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Abstract 
We consider a pressure (density) in a square flume solid boundaries and no-slip format condition 
formulation are introduced to investigate cavitation bubble for the two-dimensional lattice Boltz- 
mann method (LBM). Using the coupling Carnahan-Starling equation of state (C-S EOS) and exact 
difference method (EDM) based on modified Shan-Chen model, the whole process of bubble col-
lapse was observed complete and visual with equilibrium distribution function and rebound for-
mat. This paper analyzes the bubble form evolution, collapse time and dynamic character under 
the two dimensional press fields. 

 
Keywords 
Lattice Boltzmann Method, Square Flume Solid Boundaries, Bubble Form 

 
 

1. Introduction 
Ultrasonic cavitation is applied extensively in industry and agriculture production. Since 1960s, people unders-
tood the cavitation effect, cleaning, underwater cutting, sewage treatment, ultrasonic cleaning, oil drilling and 
other operations. Cavitation damage to solid surface is a major concern on the design of turbo—machinery and 
there have been many investigations on the bubble behavior or bubble dynamics near solid wall [1]. The causes 
and mechanism of cavitation bubble collapse near solid wall are still not perfect, and the exploration of these 
problems will be the cavitation effect to step into industrial production and make a good foundation in engi-
neering application. 

The lattice Boltzmann method (LBM), as a novel mesoscopic [2] numerical algorithm, has attracted consi-
derable attention over last decade. It is based on molecular dynamics and statistical mechanics, using simple 
rules of particle movement to approximate molecular mass, which can get the macroscopic fluid movement. LB 
equation (LBE) evolved from the lattice gas automatic (LGA), and introducing a probability distribution to re-
duce the statistical noise in calculating the LGA, which is an artificial microscopic model for gases, and it was 
shown that LBE could also be derived from the Boltzmann equation following some standard discretization later 
[3]. Due to the high dimension of the particle distribution function with a complex collision term continuous, 
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Boltzmann equation for theoretical analysis and numerical method is challenging by direct solution. LBM is a 
method which is quite different from the traditional computational fluid dynamics (CFD) algorithms. From the 
physical essence, the kinetic behavior of multiphase flow system is the result of the microscopic interaction 
among fluid phase. Based on the theory of molecular motion, LBM is especially suitable for describe the com-
plex multiphase flow from the underlying [4]. Meanwhile, the CFD method such as volume of fluid (VOF) [5] 
level set method (LSM) [6], how to consider the pressure and interaction between electromagnetic field and ca-
pillary effect in the multiphase flow calculation has been a challenge all the time. For the flow of the surface 
tension, the VOF and LSM are unstable near the interface of numeric. Therefore, as a powerful tool for the nu-
merical simulations and investigation of multiphase flows, the LBM has multiple advantages including time and 
space efficient computations that are straightforward to parallelize, handles complex boundaries without diffi-
culty, and directly link between microscope and macroscopic phenomenon.  

In recent years, pseudopotential Shan-Chen model is introduced into cavitation study frequently. The Shan- 
Chen model, which introduced inter-particle potential to describe the interactions among different phases or 
components, is the most widely used due to its simplicity, high computational efficiency and high flexibility [7]. 
Sukop and Or firstly followed the acoustic cavitation problems using the LBM Shan-Chen model [8]. Zhang 
Xinming investigated the 3 dimension (3D) cavitation bubble phenomenon on the low liquid pressure and suc-
cessfully reproduced the bubbles growth in low pressure water [9]. Mishra [10] coupling between the hydrody-
namics of a collapsing cavity and supported solute chemical species introduced of cavitation based on the Shan- 
Chen multiphase model. Chen [11] simulated the cavitating bubble growth with the modified Shan-Chen model 
with large density ratio in both quiescent and shear flows and compared with the Rayleigh-Plesset equation. 
Zhou and Shan [12] simulated the acoustic cavitation of spherical bubble and compared with the predictions of 
Keller equation to original Shan-Chen pseudopotential model. Recently, Shan and his group used modified 
Shan-Chen model found the second collapse in the rigid boundary damage of cavitation bubble and the imped-
ing effect between two collapses successfully [13]. However, it should be mentioned that the report about cavi-
tation bubble in square flume solid boundaries by LBM numerical simulation are fewer.  

In this paper, the cavitation phenomenon based on a modified Shan-Chen model to simulate the collapse 
phase of bubble near the solid wall in square flume. The model is characterized by coupling with the Carnahan- 
Starling equation of state (C-S EOS) and the exact difference method (EDM) in the forcing term treatment.  

2. Numerical Model and Simulation 
2.1. Lattice Boltzmann Model 
LBM have been proven to be efficient simulation tools for a variety of complex flow problems. It is based on the 
numerical simulation of a time-space and velocity-discrete Boltzmann-type equation. The LBM consists of two 
steps according to its theory: Step 1 is the streaming, where each particle moves to the nearest node along the 
direction of its velocity. Step 2 is the collision which occurs when several particles arrive at a node together and 
they interact and possibly charge their velocity directions in terms of the scattering rules. By the single relaxa-
tion time (SRT) Bhatnagar-Gross-Krook (BGK) approximation, these two steps can be combined into the fol-
lowing lattice Boltzmann Bhatnagar-Gross-Krook equation with a source term 

( ) ( ) ( ) ( ) ( ), , , , ,eqf c t t t f t f t f t F tα α α α α ατ + ∆ + ∆ − = − + x e x x x x                    (1) 

where ( ),f tα x  is the single-particle density distribution function related to the discrete velocity direction, 

( ),eqf tα x  is the Maxwell-Boltzmann distribution function, τ  is the dimensionless relaxation time that is re- 
lated to the kinematic viscosity by 2 ( 2)sc tν τ= − ∆ , this choice for the viscosity makes formally the LBGK 
scheme a second order method for incompressible flows [13]. Equation (1), termed the LBE [14] with BGK ap-
proximation or LBGK model, is usually solved in the following two steps: 

Collision step: 

( ) ( ), = ,f c t t t f tα α α+ ∆ + ∆x e x                                  (2a) 
Streaming step: 

( ) ( ) ( ), , = ,eqf t f t F tα α ατ − x x x                                (2b) 

http://dict.cnki.net/dict_result.aspx?searchword=%e8%ae%a1%e7%ae%97%e6%b5%81%e4%bd%93%e5%8a%9b%e5%ad%a6&tjType=sentence&style=&t=computational+fluid+dynamics
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where ( ),f t tα + ∆x  represents the post-collision state. 
A particular two-dimensional LBGK model considered in this work is the nine velocity direction at a given 

point in two dimensional space model (D2Q9) [15]. In this model, discrete velocities are namely 

0 =0
(cos[ 1] / 2),cos[ 1] / 2) , =1 4

(cos[2 9] / 4),cos[2 9] / 4) 2 =5 8

c

c
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α
α π α π α
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where c x t= ∆ ∆  is a ratio, x∆  and t∆  are the lattice space and the time step (time), respectively. From now 
on we shall use the units of 1 . .x l u∆ =  and 1 . .t t s∆ = , and one mass unit as 1 . .l u  [16], such that all the rele-
vant quantities are dimensionless. In the D2Q9 model (Figure 1), the equilibrium function is of the form 

( ) ( )22 4 21 3 9 2 3 2eqf c c cα α α αρω  = + ⋅ + ⋅ − ⋅ e u e u u u                     (4) 

where u is the fluid velocity, αω  is the weighting factor given by 

=
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In the discretized velocity space, the density and momentum fluxes can be evaluated as 
8 8

0 0

eqf fα α
α α

ρ
= =

= =∑ ∑                                   (6) 

and 
8 8

0 0

eqf fα α α α
α α

ρ
= =

= =∑ ∑u e e                                 (7) 

The speed of sound in this model is 3sc c= . 
We choose to work on single component multiphase fluids an attractive force ( ),F tα x  between nearest 

neighbor fluid particles is need, for the D2Q9 model, we have  
8

1
( , ) ( , ) ( , )F t G t t tα α α

α
ψ ϖ ψ

=

= − + ∆∑X X X e e                        (8) 

where G  is the interaction strength, αϖ  is given by  

1 9 =1 4
= 1 36 =5 8.α
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And ( )ψ ρ  is an interaction potential 
0

0( ) e ρ ρψ ρ ψ −=                                      (10) 

 

 
                                       Figure 1. D2Q9 in the horizontal plane. 
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where 0ψ  and 0ρ  are arbitrary constants, the interaction potential function ( )ψ ρ  must be monotonically 
increasing and bounded [17]. Application of Equation (6) and (7) leads to a non-ideal equation of state (EOS) 

2 2p RT GRTρ ψ= +                                    (11) 
where 1 3RT = . Equation (11) is a nonmonotonic increasing function at a single pressure, and has the essential 
feature of the vander Waals EOS (vdW EOS) that allows liquid-vapor phase coexistence. When the value of G is 
less than the critical value of interaction strength cG , phase separation will occurs. 

Using the method developed by [18], Equation (11) can be expressed by 

( )2 22 s sp c Gcψ ρ= −                                    (12) 

where sc RT=  is the lattice sound speed. With this method, different EOS can be substituted into Equation 
(12). Modified with the vdW EOS, we can obtain C-S EOS  

( ) ( ) ( )2 3 3 21 4 4 4 1 4p RT b b b b aρ ρ ρ ρ ρ ρ = + + − − −                  (13) 

where ( )20.4963 c ca RT p= , 0.1873 c cb RT p= . Here cT  and cp  are the critical temperature and pressure, 
respectively [16]. 

In Reference [19] [20], the force term in the Equation (1) can be expression as 

( ), ,eq eqF f t fα α αρ ρ
ρ

 
= + ∆ − 

 

Fu u                              (14) 

where F is the total force acting on a fluid particle, which contains all possible external forces.  

2.2. Computational Domain and Parameter Setting 
For the cavitation bubble near solid walls, the computational domain consists of 401 × 401 grid nodes for bubble 
collapse simulation as shown in Figure 2, the adhesion between fluid and solid wall is setting as zero. The bub-
ble is therefore taken to be spherical and gravity is also omitted. Vapor pressure is uniform throughout the bub-
ble interior. The equilibrium phase density are obtains vapor pressure and liquid pressure. Simulating a series of 
different initial radius of bubble equilibrium state of pressure difference inside and outside surface tension can 
be obtained. In addition, if it is not specially announced, the lattice unit is adopted for all data. The initial radius 
of bubble is R0 = 60. 

The present choice of parameters a, R, b in the CS EOS 1a = , 1R = , 4b =  is appropriate [16]. The analyti-
cal densities at a specified temperature and zero velocity are used as initial conditions. The density field is initia-
lized as  

( ) ( ) ( ) ( )( )2 2
1 1 0( , ) tanh 2( )2 2

liquid gas liquid gasx y x x y y R W
ρ ρ ρ ρ

ρ
 + +   = − − + − −        

    (15) 

where 1x , 1y  is the center position of the bubble, and the hyperbolic tangent function is 2 1 2 1tanh( ) x xx e e− −= , 
3W = , is a width of the phase interface. And the parameters of critical value and dimensionless value are given 

in Table 1, Table 2, respectively. 
 

 
Figure 2. Physical model (R0—bubble initial radius; b—distance between 
the bubble centre and solid wall; vP —vapor pressure in bubble; P∞ — 
ambient pressure). 
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Table 1. The critical value of T, P, ρ.  

Numeric Types Critical Value 

T 0.09433 

P 0.00422 

ρ 0.13044 

 
Table 2. The dimensionless value and lattice value of T, ρ. 

Numeric Types Critical Value Lattice Value 

T 0.689000 0.06499337 

ρliq
 

2.862000 0.37331928 

ρvap
 

0.089765 0.01170892 

2.3. Boundary Condition 
The bubble is located in the center of square flume, the distance equidistant from right and left rigid wall. Zou- 
He pressure boundary conditions were applied in top, left and right directions. Meanwhile, we adopted standard 
bounce-back format in the bottom wall [17] [21] [22]. 

3. Results and Discussion 
3.1. Bubble Form 
The bubble profiles evolution was introduced detailed, which can refer to [23] [24]. From the Figure 3 of den-
sity field, the same physical value parameters of computational domain simulated between experiment [23] re-
sults and LBM. Due to the pressure of the top boundary, which the collapse phase the bubble migrates strongly 
towards the bottom wall being under equal influence of the left and right solid wall, and the result of LBM agree 
qualitatively with the previous experimental conclusion.  

Simulation collapses of cavitation bubble in 2D pressure field in special time are shown in Figure 4. At the 
beginning the bubble is a standard spherical form (Figure 4(a)), at the top of the pressure with the migration of 
time step with the left and right solid wall, there are low pressure area near a solid wall, at the bottom of the 
bubble is effected of low pressure slightly compressed which is around the left, right and bottom walls (Figure 
4(b)), bubble is no longer a spherical bubble. As the pressure migration, bubble compressed from the top of the 
conical high pressure region (Figure 4(c) and Figure 4(d)), the walls of the low pressure melted for high pres-
sure from above, high pressure region appeared above the bubble. Meanwhile, bubble was compressed cross-
wise. Due to the effect of the constraint by the rigid wall, the pressure field of pull the bubble transverse is big-
ger than the pressure of rebound lengthways. With the approaching of the pressure above and aggravate, top and 
bottom wall of bubble was adhesion each other gradually (Figure 4(e)), bubble was collapsed into two sectional 
by pressure field, and the middle of bubble have been a high velocity jet. Cavitation bubble collapse near a solid 
wall developed a great deal of pressure difference, it was based on the original center of the circle of a low 
pressure ring, the pressure difference is the cause of the shock wave formed. Two bubbles are compressed until 
the positive pressure to crush (Figure 4(f)), this time as a result of the vapor pressure existing inside the bubble, 
the cavitation bubble will have second collapse phenomenon (Figure 4(g)). After the second collapse, negative 
and positive pressure rebound and expand gradually (Figures 4(h)-(j)), mixture pressure oscillate around in the 
area of the square overall until the two pressure fusion mutual. 

3.2. Collapse Time 
A solution for a particular value of 0b Rλ =  can be scaled to bubble of any initial size under any positive col-
lapsing pressure vP p p∞∆ = −  [25], Figure 5 provides details of the simulation results, With the increasing of 
pressure (pressure difference)/initial size, bubble collapse time diminishing. As shown in Figure 5(a), P∆  is 
0.0096 - 0.0165, change rate of collapse time fading quickly. When the pressure beyond 0.00165, collapse time  
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(a1) 

  
(a2) 

 
(b1) 

 
(b2) 

Figure 3. (Color online) Comparison of bubble form evaluation: The experimental results (a1) 02.5, 1.45 mmRλ = = , (b1) 

01.6, 1.45 mmRλ = = ; The LBM (a2) 02.5, 70, 0.0165R pλ = = ∆ = ; (b2) 01.6, 70, 0.0165R pλ = = ∆ = . 
 

      
(a)                 (b)                  (c)                (d)                  (e) 

      
(f)                 (g)                  (h)                (i)                  (j) 

Figure 4. (Color online) The collapse process of bubble shape and 2D pressure field evolution ( 1.5λ = , 0 80R = , 
0.0165P∆ = ). 

 
drifts to a stable value. We can find that the initially spherical bubble starts to collapse due to the pressure dif-
ference between outside and inside of the bubble. As shown in Figure 5(b), λ  is 1.2 - 2.0, collapse time 
change quickly. when λ  is beyond 2.0, the collapse time changes to be steady. In our simulation, λ  more  
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than 2.0, in other words, the distance between bubble centre and solid wall which is twice the bubble initial ra-
dius, bubble just has one collapse. As shown in Figure 6, when λ  is 1.2 - 2, the certain value of collapse time 
has founded. 

3.3. Second Collapse 
In order to understand the process of second collapse easily, Figure 7 shows the evolution of pressure field. As 
shown in Figure 7, the distance between bubble center and solid wall increases as λ gets bigger. In Figure 7(a), 
λ = 1.2, a1 and a2 are the first and second collapse in low pressure (LP, 0.0096P∆ = ), respectively, while, in 
the same λ, a3 and a4 are the first and second collapse in high pressure(HP, 0.0217P∆ = ), respectively. Cavi-
tation is a transient complex phenomenon, during the collapse phase the bubble migrate and then develop a jet 
towards the closest bottom wall. Bubble collapse in high pressure is more violent than that in low pressure. High 
pressure gradient results in the more serious bubble deformation in Figure 7(a3) than the bubble deformation in 
Figure 7(a1), and much more violent bright bubble collapse in Figure 7(a4) than bubble collapse in Figure 
7(a2). We can obtained the interval time of first and second collapse visual. 

 

   
 (a)                                               (b) 

Figure 5. (Color online) Collapse time ( 0 60R = ). 
 

 
Figure 6. (Color online) Time interval of two collapse ( 0 60R = ). 
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(a)                        (b)                        (c)                        (d) 

Figure 7. The process of first bubble collapse to secondary collapse in 2D pressure field. 

4. Conclusion 
In this paper, a new method based on modified Shan-Chen pseudo potential lattice Boltzmann method is used to 
simulation on cavitation bubble collapsing in 2D press filed. It is found that the method gives a visual physical 
prospect to investigation the 2D pressure filed evaluation and the collapse time of the cavitation bubble. The si-
mulation results on the bubble shape are quantitatively in good agreement with experiment observation. Howev-
er, these problems could be solved if acoustic pressure can be introduced into the model by setting the values of 
distribution function ( ),f tα x  at top boundary [12], which we can solve the cavitation bubble in complex geo-
metric boundary with acoustic field or dimensionless electromagnetic field [26]. Although this model has nu-
merous shortcomings, this work demonstrates that investigation on cavitation bubble with LBM is very suitable 
and effective during the process of collapse between first and second collapse, and interval time was founded. 
Furthermore, the method has a widely use when the model modified in acoustic field. 

Acknowledgements 
The author deeply appreciates the discussion with Dr. Minglei Shan. Project No.11174191 was supported by the 
National Science Foundation of China. 

References 
[1] Ishida, H., Nuntadusit, C., Kimoto, H., Nakagawa, T. and Yamamoto, T. (2001) Cavitation Bubble Behavior near Solid 

Boundaries, CAV2001, Session A5.003: Fourth International Symposium on Cavitation.  
http://resolver.caltech.edu.sci-hub.org/CAV2001:sessionA5.003  

[2] Nourgaliev, R.R. and Dinh, J.R. (2003) The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics 
and Implications. International Journal of Multiphase Flow, 29, 117-169.  
http://dx.doi.org/10.1016/S0301-9322(02)00108-8 

[3] Guo, Z.L. and Shu, C. (2013) Lattice Boltzmann Method and Its Applications in Engineering. World Scientific Pub-
lishing Co. Pte. Ltd., Singapore. http://dx.doi.org/10.1142/8806 

[4] Amaya-Bower, L. (2010) Numerical Simulation of Multiphase Flows in Microchannels Using the Lattice Boltzmann 
Method. Ph.D. Thesis, City University of New York, New York. 

[5] Samiei, E., Shams, M. and Ebrahimi, R. (2011) A Novel Numerical Scheme for the Investigation of Surface Tension 
Effects on Growth and Collapse Stages of Cavitation Bubbles. European Journal of Mechanics B-Fluid, 30, 41-50.  
http://dx.doi.org/10.1016/j.euromechflu.2010.09.002 

[6] Sussman, M. (2003) A Second Order Coupled Level Set and Volume-of-Fluid Method for Computing Growth and 
Collapse of Vapor Bubbles. Journal of Computational Physics, 187, 110-136.  
http://dx.doi.org/10.1016/S0021-9991(03)00087-1 

[7] Chen, L., Kang, Q.J., Mu, Y.T., He, Y.L. and Tao, W.Q. (2014) A Critical Review of the Pseudopotential Multiphase 
Lattice Boltzmann Model: Methods and Applications. International Journal of Heat and Mass Transfer, 76, 210-236.  
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.04.032 

http://resolver.caltech.edu.sci-hub.org/CAV2001:sessionA5.003
http://dx.doi.org/10.1016/S0301-9322(02)00108-8
http://dx.doi.org/10.1142/8806
http://dx.doi.org/10.1016/j.euromechflu.2010.09.002
http://dx.doi.org/10.1016/S0021-9991(03)00087-1
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.04.032


J. Yang et al. 
 

 
955 

[8] Sukop, M. and Or, D. (2005) Lattice Boltzmann Method for Homogeneous and Heterogeneous Cavitation. Physical 
Review E, 71, Article ID: 04670. http://dx.doi.org/10.1103/physreve.71.046703 

[9] Zhang, X.M. and Zhou, C.Y. (2009) Numerical Simulation of Three Dimensional Cavitation Phenomenon by Lattice 
Boltzmann Method. Acta Physica Sinica, 58, 8460-8414. (In Chinese) 

[10] Mishra, S.K., Deymier, P.A., Muralidharan, K., Frantziskonis, G., Pannala, S. and Simunovic, S. (2010) Modeling the 
Coupling of Reaction Kinetics and Hydrodynamics in a Collapsing Cavity. Ultrasonics Sonochemistry, 17, 258-265.  
http://dx.doi.org/10.1016/j.ultsonch.2009.05.014 

[11] Chen, X.P., Zhong, C.W. and Yuan, X.L. (2011) Lattice Boltzmann Simulation of Cavitating Bubble Growth with 
Large Density Ratio. Computers and Mathematics with Applications, 61, 3577-3584.  
http://dx.doi.org/10.1016/j.camwa.2010.07.018 

[12] Zhou, X., Shan, M.L., Zhu, C.P., Chen, B.Y., Yin, C., Ren, Q.G., et al. (2014) Simulation of Acoustic Cavitation Bub-
ble Motion by Lattice Boltzmann Method. 4th International Conference on Civil Engineering, Architecture and Build-
ing Materials, Haikou, 3098-3105. http://dx.doi.org/10.4028/www.scientific.net/amm.580-583.3098 

[13] Shan, M.L., Zhu, C.P., Zhou, X., Yin, C. and Han, Q.B. (2014) Investigation on Cavitation Bubble Collapse near Rigid 
Boundary by Lattice Boltzmann Method. Journal of Hydrodynamics. (In Press) 

[14] McNamara, G. and Zanetti, G. (1988) Use of the Boltzmann Equation to Simulate Lattice-Gas Automata. Physical Re-
view Letters, 61, 2332-2335. http://dx.doi.org/10.1103/PhysRevLett.61.2332 

[15] Qian, Y.H., d’Humieres, D. and Lallemand, P. (1992) Lattice BGK Models for Navier Stokes Equation. Europhysics 
Letters, 17, 479-484. http://dx.doi.org/10.1209/0295-5075/17/6/001 

[16] Huang, H.B., Manfred, K. and Lu, X.Y. (2011) Forcing Term in Single-Phase and Shane-Chen-Type Multiphase Lat-
tice Boltzmann Models. Physical Review E, 84, Article ID: 046710. http://dx.doi.org/10.1103/PhysRevE.84.046710 

[17] Sukop, M.C. and Thorne, D.T. (2006) Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, 
Springer, Verlag. 

[18] Yuan, P. and Laura, S. (2006) Equations of State in a Lattice Boltzmann Model. Physics of Fluids, 18, Article ID: 
04210. http://dx.doi.org/10.1063/1.2187070 

[19] Kupershtokh, A.L., Medvedev, D.A. and Karpov, D.I. (2009) On Equations of State in a Lattice Boltzmann Method, 
Computer and Mathematics with Applications, 58, 965-974. http://dx.doi.org/10.1016/j.camwa.2009.02.024 

[20] Li, Q., Luo, K.H. and Li, X.J. (2012) Forcing Scheme in Pseudopotential Lattice Boltzmann Model for Multiphase 
Flows. Physical Review E, 86, Article ID: 016709. http://dx.doi.org/10.1103/physreve.86.016709 

[21] Zou, Q.S. and He, X.Y. (1997) On Pressure and Velocity Boundary Condition for the Lattice Boltzmann BGK Model. 
Physics of Fluids, 9, 1591-1598. http://dx.doi.org/10.1063/1.869307 

[22] He, Y.L., Wang, Y. and Li, Q. (2009) Lattice Boltamann Method: Theory and Applications. Science Press, Beijing. (In 
Chinese) 

[23] Philipp, A. and Lauterborn, W. (1998) Cavitation Ersion by Single Laser-Produced Bubbles. Journal of Fluid Me-
chanics, 361, 75-116. http://dx.doi.org/10.1017/S0022112098008738 

[24] Lauterborn, W. and Bolle, H. (1975) Experimental Investigations of Cavitation Bubble Collapse in the Neighbourhood 
of a Solid Boundary. Journal of Fluid Mechanics, 72, 391-399. http://dx.doi.org/10.1017/S0022112075003448 

[25] Plesset, M.S. and Chapman, R.B. (1971) Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a 
Solid Boundary. Journal of Fluid Mechanics, 47, 283-290. http://dx.doi.org/10.1017/S0022112071001058 

[26] Shen, Z.Z. and Wu, S.J. (2012) Dynamic Behavior of a Cavitation Bubble in Acoustic Field and Electric Field. Acta 
physica Sinica, 61, Article ID: 124301. (In Chinese) 

 

http://dx.doi.org/10.1103/physreve.71.046703
http://dx.doi.org/10.1016/j.ultsonch.2009.05.014
http://dx.doi.org/10.1016/j.camwa.2010.07.018
http://dx.doi.org/10.4028/www.scientific.net/amm.580-583.3098
http://dx.doi.org/10.1103/PhysRevLett.61.2332
http://dx.doi.org/10.1209/0295-5075/17/6/001
http://dx.doi.org/10.1103/PhysRevE.84.046710
http://dx.doi.org/10.1063/1.2187070
http://dx.doi.org/10.1016/j.camwa.2009.02.024
http://dx.doi.org/10.1103/physreve.86.016709
http://dx.doi.org/10.1063/1.869307
http://dx.doi.org/10.1017/S0022112098008738
http://dx.doi.org/10.1017/S0022112075003448
http://dx.doi.org/10.1017/S0022112071001058

	Simulation on Cavitation Bubble Collapsing with Lattice Boltzmann Method
	Abstract
	Keywords
	1. Introduction
	2. Numerical Model and Simulation
	2.1. Lattice Boltzmann Model
	2.2. Computational Domain and Parameter Setting
	2.3. Boundary Condition

	3. Results and Discussion
	3.1. Bubble Form
	3.2. Collapse Time
	3.3. Second Collapse

	4. Conclusion
	Acknowledgements
	References

