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Abstract 
This paper investigates the influence of both viscous and joules dissipation on the problem of 
magneto-hydrodynamic flow past a stretching porous surface embedded in a porous medium for 
rotating case. Using similarity approach the system of partial differential equations is transformed 
into ordinary differential equations which strongly depend on the magnetic parameter, stretching 
parameter, rotation parameter, permeability parameter and Prandtl number. The coupled diffe-
rential equations are numerically simulated using the Nactsheim-Swigert shooting technique to-
gether with Runge-Kutta six order iteration schemes. The velocity and temperature profiles are 
discussed and presented graphically. The comparisons for dimensionless skin friction coefficient 
and local Nusselt number are also taken into account and discussed and presented graphically. 
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1. Introduction 
Viscous dissipation changes the temperature distributions by playing a role like an energy source, which leads to 
affected heat transfer rates. The merit of the effect of viscous dissipation depends on whether the plate is being 
cooled or heated. Apart from the viscous dissipation in MHD flows, the Joules dissipation also acts as a volume-
tric heat source. Heat transfer analysis over porous surface is of much practical interest due to its abundant ap-
plications, such as, heat-treated materials traveling between a feed roll and wind-up roll, materials manufactured 
by extrusion, glass-fiber and paper production, cooling of metallic sheets, electronic chips and crystal growing. 
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In view of all these aspects, Anjali Devi [1] deals with the effect of viscous and Joules dissipation on MHD flow, 
heat and mass transfer over a porous surface embedded in a porous medium. An analysis of thermal boundary 
layer in an electrically conducting fluid over a linearly stretching sheet in the presence of a constant transverse 
magnetic field with suction or blowing at the sheet was carried out by Chaim [2]. The viscous and joules dissi-
pation and internal heat generation were taken into account in the energy equation. Very recently, the viscous 
and joules dissipation and internal heat generation were taken into account in the energy equation. Sajid et al. [3] 
investigated the non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stret-
ching sheet. He found that the skin friction coefficient decreased as the magnetic parameter or the third grade 
parameter increased. A mathematical analysis has been carried out on momentum and heat transfer characteris-
tics in an incompressible, electrically conducting viscoelastic boundary layer fluid flow over a linear stretching 
sheet by Abel et al. [4]. A numerical reinvestigation of MHD boundary layer flow over a heated stretching sheet 
with variable viscosity has been analyzed by Pantokratoras [5]. Hence the present study investigates the effect 
viscous and Joules dissipation on MHD flow, heat and mass transfer over a porous surface embedded in a por-
ous medium for rotating case. 

2. Mathematical Analysis 
Two-dimensional, nonlinear, steady, MHD laminar boundary layer flow with heat and mass transfer of a viscous, 
incompressible and electrically conducting fluid over a porous surface embedded in a porous medium in the 
presence of a transverse magnetic field including viscous and Joules dissipation is considered for investigation. 
An uniform transverse magnetic field of strength 0B  is applied parallel to y-axis. Consider a polymer sheet 
emerging out of a slit at 0x = , 0y =  and subsequently being stretched, as in a polymer extrusion process. Let 
us assume that the speed at a point in the plate is proportional to the power of its distance from the slit and the 
boundary layer approximations are applicable. In writing the following equations, it is assumed that the induced 
magnetic field, the external electric field and the electric field due to the polarization of charges are negligible. 
Under these conditions, the governing boundary layer equations of momentum, energy and diffusion with visc-
ous and Joules dissipation are 
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Here u, v are components of velocity components in the x  and y  directions, ν  is kinematic coefficient 
of viscosity, pK  is permeability of the medium, σ  is electrical conductivity of the fluid, 0B  is applied 
magnetic field, ρ  is density of the fluid, T  is temperature of the fluid, wT  is wall temperature, T∞  is tem-
perature far away from the surface, K  is thermal conductivity, pC  is specific heat at constant pressure, C  
is species concentration of the fluid, wC  is species concentration near the wall C∞  is species concentration of 
the fluid away from the wall, D  is diffusivity coefficient, a, 0T  and 0C  are dimensional constants, m  is 
index of power-law velocity and n  is index of power-law variation of wall temperature which is constant. 
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We introduce the following similarity transformations are 
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where 0λ >  for suction at the stretching plate and ψ  is the stream function. 
The velocity components are given by    
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It can be easily verified that the continuity Equation (1) is identically satisfied and introduce the non-dimen- 
sional form of temperature and concentration as 
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Hence Equations (2)-(5) and boundary conditions (6) reduced to: 
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3. Results and Discussions 
In Figure 1, transverse velocity profiles decreases with the increase of β . In Figure 2, primary velocity pro-
files increases with the increase of β . In Figure 3, primary shear stress profiles increases with the increase of 
β . In Figure 4, secondary velocity profiles increases with the increase of β . In Figure 5, secondary shear 
stress profiles increases with the increase of β . In Figure 6, temperature profiles decreases with the increase of 
β . In Figure 7, Nusselt number profiles increases with the increase of β . In Figure 8, concentration profiles 
decreases with the increase of β . In Figure 9, Sherwood number profiles increases with the increase of β . In 
Figure 10, transverse velocity profiles increases with the increase of cE . 

In Figure 11, primary velocity profiles increases with the increase of cE . In Figure 12, primary shear stress 
profiles increases with the increase of cE . In Figure 13, secondary velocity profiles increases (slightly) with 
the increase of cE . In Figure 14, secondary Shear Stress profiles increases with the increase of cE . In Figure 
15, temperature profiles increases with the increase of cE . In Figure 16, Nusselt number profiles decreases 
with the increase of cE  In Figure 17, concentration profiles remains same for the variation of cE . In Figure 
18, Sherwood number profiles remains same for the variation of cE . In Figure 19, transverse velocity profiles 
increases with the increase of λ . In Figure 20, primary velocity profiles decreases with the increase of λ . In 
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Figure 21, primary shear stress profiles decreases with the increase of λ . In Figure 22, secondary velocity 
profiles first increases then decreases with the increase of λ . In Figure 23, secondary shear stress profiles de-
creases with the increase of λ . In Figure 24, temperature profiles decreases with the increase of λ . In Figure 
25, Nusselt number profiles increases with the increase of λ . In Figure 26, concentration profiles decreases 
with the increase of λ . In Figure 27, Sherwood number profiles increases with the increase of λ . In Figure 
28, transverse velocity profiles decreases with the increase of 2M . In Figure 29, primary velocity profiles de-
creases with the increase of 2M . In Figure 30, primary shear stress profiles decreases then increases with the 
increase of 2M . In Figure 31, secondary velocity profiles first increases then decreases with the increase of 

2M . In Figure 32, secondary shear stress profiles decreases with the increase of 2M . In Figure 33, tempera-
ture profiles increases with the increase of 2M . In Figure 34, Nusselt number profiles decreases with the in-
crease of 2M . In Figure 35, concentration profiles decreases with the increase of 2M . In Figure 36, Sher-
wood number profiles increases with the increase of 2M . 

 

 
Figure 1. Transverse velocity profiles for β.                            

 

 
Figure 2. Primary velocity profiles for β.                       
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Figure 3. Primary shear stress profile for β.                  

 

 
Figure 4. Secondary velocity profile for β.                

 

 
Figure 5. Secondary shear stress profile for β.               
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Figure 6. Temperature profiles for β.                      

 

 
Figure 7. Nusset number profiles for β.                     

 

 
Figure 8. Concentration profiles for β.                      
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Figure 9. Sherwood number profiles for β.                 

 

 
Figure 10. Transverse velocity profiles for Ec.               

 

 
Figure 11. Primary velocity profile for Ec.                 
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Figure 12. Primary shear stress profile for Ec.              

 

 
Figure 13. Secondary velocity profile for Ec.               

 

 
Figure 14. Secondary shear stress profile for Ec.             
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Figure 15. Temperature profile for Ec.                     

 

 
Figure 16. Nusset number profile for Ec.                    

 

 
Figure 17. Concentration profile for Ec.                   
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Figure 18. Sherwood number profile for Ec.                 

 

 
Figure 19. Transverse velocity profiles for λ.               

 

 
Figure 20. Primary velocity profiles for λ.                   
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Figure 21. Primary shear stress profiles for λ.               

 

 
Figure 22. Secondary velocity profiles for λ.               

 

 
Figure 23. Secondary shear stress profiles for λ.              
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Figure 24. Temperature profile for λ.                         

 

 
Figure 25. Nusset number profile for λ.                       

 

 
Figure 26. Concentration profile for λ.                      
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Figure 27. Sherwood number profile for λ.                     

 

 
Figure 28. Transverse velocity profiles for λ.                  

 

 
Figure 29. Primary velocity profiles for M2.                    
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Figure 30. Primary shear stress profiles for M2.                  

 

 
Figure 31. Secondary velocity profiles for M2.                    

 

 
Figure 32. Secondary shear stress profiles for M2.              
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Figure 33. Temperature profile for M2.                       

 

 
Figure 34. Nusset number profile for M2.                        

 

 
Figure 35. Concentration profile for M2.                      
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Figure 36. Sherwood number profile for M2.                         

4. Conclusion 
The effect of viscous and joules dissipation on MHD flow with heat and mass transfer past a stretching porous 
surface embedded in a porous medium is analyzed in the present study for rotating case. Increasing, decreasing 
and cross flows occur for the variation of different parameters. 
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