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Abstract 
This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov 
equation with a modified boundary integral method. A key aspect of this formulation is that it re-
laxes the domain-driven approach of a typical boundary element (BEM) technique. While its dis-
cretization keeps faith with the second order accurate BEM formulation, its implementation is 
element-based. This leads to a local solution of all integral equation and their final assembly into a 
slender and banded coefficient matrix which is far easier to manipulate numerically. This outcome 
is much better than working with BEM’s fully populated coefficient matrices resulting from a nu-
merical encounter with the problem domain especially for nonlinear, transient, and heterogene-
ous problems. Faithful results of high accuracy are achieved when the results obtained herein are 
compared with those available in literature. 
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1. Introduction 
The major thrust of the paper is a numerical study of a nonlinear fourth order partial differential equation in a 
hybrid boundary integral setting. 

Many problems in engineering and applied sciences can be represented by fourth order differential equations. 
A good understanding of the processes that lead to their derivation can only be obtained via numerical solutions. 
Several examples of these can be found in scientific literature for example, the Euler-Bernoulli beam theory eq-
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uation [1] which gives the transverse deflection of a cantilever beam under a uniform transverse load or the EFK 
equation, a fourth order partial differential equation used for the study of several physical phenomena for exam-
ple travelling waves in reaction-diffusion systems [2], physical systems that are bi-stable, pattern formation, as 
well as instability in nematic fluid crystals. The one-dimensional version of this equation has been studied ex-
tensively by Danumjaya [3] where he showed the existence and uniqueness results for weak solutions by using 
Lyapunov function.  

Earlier work by Danumjaya and Pani [4] involved the splitting of EFK equation into two second order equa-
tions and subsequent application of the orthogonal cubic spline collocation (OSC) method. This was followed by 
the study of travelling waves in reaction diffusion systems (Zimmerman [5] and Aronson and Weinberger [6]). 
Peletier and Troy [7] studied the steady state version of EFK equation using the shooting method. Periodic solu-
tions were discussed by Peletier et al. [8] and Stepan and Julia [9], while qualitative work was carried out by 
Hung Luo [10] who looked at the global attractors of the EFK equation in Hk spaces. Extensive analysis in this 
field has been recorded (Kalies et al. [11], Noomen and Omrani [12] as well as Kadri and Omrani [13]). 

However a review of current literature clearly demonstrates paucity of information on the application of the 
boundary integral method to the numerical solution of the EFK equation. The reason is not far-fetched and pri-
marily arises from several factors among which are its transient nature, its fourth order, its dimensionality and 
nonlinearity. These are factors which pose serious numerical challenge to a typical BEM formulation. The hy-
brid boundary integral technique applied herein is able to deal satisfactorily with these problems [14] [15] by 
splitting the differential equation into a two coupled system and applying a hybrid procedure based on a boun-
dary integral formulation. 

This approach is initiated by transforming the governing differential equation into its integral analog via the 
Green’s second identity followed by a FEM-like element-by-element implementation of the resulting equations 
throughout the problem domain. Unlike other BEM techniques, no extraneous mathematical techniques are ap-
plied to do all integration on the boundary of the problem domain. The whole process is amply simplified by the 
presence of a source point inside a generic element which facilitates a “local support” based numerical integra-
tion akin to the FEM implementation. The gain resulting from this approach is immense because the resulting 
integral equations appear in the form of local element equations whose contributions add up to produce slender 
and banded coefficient matrices [16] [17]. 

A lot of effort has been expended in dealing with domain integrals arising from BEM implementation (Porta-
pila and Power [18], Hibersek and Skerget [19]). These have been principally directed towards dealing with this 
undesirable feature of BEM formulation. BEM literature is replete with several surrogate varieties of BEM with 
numerous mathematical artifacts aimed at facilitating a boundary-only version of BEM implementation. Sladeck 
et al. [20] applied temporal free space Green functions in two spatial dimensions to model transport equations 
for low values of Peclet number. The development of accurate BEM numerical procedures for effectively han-
dling both the problem domain as well as its boundary is a task that is just beginning (Archer et al. [21], Grogo-
riev [22], Perrata and Popov [23]). 

2. Numerical Formulation 
The EFK equation is given by 

( ) [ ] [ ]0 , , 0,t xxxx xxu u u f u x a b t tγ+ − + = ∈ ∈                        (1) 

where ( ) 3f u u u= − , subject to initial condition 

( ) [ ]0,0 , ,u x u x a b= ∈                                   (2) 

and boundary conditions 

( ) ( )0 1, , ,u a t g u b t g= =                                  (3) 

( ) ( ), , 0xx xxu a t u b t= =                                   (4) 

We apply a splitting technique by converting Equation (1) into a two coupled system of differential equations. 

( ) ( ), ,xxm x t u x t=                                     (5) 
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and Equation (1) becomes 

( ) 0t xxu m m f uγ+ − + =                                   (6) 

with the following change in one of the boundary conditions 

( ) ( ), , 0m a t m b t= =                                    (7) 

Numerical approximation of Equations (5) and (6) in line with a hybrid boundary integral implementation in-
volves the following steps: 

1) We seek the solution of a prescribed auxiliary differential equation of a governing differential equation. 
This solution (fundamental solution or the free space Green function) constitutes a key element for obtaining the 
integral analog of the governing differential equation via the Green’s second identity. 

2) Classical BEM approach requires that any part of the governing differential equation that does not contri-
bute to the auxiliary differential equation is treated as a boundary integral in the “integralization” procedure. 
This is the origin of most of the numerical difficulties encountered in BEM numerical implementation. The im-
plication here is that various components of a differential equation whose physics dictates direct interaction with 
the problem domain are forced to the boundary. We refer to body force terms, heterogeneity, nonlinearity, tem-
poral terms etc. The hybrid method employed herein does not consider domain integration as a disadvantage 
because it is domain-element-driven. As a result the ensuing computations are relatively straightforward. 

3) The finite element component of the hybrid formulation demands that dicretization be carried out through-
out the problem domain, with initial and boundary conditions satisfied as well as the enforcement of inter ele-
ment continuity. Finally all element equations are assembled to form a global coefficient matrix. These are 
slender and banded because the procedure takes advantage of the “local support” inherent in the finite element 
formulation. 

4) The resulting coefficient matrix together with the right hand side vector of known values (boundary and in-
itial conditions and specified problem parameters) is solved to yield the problem dependent variables. We hasten 
to comment that boundary element formulation of the hybrid algorithm guarantees a second order accuracy in 
the computed results.  

Numerical discretization of the coupled system is sought by specifying a suitable complementary differential 
equation whose solution straightforward to obtain. A good example of this follows from previous work [24] [25] 
and is given by  

( )
2

2

d
d i

G x x
x

δ= −                                      (8) 

where G is the Green’s function and ( )ix xδ −  the Dirac delta forcing function. A well known fundamental 
solution of (8) is given by ( ) ( ), 2i iG x x x x l= − +  where l  is an arbitrary function and usually taken as the 
longest element used for discretizing the problem domain. The derivative of the fundamental solution is 
represented as: ( ) ( )* 0.5 i iG H x x H x x = − − −   where ( )H x  is the Heaviside function with the property 

( )
1
0

i
i

i

x x
H x x

x x


− = 






                                  (9) 

Substitution of the complementary equation, its fundamental solution, and its derivative into the Green’s 
second identity provides a platform for transforming the governing differential equation into its integro-differ- 
rential analogs. Without any loss of generality these can be represented by: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

0 0 0

0 0 0

2
L

L i i L L i i

x

L i L i L n m
x

H x x H x x H x x H x x

x x l x x l x x l f k
t

λ φ φ

φϕ ϕ

   − + − − − − − − −   

 ∂  − − + + − + + − + +  ∂  
∫

            (10a) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0

0 0 0

0 0 0 1 2

2

, , , d
L

L i i L L i i

x

L i L i L n m n n
x

H x x H x x H x x H x x

x x l x x l x x l f k f x
t

λ φ φ

φϕ ϕ φ φ φ

   − + − − − − − − −   

 ∂  − − + + − + + − + + +  ∂  
∫ 

   (10b) 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0

0 0 0

0 0 0 1 2

2

, , , d
L

L i i L L i i

x
q q q

L i L i L n m n n
x

H x x H x x H x x H x x

x x l x x l x x l f k f x
t

λ φ φ

φϕ ϕ φ φ φ

   − + − − − − − − −   

 ∂  − − + + − + + − + + +  ∂  
∫ 

    (10c) 

where φ  is the primary variable and ϕ  is its spatial derivative, λ  is a constant that takes a value of 0.5 or 
unity depending on whether the source point is located within or at the boundaries of the problem domain 
[ ]0 , Lx x . Interpolation for all the terms within the integrals yields: 

( ) ( ) ( ), j jx t x tφ φ≈ Ω                                  (11a) 

( ) ( ) ( ), j jx t x tϕ ϕ≈ Ω                                  (11b) 

where ( )xΩ  is a linear interpolation function with respect to an element node j. When appropriate substitu-
tions are made, and a finite difference temporal discretization implemented, we obtain a general system of tran-
sient, discrete equations including reaction, nonlinear source terms of the type shown below.  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1

1
1 1 , 1 ,1

1 1

1 1 1

m m m m
ij j j ij j j

m m
j j m m m n m n mm

ij j j j j j j

R L

T f f
t

αφ α φ αϕ α ϕ

φ φ
µ αφ α φ α α αφ α φ

+ +

+
+ + ++

   + − + + −   
 −

+ + + − + + − + + − 
∆  

   (12) 

The nonlinearity in Equation (12) can be resolved by the Newton-Raphson or Picard schemes [15] [16]. 

2.1. Numerical Experiments  
In this section we apply the method developed herein to numerically solve the extended Fisher-Kolmogorov eq-
uation and compare the displayed results with those available in literature.  

2.1.1. Example 1 
We consider the EFK Equation (1) with the following boundary and initial conditions: 

( ) ( )
( ) ( )

0, 1, 1.0,

4, 4, 0xx xx

u t u t

u t u t

= =

− = =
                                 (13) 

and initial condition 
( ) ( )3 2,0 10 expu x x−= −                                  (14) 

The numerical solution of the governing differential equation has been found for 0.0001γ =  at different 
times with 0.0001t∆ = . Figure 1(a) displays the numerical solutions at different times and all are found to be 
in excellent agreement with those of Mittal and Arora [26] and in addition confirms that for a small initial data, 
the solution decays nonlinearly as time increases and finally approaches a value of unity at both boundaries. 
Figure 1(b) shows a 3-D graph of the solution profile and confirms that the longer the numerical solution the 
less steep the solution profile and the more the decay of the dependent variable as they all approach a value of 
unity. 

2.1.2. Example 2 
The problem is specified to read: 

( ) ( )
( ) ( )

0, 1, 1.0,

4, 4, 0xx xx

u t u t

u t u t

= = −

− = =
                                 (15) 

The initial condition as well as the problem parameters is left the same. Figure 2(a) shows results that are 
consistent with those of Mittal and Arora [26]. Figure 2(b) also confirms that as time increases, the scalar pro-
files approach −1. 

2.1.3. Example 3 
This problem is taken from Danumjaya and Pani [4]. The boundary and initial conditions are given as: 
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(a)                                                     (b) 

Figure 1. (a) Transient scalar profiles for example 1; (b) 3D transient scalar profiles for example 1. 
 

   
(a)                                                      (b) 

Figure 2. (a) Transient scalar profiles for example 2; (b) 3D transient scalar profiles for example 2. 
 

( ) ( )
( ) ( )

0, 1, 0.0,

4, 4, 0xx xx

u t u t

u t u t

= =

− = =
                                 (16) 

and an initial condition given by 

( ) ( )0, sin πu x x= −                                    (17) 

Changing the value of gamma from 0.0001γ =  to 0.1γ =  makes the solution profile to decay relatively 
very fast. This illustrates the stabilizing influence of the parameter γ  in the EFK equation and shows agree-
ment between Figure 3(a) and Figure 3(b) with those of Figure 1 and Figure 2 of [4]. A display of the flatter 
slopes in Figure 3(d) when compared with those of Figure 3(c) help to confirm this observation. 

2.2. Convergence Test (in Table 1) 
The exact solutions of the EFK equation for the given initial and boundary conditions are not known. In order 
for us to have meaningful tests, the exact solution is replaced with the EFK numerical solution for 160 partitions 
and the numerical solutions at different intervals are compared with these. To this end, the following parameters 
are applied. 



O. O. Onyejekwe 
 

 
1267 

   
(a)                                                        (b) 

   
(a)                                                         (b) 

Figure 3. (a) Profiles of ( ),u x t  vs x for λ = 0.0001; (b) Profiles of ( ),u x t  vs x for λ = 0.1; (c) 3D profiles of ( ),u x t  

vs x for λ = 0.0001; (d) 3D profiles of ( ),u x t  vs x for λ = 0.1. 

 
Table 1. Error and convergence test results. 

No. of Partitions 2L norm  Order of Convergence L∞  Order of Convergence 

20 0.01123876 - 0.0077612  

40 0.01003659 1.86659 0.0033576 1.86766 

80 0.00326537 1.92254 0.0011254 1.91856 

160 0.00011265 2.00312 0.0005632 2.00136 

 

( )
( ) ( )( )
( )

2exact num exact num
2

2 1

1 2

, Max ,

log error error
order of conv

log

L x u u L u u

N N
N N

∞= ∆ − = −

=

∑
 

where ( )1error N  is the error with number of segments 1N  and the error in this sense can be interpreted as 
2 norm or normL L∞  as defined above.  
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3. Conclusion 
We have demonstrated a straightforward hybrid BEM approach for solving a fourth order nonlinear equation of 
considerable significance in mathematical physics. The approach demonstrated here is simple and straightfor-
ward and involves the splitting of the governing differential equations into two second order components fol-
lowed by an application of BEM-FEM numerical procedure. The utility of the present formulation rests on the 
fact that all integrations are performed locally and a slender coefficient matrix is created by assembling all local 
solutions. This approach facilitates the handling of some of the notorious disadvantages that plague the direct 
BEM formulation and pave the way for more challenging computations. 
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