolute Error 

0.0 1.00000000000 0.0000000000 0.0000000 

0.1 0.99465382627 −3.048609E−09 9.000E−11 

0.2 0.97712220653 −2.273750E−08 9.860E−10 

0.3 0.94490116530 −7.243841E−08 1.449E−08 

0.4 0.89509481858 −1.655640E−08 3.839E−08 

0.5 0.82436063535 −3.192236E−07 7.291E−08 

0..6 0.72884752016 −5.570166E−07 2.943E−08 

0.7 0.60412581224 −9.098626E−07 1.376E−08 

0.8 0.44510818570 −1.413797E−06 2.970E−08 

0.9 0.24596011120 −2.103475E−06 −1.492E−08 

1.0 0.00000000000 0.0000000000 0.00000000 
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5. Conclusion 
A ninth degree spline solution has been employed of example 1, 2 and 3 at step lengths h = 0.2 and h = 0.1. 
Numerical solutions are summarized in the tables and the comparison has been shown in figures. The maximum 
absolute errors at the given step length are −2.90100 × 10−9 and 7.2899 × 10−10, 8.6950 × 10−9, 9.00000 × 10−10, 
2.2970 × 10−9 and 9.0000 × 10−11 respectively. These values show that the agreement between approximate so-
lution and exact solution is good. It is observed that the solution is more accurate when step length is small. We 
also compare our results with the results obtained using eighth degree spline solution [11]. From the tables and 
graphs, we conclude that the ninth degree spline solutions are more accurate (10 - 11) than the solutions ob-
tained by using eighth degree spline functions. 
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