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Abstract 
Fuzzy C-means (FCM) is simple and widely used for complex data pattern recognition and image 
analyses. However, selecting an appropriate fuzzifier (m) is crucial in identifying an optimal 
number of patterns and achieving higher clustering accuracy, which few studies have investigated. 
Built upon two existing methods on selecting fuzzifier, we developed an integrated fuzzifier eval-
uation and selection algorithm and tested it using real datasets. Our findings indicate that the con-
sistent optimal number of clusters can be learnt from testing different fuzzifiers for each dataset 
and the fuzzifier with the lowest value for this consistency should be selected for clustering. Our 
evaluation also shows that the fuzzifier impacts the clustering accuracy. For longitudinal data with 
missing values, m = 2 could be an empirical rule to start fuzzy clustering, and the best clustering 
accuracy was achieved for tested data, especially using our multiple-imputation based fuzzy clus-
tering. 
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1. Introduction 
Fuzzy C-means (FCM) is an efficient clustering method in analyzing complex data patterns. FCM introduces the 
concept of membership into data partition, and uses the levels of membership to indicate the degree to which an 
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object belongs to different clusters. In various applications and for complex data, FCM demonstrates its robust-
ness and better data partition than crisp clustering such as in MRI image studies [1]-[4]. Recently, one major 
FCM variant, Multiple Imputation-based Fuzzy clustering (MIFuzzy) has been developed to detect patterns and 
help causal inference in health and biomedical studies [5] [6].  

The fuzzifier, m, also called weighting exponent, ranges from 1 to +∞. When m is close to one, the FCM ap-
proaches the hard c-means algorithm; while m approaches infinity, FCM searches the mass center of the data. 
Proper selection of fuzzifiers can suppress noises and improve the smoothness of FCM membership function. A 
smaller fuzzifier usually achieves better computational performance. The existing FCM algorithms typically set 
the fuzzifier to 2, which is an empirical rule but without much evidence. There are also some FCM-centric me-
thods [7]-[11] for selecting fuzzifiers based on FCM optimization, e.g., 2

n
nm −>  where n is the sample size [7]. 

Recently, two data-centric methods [12] [13] were proposed to establish the relationship between the fuzzifier 
and the characteristics of datasets. Specifically, these studies examined the influence of dominant data features 
(e.g., dimension and sample size) on selecting fuzzifiers.  

To select appropriate fuzzifiers and achieve better clustering accuracy, this paper proposes a new integrated 
framework for fuzzifier-selection. Our computational results show that the consistent optimal number of clusters 
can be learnt from testing different fuzzifiers for each dataset; and the fuzzifier with the lowest value for this 
consistency should be selected for clustering. Furthermore, we evaluated the impact of fuzzifier on cluster accu-
racy. Specifically, we tested FCM on 3 real datasets with different fuzzifier values (MIFuzzy was used for data-
sets with missing values), and used 2 typical validation indices (i.e., VSC, XB) for fuzzy clustering to evaluate 
the consistency of the optimum number of clusters with different m.  

The remainder of this paper is organized as follows. Section 2 introduces two existing fuzzifier computing 
methods. Section 3 demonstrates our integrated fuzzifier evaluation and selection algorithm. Section 4 concludes 
our work.  

2. Two Fuzzifier Computing Methods 
References [12] [13] used different methods to obtain fuzzifier directly from datasets. Reference [12] theoreti-
cally proved and computed the fuzzifier in the process of FCM clustering by searching a global optimal solution. 
Assuming the fuzzifier m, the number of data point n, and the dimension s, they designed two different rules to 
compute fuzzifier as follows: 
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fuzzifier is related to the data dimension. According to Reference [12], if *max ( ) 0.5
U

Fλ < , the fuzzifier can be 
directly computed with Rule β , otherwise Rule α  and Rule β  are invalid. 

Similarly, Reference [13] agrees that the fuzzifier m is related to the dataset dimension and size. Differently, 
they first used the probability theory to analyze the probability of a well-defined cluster. They found that the 
probability of a well-defined cluster exponentially decreases with respect to the dimension of dataset, and 
slightly slower with the increasing sample size. They argued that the fuzzifier m should at least qualitatively 
follow this tendency. They learnt a general functional relation between the fuzzifier and the dataset properties 
(data dimension and sample size) as shown in Equation (1) by studying the correlation among m, s, and n based 
on a comprehensive simulation.  
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where s also denotes the dimension of dataset, and n describes the sample size.   

3. A New Integrated Fuzzifier Evaluation and Selection (NIFEs) Algorithm  
This section describes and demonstrates our new integrated fuzzifier evaluation and selection (NIFEs) algo-
rithm.  

3.1. Conceptual Framework for NIFEs Algorithm  
Our conceptual framework for NIFEs algorithm is shown in Figure 1. Specifically, we use typical fuzzy clus-
tering validation indices to evaluate the consistency in choosing the optimal number of clusters for a range of 
fuzzifiers; and then analyze the impact of fuzzifiers on clustering accuracy. We used two major validation in-
dexes for fuzzy clustering: widely-used XB [14], and recently-developed VSC [15] for datasets with overlapped 
clusters. XB is directly related to the fuzzifier while VSC is unrelated to the fuzzifier. 

Moreover, we used 3 real datasets to evaluate our algorithm as shown in Table 1: IRIS [16], Infectious Dis-
ease (ID) and TDTA [17]. Briefly, IRIS consists 150 samples from three species: Setosa, Virginica and Versi-
color. Length and width of the sepals and petals (i.e., four attributes) were measured for each species. ID in-
cludes a pediatric cohort of 162 infants with 7 anti-measles antibody measures each from 2 to 8 months before 
vaccination. TDTA data were collected from a culturally-adapted smoking cessation intervention for Asian 
Americans with 9 intervention attributes. In particular, we used the classical FCM for IRIS; as ID and TDTA are 
longitudinal data with missing values, we used MIFuzzy [5] as mentioned in Section 1. 

3.2. Demonstrating New Integrated Fuzzifier Evaluation and Selection (NIFEs) Algorithm 
The main idea of our new integrated fuzzifier selection (NIFEs) algorithm is to select a proper fuzzifier to en-
sure the optimal cluster identification and accuracy. Specifically, given the initial fuzzifier range as M:  
[ , ]low upperm m , and the validation index set { }1 2,  ,..., kV v v v= , we implement fuzzy clustering algorithms (e.g., 
FCM, MIFuzzy) with given M, and obtain the validation index set V to evaluate the clustering results. For each 
validation index iv V∈ , we use ( )iM v  to denote the set of available fuzzifiers that can identify the optimum 
number of clusters. By default, we set ( ) {2}iM v = . Then, we select 1 2min( ( ) ( )... ( ))km M v M v M v= ∩ ∩  as 
the final fuzzifier. The NIFEs pseudo codes are displayed in Figure 2. Here, we set v1= XB and v2 = VSC as 
examples to demonstrate our NIFEs algorithm. Define the XB peak as jxb  that satisfies 1j jxb xb −>  and 

1j jxb xb +> , where j denotes the cluster number. Then, the optimal number of clusters is 1 2arg min( , ,..., )jxb xb xb . 
FCM was performed on IRIS while MIFuzzy on ID and TDTA with a range of m (mlow = 2; mmax = 4). The 

variation of validation indices (v1 = XB and v2 = VSC) was obtained as shown in Figure 3. Then we examined if 
 

 
Figure 1. Fuzzifier evaluation for fuzzy clustering. 

 
Table 1. Dataset description. 

Dataset IRIS TDTA ID 

Number of Clusters 3 3 3 

Number of Data 150 97 162 

Number of Attributes 4 9 7 

Validity index

Clustering accuracy

Data Sets
{ Method

{
{

Longitudinal (e.g., infectious disease (ID) data and TDTA) 

Cross-sectional (e.g.,iris and waveform)

{ Fuzzifier related (e.g., xb [11])

Non-Fuzzifier related (e.g., vsc [12])

Evaluation
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Figure 2. Pseudo code of NIFEs. 

 

 
(a)                                    (b)                                    (c) 

 
(d)                                    (e)                                     (f) 

Figure 3. Variation of validation index with different m. (a) Iris; (b) TDTA; (c) Infectious Disease (ID); (d) Iris; (e) TDTA; 
(f) Infectious Disease (ID). 

 
these validation indices can consistently point to an optimal number of clusters with the range of fuzzifiers. 

The optimal cluster number is corresponding to the smallest values of v1= XB or v2 = VSC. As mentioned 
above, XB is fuzzifier-related, incorporating the compactness and separation measures of clusters. As demon-
strated in the three datasets, shown in Figure 3(a) IRIS, Figure 3(b) TDTA, and Figure 3(c) ID, the overall 
trends of XB are consistent across different fuzzifiers m, which implies that as long as XB can point to an op-
timal number of clusters, the smallest m could be identified. XB has consistent local minimum at 2 clusters with 
2 3m≤ ≤ . For the longitudinal datasets ID and TDTA using MIFuzzy, XB achieves the consistent local mini-
mum with 2 2.6m≤ ≤ .  
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Furthermore, we examined the variation of VSC, a non-fuzzifier-related index, over the same datasets, shown 
in Figures 3(d)-(f). The VSC curve of m = 2 is corresponding to the lower red curve. VSC incorporates the 
compactness and overlap measures to evaluate the quality of FCM. For all three datasets, VSC identifies the op-
timal number of clusters with a consistent minimum value across different fuzzifers.  

Since we can obtain the consistency of an optimal number of clusters by testing different fuzzifiers, the fuzz-
fier with the lowest value for this consistency is regarded as the most appropriate for fuzzy clustering because of 
computational efficiency. Note that our idea is to detect this important consistency to establish a generalized 
fuzzifier evaluation algorithm; determining a final number of optimal clusters is not the scope of this study but a 
natural next step. Table 2 shows the fuzzifier obtained with NIFEs over these 3 datasets. 

Using the two methods from References [12] and [13], we compute the optimal fuzzifiers for all these data-
sets as our baseline. Table 3 displays the m values for each dataset from these two methods. Particularly, inf in 
Table 3 means that the Reference [12] method failed. Compared to Table 3, NIFES agrees with the majority of 
fuzzifier identified by Reference [12] or [13]. In general, NIFEs seems to be more reliable, for example, m = 2 is 
appropriate for IRIS according to literature but Reference [13] suggested m = 4; for TDTA, both Reference [13] 
and our NIFES agree m = 2, which is appropriate according to our previous investigation while Reference [12] 
suggested 3.993. 

Furthermore, given the real cluster number for each data set shown in Table 1, we examined the clustering 
accuracy of different m displayed in Figure 4. Given a sample size N, denote G as the correct number of cases 
identified in known clusters, the clustering accuracy is defined as G/N. 

As shown in Figure 4, fuzzifier m = 2 could lead to better or comparable clustering accuracy given the identi-
fied optimal cluster number across the three datasets. Especially for longitudinal data with missing values 
(TDTA and ID), m = 2 shows the correct accuracy according to our known results. 

4. Conclusions 
This paper investigates selection of fuzzifier, an important element for FCM, using three real datasets: one well- 

 

   
(a)                                 (b)                                    (c) 

Figure 4. Clustering accuracy with different fuzzifier m across 3 datasets. (a) IRIS; (b) TDTA; (c) ID. 
 

Table 2. m value leant from new integrated fuzzifier evaluation (NIFES) algorithm. 

 IRIS TDTA ID 

( )M xb  [2, 3] [2, 2.6] [2, 2.8] 

( )M vsc  [2, 4] [2, 4] [2, 4] 

Learnt m value 2 2 2 

 
Table 3. m value computed using methods from reference [12] and [13]. 

 IRIS TDTA ID 

Reference [12] inf 3.993 inf 

Reference [13] 4 2 2 
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known biological data, IRIS; and two longitudinal data with missing values, TDTA and ID. We design a new 
integrated fuzzifier evaluation and selection (NIFEs) algorithm to assess and select the proper fuzzifer. The 
conceptual NIFEs framework is comprehensive, involving testing (non-)fuzzier related indices and clustering 
accuracy across a range of fuzzifiers. Our results indicate that our NIFEs algorithm is more reliable than two ex-
isting methods and could be a complementary reference for the fuzzy clustering field. Our findings indicate that 
the consistent optimal number of clusters can be learnt from testing different fuzzifiers for each dataset and the 
fuzzifier with the lowest value for this consistency should be selected for clustering for computational efficiency. 
Our evaluation also shows that the fuzzifier impacts the clustering accuracy. For longitudinal data with missing 
values, m = 2 could be an empirical rule to start fuzzy clustering, and the best clustering accuracy was achieved 
for tested data, especially using our multiple-imputation based fuzzy clustering. 
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