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Abstract 
In this paper, we propose a Fast Iteration Method for solving mixture regression problem, which 
can be treated as a model-based clustering. Compared to the EM algorithm, the proposed method 
is faster, more flexible and can solve mixture regression problem with different error distribu-
tions (i.e. Laplace and t distribution). Extensive numeric experiments show that our proposed 
method has better performance on randomly simulations and real data. 
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1. Introduction 
In some situations, the data may not be suitable for the linear model, such as nonlinear regression, nonparame-
tric regression, generalized linear model. The mixture regression problem discussed in this paper is a situation 
with mixed data. Specifically, in the observations, some data are from a model, while others are from other 
models. As in [1], mixture regression problem can be treated as a regression or a clustering problem which can 
be written as: 

, 1, 2, ,k kY X k gβ σ ε′= + =   

( )ik i kP xπ = ∈Ω                                    (1.1) 

where p nX R ×∈  is an independent variable matrix, , 1, ,n
jX R j p∈ =   are the observations of the jth  va-  

riable. , 1, ,p
ix R i n∈ =   is the ith observation of the data. ( )1, , n

nY y y R′= ∈  is response variable vector.  
p

k Rβ ∈  and , 1, 2, ,k R k gσ ∈ =   are unknown vectors of regression coefficients and unknown positive sca-
lars, respectively. The random errors ε  are assumed to be independent of the iX  and ikπ  is the probability 
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of observation ix  belong to population Ωk  (i.e. ( )P Ωik i kxπ = ∈ . So 
1 1g

ikk π
=

=∑ . 
The Equation (1.1), a mixture regression model, can also be treated as a model-based clustering [2], which 

can be solved by an EM Algorithm [3]-[5]. In fact, EM Algorithm is a statistical method for maximizing the li-
kelihood function by iterative method. The algorithm can be divided into two steps. The one is E-step which is 
used for estimating the exception for the parameters. The other one is M-step, which is used for maximize the 
likelihood function under the parameters predicted in E-step. The iteration will continue until the change of like-
lihood function is less than a given value (i.e. 10−6). 

In [6], Song used an EM algorithm for solving robust mixture regression model. The details of this algorithm 
are described as follows: 
• Initialize the value of the parameters: 

( )2 2
1 1 1, , , , , ,g g gθ β σ π β σ π=                                 (1.2) 

• E-Step: At the (k + 1)th iteration, calculate: 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
1

1
1

exp 2

exp 2

k k k k
i i j j i i

ij g k k k k
m m j j m mm

Y X

Y X

π σ β σ
τ

π σ β σ

−

−
=

′− −
=

′− −∑

∣

∣
                        (1.3) 

( )

( )2

k
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ij k
j j iY X
σ

δ
β

=
′−

                                   (1.4) 

• M-Step: Use the following value: 

( ) ( ) ( ) ( )( ) ( ) ( )( )
1

1 11 1 11

1 1 1

1 ,
n n n

k kk k k kk
i ij i ij j j ij j j

j j j
ij X X ij X Y

n
π τ β τ δ τ δ

−
+ ++ + ++

= = =

  
′ ′


 
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= =  
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to maximize: 

( )2

2
2

1 1 1 1 1 1

1log log
2

g g gn n n ij ij j j i
ij i ij i

j i j i j i i

Y Xτ δ β
τ π τ σ

σ= = = = = =

′−
− −∑∑ ∑∑ ∑∑                    (1.7) 

Solving mixture regression problem based on EM algorithm is a complex work with large amount calculation 
in each iteration. In this paper, we propose a Fast Iteration Method inspired by k-means clustering [7] to solve 
the mix regression problem. The aim of our method is to fit the data into several linear models. It can also be 
treated as a model that uses several lines to explain the data (See Figure 1). We will introduce this Fast Iteration 
Method in the next section. 

2. Fast Iteration Method 
2.1. Existence of Parameter Matrix 
For the situation of the mixture regression problem, the aim of this problem is to find several linear models (i.e. 
every parameter βk of the model). While, if we known whether an observation is belong to each population, 
mixture regression model can be treated as a simple linear model. That is: there exist 1, , aβ β  to minimize the 
square error. We give a theorem as follows. 

Theorem 2.1 The existence of the parameter matrix β . In the mixture regression problem, there exists a 
parameter matrix β  which can minimize the square error. 

Proof { }1,0ikτ ∈  is given which stand for the ith data which belong to Ωk  or not. If τ is fixed, the model 
can be written as: 

1 0 1

p gn

i ij jk ik
i j k

y x β τ
= = =

= ∑∑∑                                    (2.1) 
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Figure 1. Three lines example for mixture regression problem.                                                  

 
If we know every ijτ , this model is a linear model. For example, if there are two models 1Ω  and 2Ω  in 

which includes one variable (p = 1, g = 2). The full model can be described as: 
1 2

1 0 1

n

i ij jk ik
i j k

y x β τ
= = =

= ∑∑∑  

1 11 1 01 1 1 12 2 02 2i i i i i i iy x xβ τ β τ β τ β τ= + + +                          (2.2) 

If the elements ikτ  of matrix τ are given, the problem is the same as a linear regression model. As ikτ  is 0 
or 1, so that matrix τ has limited combinations: 2ik . 

For the limited combinations, there exists a combination which will lead to the minimum square error. 

2.2. Fast Iteration Method for Mixture Regression Problem 
EM algorithm is meaningful to the mixture regression problem. However, there are still some other methods to 
solve this question. 

The algorithm below is a fast iteration for mixture regression model, which could solve the regression situa-
tion with data in different populations. This method is inspired by K-means (the famous clustering algorithm) 
which calculate the distance between each point to other models and replace the “worst” observation to the suit-
able model. After finishing this type of calculation for several times, the algorithm will stop until moving any 
points to other model won’t make the loss-function better, that is, the change of loss function will below a thre-
shold (10−6 or 10−9). In the question of small samples, this stop rules will lead to find a best classifying: moving 
any observation to any other populations will make things worse. Sometimes set a threshold will avoid the algo-
rithm fall into the endless loop. 

Our proposed Fast Iteration Method is similar to K-means algorithm, calculate the MSE for each point to 
every model and change the point which can decrease the MSE most. We summarize our method as follows. 

Algorithm: 
1) Calculate the initial value: Group information: { }1, 1,2, 2, ,W g g=      cut the data randomly into g  
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parts ( )1 2Ω ,Ω , ,Ωg , every part has about [ ]n g  observations. 

2) Get the subset: { } { } { } { }1 21 , Ω , 1 , Ω , , , Ω , , Ω .i i i g i gX x i Y y i Xg x i Yg y i= ∈ = ∈ = ∈ = ∈  

3) Fit g linear models from 1 2Ω ,Ω  to Ωg  

1 1

2 2

, Ω
, Ω

, Ω

i i

i i

i i g g

y x i
y x i

y x i

β ε
β ε

β ε

= + ∈

= + ∈

= + ∈


 

And get 1 2, , , gβ β β . 
4.) Calculate: 

( ),i F X Yβ =  

( ) ( )2 2 .ik i i wi i i kjudge y x y xβ β= − − −  

5) { } { }
,

, argmax ik
i k

I K judge=  Move observation I to population K, so that we can refresh the 1 2 ,Ω ,Ω ,Ωg :  

.IW J=  
6) Repeat 2 - 5 until stop 
For the method of parameter estimating in the algorithm, ( ),F X Y  can be changed according to the differ-

ent situations. For example, if we want to get the OLS estimation the ( ),F X Y  can be: 

( ) ( ) 1
,linear i i i iF X Y X X X Y

−
′ ′=  

If we need a robust estimation, ( ),F X Y  can be a method like median regression. Different methods for pa-
rameter estimation make the model much more flexible. OLS estimation can be solved quickly and median re-
gression performs better if ε  draw from a Laplace or t distribution. 

3. Simulation 
3.1. Numeric Simulation 
In order to validate the rationality of the model, we designed a numeric simulation and generated sample data  
( ) 1

, n
i i i

x y
=

 in these three models. 

Model 1 

1

1

1 , if  1
1 , if 2

X g
Y

X g
ε
ε

+ + =
= − + + =

 

Model 2 

1

1

1 , if  1
1 , if 2

X g
Y

X g
+ + =

=  − + =

ε
ε

 

Model 3 

1 2 1

1 2 1

0 , if  1
0 , if 2

X X g
Y

X X g
+ + + =

=  − − + =

ε
ε

 

For every model considered above, we generated sample using different kinds of distributions: 1) ε~N(0,1); 2) 
ε~a Laplace distribution with mean 0 and variance 1; 3) ε~0.95N(0,1) + 0.05N(0,25) Mixture Normal distribution; 
4) ε~t3 t-distribution with degree 3.  

We used three methods for comparing. Fast Iteration with Linear Model (FI-OLS), Fast Iteration with median 
regression model (FI-LAE) and EM algorithm are used for solving mixture regression problem for each model. 

Repeat the simulation with 1000 times and we got the bias and MSE of every parameter (see Table 1 for  
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Table 1. Bias (MSE) of point estimates for model 1, n = 100.                                                                                 

 

Table Column Head 

N (0; 1) Laplace (1) Mixture t3 

Model 1 1: FI-OLS    

10β  0.0087 (0.2045) −0.0109 (0.5) 0.0637623 (14.40) −0.008 (5.394) 

11β  0.0234 (0.1407) −0.0086 (0.2935) −0.1150 (2.476) 0.1550 (5.387) 

20β  0.0029 (0.2004) 0.0146 (0.5715) −0.0710 (14.46) −0.0606 (5.425) 

21β  −0.0338 (0.1463) 0.0088 (0.3008) 0.0863 (2.447) −0.1359 (4.111) 

n 47.447 47.374 47.654 47.491 

 Model 1 1: FI-LAE    

10β  0.0058 (0.1346) 0.0059 (0.1904) 0.0690 (9.369) −0.0029 (0.2625) 

11β  0.036 (0.1005) 0.0431 (0.1444) 0.1024 (2.555) 0.0326 (0.1920) 

20β  −0.008 (0.1467) 0.0026 (0.1861) −0.0503 (9.676) −0.0084 (0.2812) 

21β  −0.037 (0.1034) −0.0497 (0.1259) −0.2064 (2.584) −0.0449 (0.1863) 

n 47.772 47.505 48.505 47.795 

 Model 1 1: Mixreg    

10β  −0.0018 (0.0559) 0.0090 (0.5108) −0.1052 (12.54) −0.0306 (2.720) 

11β  0.0109 (0.0710) −0.0982 (0.2763) 0.5713 (4.657) −0.0309 (2.425) 

20β  −0.001 (0.0653) 0.0155 (0.5280) −0.1060 (12.01) −0.116 (3.544) 

21β  −0.0021 (0.0645) −0.0792 (0.3598) −0.3928 (3.095) 0.067 (2.068) 

 
model 1, Table 2 for model 2 and Table 3 for model 3) 

As we can see in the three tables, simulation shows the Fast Iteration for Matrix Regression with LAE per-
forms better in Laplace distribution and t-distribution. More specifically, in Table 1, FI-LAE has the smaller 
MSE in Laplace distribution, Mixture normal distribution and t distribution. EM algorithm gets a better estima-
tion in normal distribution. In Table 2, FI-OLS performs better in normal distribution which got a smaller MSE 
than FI-LAE and EM algorithm. In other distribution in model 2, FI-LAE is better than FI-OLS and EM algo-
rithm got the biggest MSE. In Table 3, we can also see the FI-LAE got a small MSE in mixture and t distribu-
tion, while in the situation of Laplace distribution, FI-LAE is a little bit better than EM algorithm. 

As we described our model as a “fast” iteration method, the FI-OLS and FI-LAE are calculated faster than 
EM algorithm. For 100 observations with 2 populations, EM got about 0.07 s for mixture regression (Rpackage: 
Mixreg), while FI-OLS used about 0.02 s (i5, 8G memory). 

3.2. Real Data Simulation 
In the data simulation section, we use the data by Cohen (1984) [8]. A data shows pure fundamental tone was 
played to a trained musician. 150 observations of tuned and stretch ratio are played by the same musician. In this 
section, we will see the FI-LAE algorithm will handle the mixture regression data with outliers. 
• Situation 1: Original data. 
• Situation 2: Data with 5 outliers at (3,5). 
• Situation 3: Data with 5 outliers at (1.5,0). 
• Situation 4: Data with 5 outliers at (0,5) (Figure 2). 

We used three algorithms in these four situations. In the first situation, the original data is used for regression. 
In other three situations, 5 outliers in different position are places in the data. (3,5) for the Situation 2, (1.5,0 )for 
the Situation 3 and (0,5) for Situation 4. The algorithms we used are FI-OLS, FI-LAE and EM algorithm. 
FI-OLS and FI-LAE are mentioned in our Fast Iteration for Mixture Regression model and the Mixreg package 
in R [9] is used for EM algorithm. 
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Table 2. Bias (MSE) of point estimates for model 2, n = 100.                                                                                 

 
Table Column Head 

N (0; 1) Laplace (1) Mixture t3 
 Model 1 2: FI-OLS    

10β  0.067 (0.127) 0.2335 (0.2649) 2.596 (8.789) 0.4682 (3.3621) 

11β  0.0074 (0.1797) 3e−04 (0.288) −0.0584 (3.2318) 0.0242 (4.3117) 

20β  −0.0608 (0.1325) −0.2487 (0.2763) −2.5688 (8.5827) −0.4789 (4.7674) 

21β  0.0243 (0.1991) −0.031 (0.3553) 0.0199 (2.698) 0.0501 (6.8493) 
n 48.294 48.533 48.304 48.32 
 Model 1 2: FI-LAE    

10β  −0.0813 (0.1561) −0.0017 (0.1509) 1.8594 (5.5725) 0.0027 (0.2078) 

11β  −0.0162 (0.2411) −0.0025 (0.273) −0.002 (3.2212) 7e−04 (0.3315) 

20β  0.0942 (0.1627) −0.0047 (0.1545) −1.8665 (5.5066) 0.0011 (0.1907) 

21β  0.0284 (0.2515) −0.0087 (0.2756) 0.0376 (3.4155) 0.0122 (0.3787) 
n 47.772 47.505 48.505 47.795 
 Model 1 2: Mixreg    

10β  −0.1892 (0.4177) −0.2054 (1.3923) 1.3117 (8.5285) 0.0722 (5.718) 

11β  8e−04 (0.3108) −0.0452 (1.4686) 0.01 (4.8435) 0.0018 (10.1499) 

20β  0.1731 (0.4249) 0.1488 (1.3561) −1.2019 (7.9067) 0.093 (3.1488) 

21β  0.0152 (0.2539) −0.0631 (1.5643) −0.0837 (4.3408) −0.1423 (5.9172) 

 
Table 3. Bias (MSE) of point estimates for model 3, n = 100.                                                                                 

 
Table Column Head 

N (0; 1) Laplace (1) Mixture t3 
 Model 1 3: FI-OLS    

10β  0.0013 (0.1245)  0.0328 (0.365)  0.1437 (11.4582)  0.1052 (8.0505) 

11β  −0.0084 (0.1318) −0.0351 (0.3308)  −0.6633 (4.0265)  −0.222 (4.5141) 

12β  0.0169 (0.0778)  0.0244 (0.1954)  0.1002 (2.3988)  0.1932 (3.5566) 

20β  3e−04 (0.1308) −0.0235 (0.3624)  −0.2424 (11.8562)  0.0266 (2.0405) 

21β  0.0128 (0.1179)  0.0296 (0.31)  0.7077 (3.9896)  0.0373 (1.6375) 

22β  −0.0253 (0.076) −0.0246 (0.1998) −0.187 (2.4352)  −0.0791 (1.392) 
n 47.457  47.348  46.584 47.053 
 Model 1 3: FI-LAE    

10β  −0.0081 (0.0927)  0.0067 (0.1161)  0.0126 (7.4561)  −0.0098 (0.1572) 

11β  0.0077 (0.0933)  0.0257 (0.1311)  −0.7597 (4.0911)  0.0112 (0.1747) 

12β  0.0068 (0.0726)  0.028 (0.088)   0.2371 (2.1575)  0.0398 (0.1214) 

20β  0.0042 (0.0949)  −0.0142 (0.1193)  −0.0368 (8.0728) −0.0102 (0.1622) 

21β  0.0018 (0.0833)  −0.0176 (0.1295)  0.7235 (4.0856) −0.0205 (0.1595) 

22β  −0.0217 (0.0713) −0.0389 (0.0949) −0.2809 (2.1687)  −0.0325 (0.1282) 
n 47.353  47.674  47.457 47.333 
 Model 1 3: Mixreg    

10β  0.001 (0.0319)  −8e−04 (0.0914)  0.0448 (8.1668) −0.0165 (2.2405) 

11β  0.0023 (0.0316)  −0.0176 (0.1136) 0.3945 (2.8743)  0.0831 (3.1454) 

12β  0.0029 (0.0353)  −0.0231 (0.1402)  −0.6076 (4.7143)  −0.269 (5.8672) 

20β  0.0063 (0.0362) 0.017 (0.1311) 0.1551 (8.2802) 0.0256 (1.7082) 

21β  −0.0098 (0.0401) 0.0212 (0.1805)  −0.3748 (3.0154) −0.0387 (1.9867) 

22β  −0.0017 (0.0349) 0.0451 (0.183)  0.6288 (4.9866) 0.2635 (1.5045) 
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Figure 2. Real data simulation for FI-OLS, FI-LAE and EM algorithm.                                                       

 
In the situation 1, three algorithms got the similar answers. They all perform really well. In other situations, 

the FI-LAE shows that if there are some outliers in the data, a robust regression will lead to a closer answer, 
while the EM and FI-OLS affected by the outliers in different degrees. 

4. Conclusion 
As the discussion above, we can safely draw the conclusion that the fast iteration for solving mixture regression 
problem is efficiently and effectively. Compared to ordinary EM algorithm, this method can solve the problem 
quickly and obtain perfect performance. After changing the method of parameter estimation, the Fast Iteration 
Method can solve mixture regression when ε is in different distributions. 
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