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Abstract 
We investigate the violation factor of the original Bell-Mermin inequality. Until now, we have used 
an assumption that the results of measurement are ±1. In this case, the maximum violation factor 
is as follows: ( ) ( )−2 22 = evenn n  and ( ) ( )−1 22 = oddn n . The quantum predictions by n-partite 
Greenberger-Horne-Zeilinger state violate the Bell-Mermin inequality by an amount that grows 
exponentially with n. Recently, a new measurement theory is proposed [K. Nagata and T. Naka-
mura, International Journal of Theoretical Physics, 49, 162 (2010)]. The values of measurement 
outcome are ±1 2 . Here we use the new measurement theory. We consider a multipartite GHZ 
state. We use the original Bell-Mermin inequality. It turns out that the original Bell-Mermin in-
equality is satisfied irrespective of the number of particles. In this case, the maximum violation 
factor is as follows: ( )1 2 = evenn  and ( )1 2 = oddn . Thus the original Bell-Mermin inequality 
is satisfied by the new measurement theory. We propose the following conjecture: All the two-  
orthogonal-settings experimental correlation functions admit local realistic theories irrespective of 
a state if we use the new measurement theory. 
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1. Introduction 
As a famous physical theory, the quantum theory (cf. [1]-[5]) gives accurate and at times remarkably accurate 
numerical predictions. Much experimental data have fit to the quantum predictions for long time. 
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On the other hand, from the incompleteness argument of Einstein, Podolsky, and Rosen (EPR) [6], a hidden- 
variable interpretation of the quantum theory has been an attractive topic of research [2] [3]. There are two main 
approaches to study the hidden-variable interpretation of the quantum theory. One is the Bell-EPR theorem [7]. 
This theorem says that the quantum predictions violate the inequality following from the EPR-locality condition 
in the Hilbert space formalism of the quantum theory. The EPR-locality condition tells that a result of measure-
ment pertaining to one system is independent of any measurement performed simultaneously at a distance on the 
other system. 

The other is the no-hidden-variables theorem of Kochen and Specker (KS theorem) [8]. The original KS 
theorem says the non-existence of a real-valued function which is multiplicative and linear on commuting oper-
ators. Kochen and Specker constructed [8] a hidden-variable theory in two-dimensional space formalism of the 
quantum theory within von Neumann’s projective measurement theory. In general, the quantum theory does not 
accept the KS type of hidden-variable theory. The proof of the original KS theorem relies on intricate geometric 
argument. Greenberger, Horne, and Zeilinger discovered [9] [10] the so-called GHZ theorem for four-partite 
GHZ state. And, the KS theorem becomes very simple form (see also Refs. [11]-[15]). 

Mermin considers the Bell-EPR theorem in a multipartite state. He derives multipartite Bell inequality [16]. 
The quantum predictions by n-partite GHZ state violate the Bell-Mermin inequality by an amount that grows 
exponentially with n. And, several multipartite Bell inequalities are reported [17]-[25]. They also say that the 
quantum predictions violate local hidden-variable theories by an amount that grows exponentially with n. 

As for the KS theorem, it is begun to research the validity of the KS theorem by using inequalities (see Refs. 
[26]-[29]). To find such inequalities to test the validity of the KS theorem is particularly useful for experimental 
investigation [30]. The KS theorem is related to the algebraic structure of a set of quantum operators. The KS 
theorem is independent of a quantum state under study. One of authors derives an inequality [29] as tests for the 
validity of the KS theorem. The quantum predictions violate the inequality when the system is in an uncorrelated 
state. An uncorrelated state is defined in Ref. [31]. The quantum predictions by n-partite uncorrelated state vi-
olate the inequality by an amount that grows exponentially with n. 

Leggett-type nonlocal hidden-variable theory [32] is experimentally investigated [33]-[35]. The experiments 
report that the quantum theory does not accept Leggett-type nonlocal hidden-variable theory. These experiments 
are done in four-dimensional space (two parties) in order to study nonlocality of hidden-variable theories. 

Recently, it is discussed that von Neumann’s theory does not meet the Deutsch-Jozsa algorithm [36]. In von 
Neumann’s theory, control of quantum state and observations of quantum state cannot be existential, simulta-
neously. In Ref. [36], we propose a solution of the problem. The problem is solved if measurement outcome is 

1 2± . 
Further, an additional condition for Bell experiments for accepting local realistic theories is discussed [37]. 

Again we can construct local realistic models if measurement outcome is 1 2± . 
Therefore we consider the significance of the value ( )1 2±  of the new measurement theory. 
An important note here is that we use the original Bell-Mermin inequality. We want to investigate whether all 

Bell inequalities [23]-[25] with two-orthogonal-settings per side are satisfied by the new measurement theory 
even the GHZ state. If so, we can say that experimental measurement outcome 1 2±  is pre-determined. That 
is, the experimental correlation functions admit local realistic theories. As the first step, we investigate the orig-
inal Bell-Mermin inequality. Our new measurement theory is equivalent to changing Planck’s constant ( )  to 
a new constant ( )2 . We change the results of measurements instead of changing Planck’s constant. 

In this paper, we investigate the violation factor of the Bell-Mermin inequality. Until now, we have used an 
assumption that the results of measurement are ±1. Recently, the new measurement theory is proposed [36]. The 
values of measurement outcome are 1 2± . Here we use the new measurement theory. We consider multipar-
tite GHZ state. It turns out that the Bell-Mermin inequality is satisfied with the irrespective of the number of 
particles. We propose the following conjecture: All the two-orthogonal-settings experimental correlation func-
tions admit local realistic theories irrespective of a state if we use the new measurement theory. 

2. Bell-Mermin Inequality Is Satisfied by the New Measurement Theory 
Let us consider n particles 1, 2, ,j n= 

. Let us consider j
xσ  and j

yσ  as Pauli observables for jth particle. We 
insert Q as an observable 
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( )
1

Re .
n

j j
x y

j
Q iσ σ

=

 
= + 

 
∏                                  (1) 

Let us consider the following GHZ state: 

( )1 2 1 2
1 ; ; ; ; ; ; .
2n n nΦ = + + + + − − −                           (2) 

We have the following experimental result 
( ) ( )1 2 2

experiment
2 2 2n nn

n nQ − −Φ Φ = =                           (3) 

where the local results of measurements are 1 2± . 
On the other hand, let us consider the original Bell-Mermin inequality. We consider C as 

( ) ( )( )
1

Re
n

j j
x y

j
C v ivσ σ

=

 
= + 

 
∏                               (4) 

where ( ) 1j
xv σ = ±  and ( ) 1j

yv σ = ± . We see 

( )
( ) ( )

2

1 2

2 , even ,

2 , odd .

n

n

C n

C n−

≤ =

≤ =
                                  (5) 

The maximum of C is equal to the real part of a product of complex numbers each of which has magnitude of 
2  and a phase of π 4±  or 3π 4± . When n is even the product can lie along the real axis and can attain a 

maximum value of 22n , when n is odd the product must lie along an axis at π 4±  to the real axis and its real 
part can only attain the maximum value ( )1 22 n− . Therefore, the value C is bounded as (5). 

Therefore, we have a violation of the Bell-Mermin inequality with the following factor 

experimentn nQ

C

Φ Φ
                                   (6) 

that is 

( )
( )

1 2, even ,

1 2 , odd .

n

n

=

=
                                    (7) 

We have 

experiment 1.n nQ

C

Φ Φ
<                                  (8) 

Hence, the Bell-Mermin inequality is satisfied irrespective of the number of particles. And the experimental 
correlation functions (measurement outcome is 1 2± ) might admit local realistic theories. 

3. Conclusion 
In conclusion, we have investigated the violation factor of the Bell-Mermin inequality. Until now, we have used 
an assumption that the results of measurement are ±1. Recently, a new measurement theory has been proposed. 
The values of measurement outcome have been 1 2± . Here we have used the new measurement theory. We 
have considered multipartite GHZ state. It has turned out that the Bell-Mermin inequality is satisfied irrespective 
of the number of particles. We have proposed the following conjecture: All the two-orthogonal-settings experi-
mental correlation functions admit local realistic theories irrespective of a state if we use the new measurement 
theory. 
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