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Abstract 
High energy sub-nuclear interactions are a good tool to dive deeply in the core of the particles to 
recognize their structures and the forces governed. The current article focuses on using one of the 
evolutionary computation techniques, the so-called genetic programming (GP), to model the ha-
dron nucleus (h-A) interactions through discovering functions. In this article, GP is used to simu-

late the rapidity distribution  
 
 

N
N Y
1 d

d
 of total charged, positive and negative pions for p−-Ar and 

p−-Xe interactions at 200 GeV/c and charged particles for p-pb collision at 5.02 TeV. We have done 
so many runs to select the best runs of the GP program and finally obtained the rapidity distribu-

tion  
 
 

N
N Y
1 d

d
 as a function of the lab momentum ( )LabP , mass number (A) and the number of 

particles per unit solid angle (Y). In all cases studied, we compared our seven discovered functions 
produced by GP technique with the corresponding experimental data and the excellent matching 
was so clear. 
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1. Introduction 
Evolutionary computation refers to a class of algorithms that utilize simulated evolution to some degree as a 
means to solve a variety of problems, from numerical optimization to symbolic logic. By simulated evolution, 
we mean that the algorithms have the ability to evolve a population of potential solutions such that weaker solu-
tions are removed and replaced with incrementally stronger (better) solutions. In other words, the algorithms 
follow the principle of natural selection. Each of the algorithms has some amount of biological plausibility, and 
is based on evolution or the simulation of natural systems [1]-[8].  

In 1990s, John Koza [9] [10] introduced the subfield called Genetic Programming. This is considered a sub-
field because it fundamentally relies on the core genetic algorithm created by Holland [11], and differs in the 
underlying representation of the solutions to be evolved. Instead of using bit-strings (as with genetic algorithms) 
or real-values (as is the case for evolutionary programming [1]-[7] or evolutionary strategies [1]-[7], genetic 
programming relies on S-expressions (program trees) as the encoding scheme. 

Hadron-nucleus (h-A) interactions have been considered as a corner stone in high energy physics because of 
its theoretical and practical interesting features and also it is an intermediate state between hadron-hadron (h-h) 
and nucleus-nucleus (N-N) interactions. So, there are a lot of models that concern the study of the hadron struc-
ture [12]-[16] and the interactions between hadrons and nuclei such as the three-fireball model [17], quark mod-
els [18]-[20], fragmentation model [21]-[23] and many more. 

In our previous works [24]-[27], our group studied the applications of artificial intelligence and the evolutio-
nary computation techniques such as neural network, adaptive fuzzy inference system, genetic programming, 
genetic algorithm, hybrid technique model and many others to solve many complex (nonlinear) problems in high 
energy physics and showed best fitting with the corresponding experimental data in comparison with the con-
ventional techniques.  

The study of hadron-nucleus interaction at high and ultrahigh energy has been a subject of great interest to 
high energy physicist because the nuclei provide a number of unique physics opportunities which are not availa-
ble in elementary particle collisions [28]. 

In this article, Genetic programming (GP) model has been used to discover a function that computes the ra-
pidity distribution of created (total charged, positive and negative) pions for p−-Ar and p−-Xe collisions at 200 
GeV/c [29]-[31] and charged particles for p-pb collision at 5.02 TeV [32]. The seven discovered functions pro-
duced by GP model show an excellent matching when they have been compared to the corresponding experi-
mental data [29]-[32]. This article is organized as follows; Section 2 gives the definition and the outlines to the 
basics of the GP technique. Section 3 reviews the implementation of GP. Finally, the results and conclusions are 
provided in Sections 4 and 5 respectively. 

2. GP Outlines 
GP is defined as the biologically-inspired evolution of computer programs that solve a predefined task. For this 
reason, GP is nothing more than a genetic algorithm applied to the problem program evolution. Early GP sys-
tems utilized LISP (the original functional programming language, 1958) S-expressions (as shown in Figure 1), 
but more recently, linear GP systems have been used to evolve instruction sequences to solve user-defined pro-
gramming tasks [2]. 

Since genetic programming manipulates programs by applying genetic operators (reproduction, crossover and 
mutation), a programming language should permit a computer program to be manipulated as data and the newly 
created data to be executed as a program. For these reasons, LISP was chosen as the main language for GP. 

Evolving complete programs with GP is computationally very expensive, and the results have been limited, 
but GP does have a place in the evolution of program fragments. For example, the evolution of individual func-
tions that have very specific inputs and outputs and whose behavior can be easily defined for fitness evaluation 
by GP. To evolve a function, the desired output must be easily measurable in order to understand the fitness 
landscape of the function in order to incrementally evolve it [1]-[7]. 

Consider the example shown in Figure 1. The population consists of two members, A and B. Using the cros-
sover operator, a portion of A is grafted onto B; resulting in a new expression C. GP also utilizes the mutation 
operator as a way of extending the population to the search space. 
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Figure 1. Using the crossover operator to create a new S-expression.                      

3. GP Implementation 
The GP uses the same fundamental flow as the traditional genetic algorithm. The population of potential solu-
tions is initialized randomly and then their fitness computed (through a simulation of executed instructions with 
the stack). Selection of members that can propagate into the next generation can then occur through fitness pro-
portionate selection. With this method, the higher fit the individual, the higher the probability that they will be 
selected for recombination in the next generation. Evolutionary algorithms borrow concepts from Darwinian 
natural selection as a means to evolve solutions to problems, choosing from more fit individuals to propagate to 
future generations [1]-[7].  

The chromosome, or program to be evolved, is made up of genes, or individual instructions. The chromosome 
can also be of different lengths, assigned at creation, and then inherited during the evolution.  

All methods of evolutionary computation (and then GP) work as follows: create a population of individuals, 
evaluate their fitness, generate a new population by applying genetic operators (Cross-over, mutation and re-
production), and repeat this process a number of times as shown in Figure 2. 

4. Results and Discussion 
We have performed the GP modeling of the inclusive reaction, 

p Ar, Xe, pb Xπ− ±+ → +  

p pb charged particles+ →                                 (1) 

using the experimental data [29]-[32] at 100 and 200 GeV/c and have done so many runs to select the best runs 

of the GP program, the first runs are for simulating the rapidity distribution 1 d
d
N

N Y
 of negative pions for

p -Au, Ag, Mg−  collisions at 100 GeV/c. They were configured to have the lab momentum ( )LabP , mass num-
ber (A) and the number of particles per unit solid angle (Y) as inputs and the output is the corresponding rapidity 

distribution 1 d
d
N

N Y
 
 
 

 of negative pions at the given momentum as shown in Figure 3. 

The second ones are for simulating the rapidity distribution 1 d
d
N

N Y
 
 
 

 of positive pions for p -Au, Ag, Mg−  

collisions at 100 GeV/c as an output and the inputs are the same as in Figure 3.  

The third ones are for simulating the rapidity distribution 1 d
d
N

N Y
 
 
 

 of positive pions for p -Ar− , p -Xe−   
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Figure 2. Flowchart for GP.                                                            
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Figure 3. A block diagram of the GP technique.                           

 
collisions at 200 GeV/c as an output and the inputs are the same as in Figure 3.  

The fourth ones are for simulating the rapidity distribution 1 d
d
N

N Y
 
 
 

 of negative pions for p -Ar− , p -Xe−  

collisions at 200 GeV/c as an output and the inputs are the same as in Figure 3.  

The fifth ones are for simulating the rapidity distribution 1 d
d
N

N Y
 
 
 

 of charged pions for p -Ar− , p -Xe−  

collisions at 200 GeV/c as an output and the inputs are the same as in Figure 3. 

The last ones are for simulating the rapidity distribution 1 d
d
N

N Y
 
 
 

 of charged particles for p-pb collisions at 

5.02 TeV as an output and the inputs are the same as in Figure 3.   
According to all the runs, we have obtained the corresponding tree and their equivalent discovered functions 

Equations (2)-(7) generated for the rapidity distribution 1 d
d
N

N Y
 
 
 

 of total charged, positive and negative pions 

for p -Ar−  collisions at 100, 200 GeV/c and 5.02 TeV. 

The output, the rapidity distribution 1 d
d
N

N Y
 
 
 

, as a function of the inputs ( ), ,LabP A Y  is given as follows: 

For negative pions at 100 GeV/c, 

( ) ( )21 d sin sin e
d

EN F
N Y

 = −                                   (2) 

For positive pions at 100 GeV/c, 
( )10.8613sin1 d e

d
X R EN

N Y
+  =                                   (3) 

For positive pions at 200 GeV/c, 

( )1 d sin e
d

JN H C
N Y

= + +                                  (4) 

For negative pions at 200 GeV/c, 

( )( ){ }2
1

1 d sin sin cos 10
d
N X J

N Y
 = +                              (5) 

For charged pions at 200 GeV/c, 

( )4
1

1 d sin 0.62932
d
N X b

N Y
= +                                (6) 

For charged particles at 5.02 TeV, 
1 d

d
N E U

N Y
= +                                     (7) 

For more details about F, E,H, U, etc., see Appendices 1-6. 

The comparison between the pions rapidity distribution 1 d
d
N

N Y
 
 
 

 computed by employing our discovered 

functions Equations (2)-(7) and the corresponding experimental data [29]-[31] are represented in Figure 4 for 
negative pions for p -Au, Ag, Mg−  collisions at 100 GeV/c, Figure 5 for positive pions for p -Au, Ag, Mg−  
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collisions at 100 GeV/c, Figure 6 for positive pions for p -Ar−  (the GP model cannot describe the data when 

the axial value is near 0 because the noisy behavior of data around the axial), p -Xe−  collisions at 200 GeV/c. 

Figure 7 for negative pions for p -Ar− , p -Xe−  collisions at 200 GeV/c, Figure 8 for charged pions for 

p -Ar− , p -Xe−  collisions at 200 GeV/c, Figure 9 for charged particles for p-pb collisions at 5.02 TeV. 
In order to generate the GP model we have implemented the GP steps (fitness evaluation, reproduction, cros-

sover and mutation) that were mentioned in Section 3. Our six discovered functions are generated using the ob-
tained control GP parameters, which are shown in Table 1. 

 

 

Figure 4. The discovered rapidity distribution of negative pions 1 d
d
N

N Y
 
 
 

 for antip-Au, antip-Ag, antip-Mg 

interaction at 100 GeV/c: (—) GP model, (o) experimental data.                                             
 

 

Figure 5. The obtained rapidity distribution of positive pions 1 d
d
N

N Y
 
 
 

 for antip-Au, antip-Ag, antip-Mg 

interaction at 100 GeV/c: (—) GP model, (o) experimental data.                                           
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Figure 6. The discovered rapidity distribution of negative pions 1 d
d
N

N Y
 
 
 

 for antip-Au, antip-Ag, antip-Mg interaction at 

100 GeV/c: (—) GP model, (o) experimental data.                                                                
 

 

Figure 7. GP-simulated for rapidity distribution of negative pions 1 d
d
N

N Y
 
 
 

 for antip-Ar, antip-Xe at 200 GeV/c: (—) GP 

model, (o) experimental data.                                                                             
 

Table 1. Optimal parameters controlling GP program.                                                           

GP parameters Total charged pions/particles Positive pions Negative pions 

Individuals 1000 1000 1000 

Generations 50 50 50 

Function set +, −, *, /, ln, log, sin,  
cos, tan, sqrt, exp, power 

+, −, *, /, ln, log, sin,  
cos, tan, sqrt, exp, power 

+, −, *, /, ln, log, sin,  
cos, tan, sqrt, exp, power 

Terminal set PLab, A and Y PLab, A and Y PLab, A and Y 

Fitness function MSE MSE MSE 

Selection Tournament Tournament Tournament 

Fitness at 5.02 TeV 0.9673 - - 

Mutation rate 0.01 - - 
Crossover rate 0.9 - - 

Fitness at 200 GeV/c 4.9503 6.8111 1.8313 

Mutation rate 0.9 0.01 0.01 

Crossover rate 0.01 0.9 0.9 

Fitness at 100 GeV/c 1.5753 2.178635 ـ 

Mutation rate 0.9 0.01 ـ 

Crossover rate 0.01 0.9 ــ 
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Figure 8. Simulated results for rapidity distribution of chared pions 1 d
d
N

N Y
 
 
 

 for antip-Ar, antip-Xe at 200 GeV/c: (—) GP 

model, (o) experimental data.                                                                                
 

 
Figure 9. The discovered rapidity distribution of charged particles for p-Pb interaction at 5.02 TeV: (—) GP model, (o) 
experimental data.                                                                                       

 
The statistical error criterion of mean square error (MSE) was used to measure the deviation between the ex-

perimental (actual) and simulated values.  The statistical parameter MSE has been used in this work as a per-
formance metric [33] to compare the GP simulation with the actual observations (experimental data) and these 
were evaluated by using Matlab program. The smaller the values of MSE the closer the simulated values to the 
experimental ones. Our obtained MSE values for the seven discovered functions are given in Table 1, which 
show also that the performance of the GP model is clearly suitable. 

5. Conclusions  
GP model has been shown to be a vital method for modeling the h-A interactions. The current article presents an 

efficient approach for computing the rapidity distribution 1 d
d
N

N Y
 
 
 

 of charged, positive and negative pions for 

p -Ar−  and p -Xe−  collisions at 200 GeV/c and charged particles for p-pb collisions at 5.02 TeV through the  
obtained discovered functions. All the discovered functions show a clear and excellent match to the experimen-
tal data. 
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The interaction of hadrons with atomic nuclei at high and ultrahigh energies is an issue of great importance 
since in-depth studies about it provide the necessary information on properties which cannot be examined by 
analyzing only hadron-hadron interactions. 

Finally, the present work has proved that the GP approach can be employed effectively to model the h-A in-
teractions at the given energy. 
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Appendices 
1. Rapidity Distribution of Negative Pions for p−-Au, p−-Ag and p−-Mg Interaction at 100 GeV/c 

2 1 3sin 10
1.2414
X XA + = − 

 
, ( ){ }32

10 1log cos eXB A X = +  , 2 1 0.60169sin 10
1.2414

XC + = − 
 

, 

( )( )10log cos sin BD C e = +  , ( )3sin
1

0.17
e X

DE
X

= , 1 0.6016910
1.2414

XF + = −   
 

2. Rapidity Distribution of Positive Pions for p−-Au, p−-Ag and p−-Mg Interaction at 100 GeV/c 

1
2 1 3e 970.8738XA X X X= − − + − , ( )2 0.12013 tanB X A= − − , ( ) ( ) ( )3sin

310 cosXC B X= − , 

( )2cos 0.187454D C= + , ( )2
1sin 0.550985E X D= − ,  

( )( ) ( ) ( )( )( )3
10 3 3cos log tan tan e cosXF X X= + − , 

( ) ( )3 3 2 1 2tan 10G X X X X X= + − + , ( )10sinH G F =   , 
3

2.91765
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I
X

−
= ,  

( )3

3

10 0.82908IX H
J

X
− +

= , ( )( ) ( ) ( )3
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 
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P J

L
 

= + − 
 
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3. Rapidity Distribution of Positive Pions for p−-Xe and p−-Ar Interaction at 200 GeV/c 
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5. Rapidity Distribution of Charged Pions for p−-Xe and p−-Ar Interaction at 200 GeV/c 
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6. Rapidity Distribution of Charged Particles for p-pb Interaction at 5.02 TeV 
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where, 1X  is the number of particles per unit solid angle (Y), 2X , lab momentum ( )LabP , 3X , mass number 
(A). 
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