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Abstract 
Mixing and coherence are fundamental issues at the heart of understanding fluid dynamics and 
other non-autonomous dynamical systems. Recently the notion of coherence has come to a more 
rigorous footing, in particular, within the studies of finite-time nonautonomous dynamical sys-
tems. Here we recall “shape coherent sets” which is proven to correspond to slowly evolving cur-
vature, for which tangency of finite time stable foliations (related to a “forward time” perspective) 
and finite time unstable foliations (related to a “backwards time” perspective) serve a central role. 
We compare and contrast this perspective to both the variational method of geodesics [17], as well 
as the coherent pairs perspective [12] from transfer operators. 
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1. Introduction 
Understanding and describing mixing and transport in two-dimensional fluid flows have been a classic problem 
in dynamical systems for decades. Here we focus on three theories related to coherence in finite-time nonauto-
nomous dynamical systems: 1) Shape coherent sets [22] where the nonlinear flow itself as considered to be spe-
cial “shape coherent sets” reveals that the otherwise complicated flow reduces to a simpler transformation, 
namely rigid body transformations, on the corresponding time and spatial scales; 2) The geodesic theory of 
transport [17] which initially describes that transport barriers relate to minimally stretching material lines 
(“Seeking transport barriers as minimally stretching material lines, we obtain that such barriers must be sha-
dowed by minimal geodesics under the Riemannian metric induced by the Cauchy-Green strain tensor.” [17]) 
and later it was improved to “stationary values of the averaged strain and the averaged shear,” [18]; 3) Coherent 
pairs [2] [12] [21] viewed by transfer operators in terms of evolving density. See Table 1. Not all methods are 
coverer here, notably the combination method of Tallapragada and Ross [26] which gives FTLE like quantities 
directly from transfer operator. 

In this paper, we contrast three perspectives of coherence by calculating several objective measures which are 
a) the evolution of arc length; b) the relative coherence pairing; c) foliation angles; d) change of curvature; e) 
registration of shapes; and f) the shape coherence factor for sets developed from each of these methods, two of 
which are respectively shown in Tables 1-3. We show that each of these three perspectives of coherence may 
keep its advantages on its corresponding measure. According to a geodesic perspective, arc length should vary  
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Table 1. Comparison assumptions between three theories of coherence. 

Theory Measures Design Related Keywords 

Shape  
coherent  

sets 

Shape coherence  
factor ( , , )A B Tα  

Preserving shape. Regularity link  
between curvature and shape coherence 

Finite-time stable/unstable foliation,  
nonhyperbolic splitting angles,  
slow evolving curvature, FTC. 

Geodesic  
transport  
barrier 

Arc length  
evolution 

Stationary values of the averaged  
strain and the averaged shear 

Hyperbolic, elliptic and parabolic  
barriers Lagrangian coherent  

structures. [9] [16] [17] 

Coherent  
pairs 

Coherent pair  
number ( , )t tA Aµ τρ +  

Minimizing density loss, Frobenius-Perron  
operator by Ulam-Galerkin’s matrix, SVD 

Coherent pairs, hierarchical  
partitions, Galerkin-Ulam  

matrices. [2] [12] [21] 

 
Table 2. Comparison between three theories of figures of merit shown of evolution of the double gyre system. Compare to 
the geometry of the evolution of the sets discussed in Figure 3 and illustration of these measures in Figure 4, and discussion 
in the caption. It can be seen that each performance on their own measure, but also quite well in the alternative measures. 
This partly reflects that similar sets can be found from each method, but not necessarily always. 

Theory ( , , )A B Tα  Arc Length 
Change (%) ( , )t tA Aµ τρ +  Specification 

Shape coherent sets 0.9637 1.14% 1 The grid size is 200 by 200. See Figure 3 left column. 

Geodesic transport barrier 0.9362 0.93% 1 Calculated by LCStool [19]. See Figure 3 right column. 

Coherent pairs 0.9210 1.9% 0.995 50,000 by 50,000 matrix with  
20 million sample points. See Figure 4. 

 
Table 3. Comparison among three theories on the Rossby wave system. See Figure 6 and Figure 7. Notice that the smaller 
coherent pairs has a little better shape coherence than the 1st shape coherent sets, however a bigger set, the 2nd one, has the 
best shape coherence factor of all. 

Theory ( , , )A B Tα  Arc Length 
Change (%) ( , )t tA Aµ τρ +  Specification 

1st Shape coherent sets 0.9184 3.69 % 1 The grid size is 2000 by 200. See Figure 6 left column. 

2nd Shape coherent sets 0.9525 2.44 % 1 The grid size is 2000 by 200. See Figure 7 left column. 

Geodesic transport barrier 0.9156 1.2159 % 1 Calculated by LCStool [19]. See Figure 6 right column. 

Coherent pairs 0.9193 1.2174 % 0.992 80,000 by 80,000 matrix with 20 million sample points.  
See Figure 7 right column. 

 
slowly. On the other hand, according to the perspective of shape coherent sets, shape should be roughly pre-
served and the nonlinear flow restricted to that set should appear as a rigid body motion on that scale of time and 
space. This suggests that arc length may vary, however generally slowly. For coherent pairs, the definition [12] 
allows perfect overlap of a set and its image, so an extra condition called\robust must be added, which was later 
clarified in [11] [13] that effectively numerical diffusion was introduced in the stage of estimating the Ulam- 
Galerkin matrices that reward sets whose boundary curves do not grow dramatically. This suggests an implicit 
connection between the geodesic theory and the coherent pairs theory. See also [10]. Table 2 and Table 3 sum-
marize a contrast study for benchmark examples, the Rossby wave and the double gyre system, where for the 
best possible comparison, a specific “coherent set” was found that seems to be roughly the same set as identified 
by all three perspectives. Therefore, the definition in each is not identical. Furthermore, there are numerical es-
timation issues that likely vary between each approach, as seen for example especially in the transfer operator 
method since many cells are required, and therefore many orbit samples for a reasonable estimate of a boundary 
curve. 

It may seem striking that each method performs well on the measures of the other methods. There are of 
course differences between the methods as well, since each tends to identify sets that the other two do not, with 
significant difference in the non-corresponding measure. Note that we have used LCSTool [19] which uses 
closed shearlines, closed null-geodesics of the Green-Lagrange strain tensor, [18] which was pointed out to be 
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for incompressible flows; these are infinitesimally arc length conserving, but not generally. In the appendix, we 
show a simple example to demonstrate that there exist continuous families of different shapes with the same area 
and the same arc length. 

2. Shape Coherence, Relative Coherence and Geodesic Transport Barrier 
For completeness, in brief detail we review the three methods to be compared, with references to the originating 
literature for greater detail. Let (Ω ,  , µ ) be a measure space, where   is a σ -algebra and µ  is a 
normalized measure that is not necessarily invariant. We assume that 2Ω ⊂  . See [12] [21] [22]. Consider the 
planar nonautonomous differential equation [17],  

2= ( , ), , [ , ],x v x t x U t t t− +∈ ⊂ ∈                               (1) 

We use Φ  to represent the flow map of the system1. 

2.1. Shape Coherence 
Here we review shape coherence [22]. We recently introduced a definition concerning coherence called shape 
coherent sets2, motivated by an intuitive idea of sets that “hold together” through finite-time. We connected 
shape coherent sets to slowly evolving boundary curvature by studying the tangency of finite-time stable and 
unstable foliations, which relate to forward and backward time perspectives respectively. The zero-angle curves 
are developed from the nonhyperbolic splitting of stable and unstable foliations by continuation methods that 
relate to the implicit function theorem. These closed zero-angle curves preserve their shapes in the time- 
dependent flow by a relatively small change of curvatures. See [22], on calculating the shape coherence factor. 
Taking a Lagrangian perspective, we offer the following mathematical definition: 

Definition 1 [22] Finite Time Shape Coherence The shape coherence factor α  between two measurable 
nonempty sets A  and B  under a flow tΦ  after a finite time epoch 0 :t T∈  is,  

( )

( ( ) ( ))( , , ) := sup
( )

T

S B

m S B AA B T
m B

α ∩Φ                                (2) 

where ( )S B  is a group of transformations of rigid body motions of B , specifically translations and rotations 
descriptive of frame invariance, and for certain problems it may include mirror translations. We interpret ( )m ⋅  
to denote Lebesgue measure, but one may substitute other measures as desired. Then we say A  is finite time 
shape coherent to B  with the factor α  under the flow TΦ  after the time epoch T , but we may say simply 
that A  is shape coherent to B . We shall call B  the  reference set, and A  shall be called the dynamic set. 
In other words, if the flow TΦ  is restricted to a shape coherent set A , then |T AΦ  can be considered to be 
approximately equivalent to a transformation which belongs to the group S , rigid body transformations. 
Throughout this paper we choose B  to be A  itself, which means we try to capture those sets with minimal 
shape change under the flow. Next, we introduce the finite-time stable and unstable foliations which are used to 
develop the boundaries of the shape coherent sets. 

Stated simply, the stable foliation at a point describes the dominant direction of local contraction in forward 
time, and the unstable foliation describes the dominant direction of contraction in “backward” time. See Figure 
1 and Figure 2. They are also called Lyapunov vectors. Generally, the Jacobian matrix, ( )tD zΦ  of the flow 

( )tΦ ⋅  evaluated at the point z  has the same action as does any matrix in that a circle maps onto an ellipse. In 
Figure 1 and Figure 2 we illustrate the general infinitesimal geometry of a small disc of variations wε  from a 
base point ( )t zΦ . At z , we observe that a circle of such vectors, =< cos( ),sin( ) >,0 2w θ θ θ π≤ ≤  centered 
at the point ( )t zΦ  pulls back under ( ( ))t tD z−Φ Φ  to an ellipsoid centered on z . The major axis of that 
infinitesimal ellipsoid defines ( )t

sf z , the stable foliation at z . Likewise, from ( )t z−Φ , a small disc of 
variations pushes forward under ( ( ))t tD z−Φ Φ  to an ellipsoid, again centered on z . The major axis of this 
ellipsoid defines the unstable foliations, ( )t

uf z . 
To compute the major axis of ellipsoids corresponding to how discs evolve under the action of matrices, we  

 

 

1The form of Φ  may vary, such as 
0

t
tΦ , TΦ  and ( , ; )z t τΦ , because we keep the original forms from different theories for better under-

standing. However, they represent the same flow. 
2In this paper, we always use the initial status of a closed curve as its reference sets, i.e. as B  in Equation (2). 
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Figure 1. The SVD Equation (3) of the flow ( )t zΦ  can be used to infer the finite time stable foliation and likewise finite 

time unstable foliation ( )t
uf z  at z  in terms of the major and minor axis as shown and described in Equation (4). 

 

  
(a)                                                    (b) 

Figure 2. (a) A curve C  goes through a small neighborhood of a point z  with 90  degree foliations angle changes its 
shape from time T−  to T . Notice that the curve changes its curvature significantly in time, and it can increase or decrease 
curvature depending on the details of how the curve is oriented relative to ( )t

sf z  and ( )t
uf z ; (b) The same curve C  but 

with almost zero-splitting foliations roughly keeps its shape as noted by inspecting the curvature at z  through time. 
 

may refer to the singular value decomposition [14]. Let,  
*( ) = ,tD z U VΦ Σ                                  (3) 

where *  denotes the transpose of a matrix, U  and V  are orthogonal matrices, and 1 2= ( , )diag σ σΣ  is a 
diagonal matrix. By convention we choose the index to order, 1 2 0σ σ≥ ≥ . As part of the standard singular 
value decomposition theory, principal component analysis provides that the first unit column vector of 

1 2= [ | ]V v v  corresponding to the largest singular value, 1σ , is the major axis of the image of a circle under the  
matrix ( )tD zΦ  around z . That is, 1 1 1( ) = ,tD z v uσΦ  as seen in Figure 1 describes the vector 1v  at z  that 
maps onto the major axis, 1uσ  at ( )t zΦ . Since ( ) =t t z z−Φ Φ , and ( ( )) ( ) =t t tD z D z I−Φ Φ Φ , then recalling 

the orthogonality of U  and V , it can be shown that, 1 *( ( )) = ,t tD z V U−
−Φ Φ Σ  and 1

1 2= (1/ ,1/ )diag σ σ−Σ . 
Therefore, 2 11/ 1/σ σ≥ , and the dominant axis of the image of an infinitesimal circle from ( )t zΦ  comes from, 

2 2 2( ) = /tD z u v σΦ . 
We summarize, the stable foliation and unstable foliation at z  are,  

12( ) = ( ) =t t
s uf z v and f z u                                    (4) 

where 2v  is the second right singular vector of ( )tD zΦ , according to Equation (3). And 1u  is the first left 

singular vector of the matrix decomposition, 
*

( ( )) = .t tD z U V−Φ Φ Σ  An included angle between a pair of 
stable and unstable foliations is defined as follows, 

Definition 2 [22] The included angle of the finite-time stable and unstable foliations is defined as 
( , ) : R [ / 2, / 2]z tθ π π+Ω× → −   

( ), ( )
( , ) := arccos

( ) ( )

t t
s u

t t
s u

f z f z
z t

f z f z
θ                                 (5) 
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We give a comprehensive discussion of how the non-hyperbolic splitting angle of foliations preserves 
curvature of a curve in [22], and in turn, slowly changing of curvature yields significant shape coherence as 
noticed above. In order to generate curves of the zero-splitting angle, we apply the implicit function theorem to 
induce a continuation theorem, which guarantees that we can use ODE solvers and root-finding methods to 
describe the curve. 

To calculate the shape coherence number is a form of “image registration”, which is the process of 
transforming different image data into one coordinate system. See [1]-[4]. Image registration is a widely used 
class of algorithms in the image processing community to solve the following practical problem. Suppose two 
images (photographs for example) have pieces of the same scene such as a car or a face, then how can the two 
images be best “aligned” so as to place one figure on top of the other in a manner that emphasizes that the 
scenes are aligned. By aligned we mean that rotations, and translations may be used, and in the image processing 
problem often linear scalings as well, but we will not use that class of transformation. In other words, alignment 
in terms of rigid body motions of two sets is equivalent to the image processing problem of registration, and it is 
a convenient comparison since image registration is a well matured problem with many fast and accurate 
algorithms, including methods based on Fourier Transforms, [1] [4]. Since we assume the flow is area- 
preserving, generally, we use rigid body motions and may include mirror. In Matlab, the command “imregister” 
is a convenient implementation of image registration. For more details on the algorithm, see [22]. 

2.2. The Geodesic Theory of LCS 
Next, we review the geodesic theory of Lagrangian coherent structures. Consider an evolving material line tγ  
in the system, which has length  

2

0 01
( ) = | |= | ( ) |= , ( )

t

b st t
t t ta s

l dx D r dr r C r r ds
γ

γ ′ ′Φ 〈 〉∫ ∫ ∫                          (6) 

where 
0 0( )t

tD xΦ  denotes the derivative of the flow map, and 
0 0 00 0= ( ( )) ( )t t T t

t t tC D x D xΦ Φ  denotes the 
Cauchy-Green strain tensor, with T  refering to the matrix transpose. In [17], a transport barrier of system 1 
over the time interval 0[ , ]t t  was described as a material curve tγ , whose initial position 0γ  is a minimizer of 
the length functional 

0

t
tl  under the boundary conditions,  

2 1 1( ) ( ), ( ) = ( ( )), = 1,2i ir s r s r s r s iξ′≠                               (7) 

1,2 1 1 2 2 1 2( ) = 0, ( ) = ( ( )), ( ) = ( ( )), ( ) ( ),h s r s r s r s r s r s r sη η± ±′ ′ ≠                     (8) 

where 1,2ξ  are the eigenvectors corresponding to the smaller and larger eigenvalues 1,2 1,2( ( ))r sλ  of 
0 1,2( ( ))t

tC r s , 
1,2( )h s  is a pointwise normal, smooth perturbation to 0γ  and ( )xη±  are the normalized Lagrangian shear  

vector fields, which are defined as, 2 1
1 2

1 2 1 2

= .
λ λ

η ξ ξ
λ λ λ λ± ±
+ +

 A transport barrier is a hyperbolic  

barrier if 0γ  satisfies the hyperbolic boundary conditions as defined in Equation (7). A transport barrier is a 
shear barrier if 0γ  satisfies the shear boundary conditions as defined in Equation (8). For the computational 
part, for comparison here we use the the “LCS-tools” which were developed by the Nonlinear Dynamical 
Systems Group at ETH Zurich, led by Prof. George Haller. See. [19]. 

2.3. The Relatively Coherent Pairs 
In this section, we briefly review the coherent pairs. Relatively coherent pairs [21] describe a system by hierar- 
chical partitions based on the idea of coherent pairs. See [12]. Given the time-dependent flow  

( , ; ) :z t τΦ Ω× × →Ω  , through the time epoch τ  of an initial point z  at time t , a coherent pairs 
( , )t tA A τ+  can be considered as a pair of subsets of Ω  such that, ( , ; ) .t tA t A ττ +Φ ≈  

Definition 3 [12] ( , )t tA A τ+  is a 0( , , )tρ τ -coherent pair if  

0( , ) := ( ( , , )) / ( )t t t t tA A A A t Aµ τ τρ µ τ τ µ ρ+ +∩Φ + − ≥                      (9) 

where the pair ( , )t tA A τ+  are ‘robust ’ to small perturbation and ( ) = ( ).t tA A τµ µ +   
Then we build a relative measure on K  induced by µ , where K  is a nonempty measurable subset of Ω . 

In this way we enter into refinements of the initial partition on successive scales. A relative measure of K  to 
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Ω  is, [21], ( ) := ( ) / ( )K A A K Kµ µ µ∩  for all A∈ . From the above definition, it follows that ( , | , )K KK µ  
is also a measure space, where |K  is the restriction of Ω  to   and Kµ  is a normalized measure on K . 
We call the space ( , | , )K KK µ , the relative measure space. Now, we define the relatively coherent pairs. 

Definition 4 [21] Relatively coherent structures are those 0( , , )tρ τ -coherent pairs defined in Definition 2.1, 
with respect to given relative measures on a subset K ⊂ Ω , of a given scale, specializing [12].  

To find coherent pairs in time-dependent dynamical systems, we use the Frobenius-Perron operator. If 
:S Ω→Ω  is a nonsingular transformation such that 1( ( )) = 0S Aµ −  for all A∈  satisfying ( ) = 0,Aµ  the 

unique operator 1 1: ( ) ( )P L LΩ → Ω  defined by,  

1( )
( ) ( ) = ( ) ( )

A S A
Pf x dx f x dxµ µ−∫ ∫                              (10) 

for all A∈  is called the Frobenius-Perron operator corresponding to S, where 1( ) ( )f x L∈ Ω . See [2] [20]. 
Here, S  can be considered as the flow map Φ  and the formula above can be written as  

1 1
, ( ) := ( ( )) | det ( ( )) |= ( ( , ; )) | det ( , ; ) | .tP f z f S z D S z f z t D z tτ τ τ τ τ− −⋅ Φ + − ⋅ Φ + −  Suppose X  is a subset of Ω ,  

and let Y  be a set that includes ( )S X . We develop partitions for X  and Y  respectively. In other words, let 
=1{ }m

i iB  be a partition for X  and =1{ }n
j jC  be a partition for Y . The Ulam-Galerkin matrix follows a 

well-known finite-rank approximation of the Frobenius-Perron operator, 

, = #{ : & ( ) } / #{ : }i j k k i k j k k iP x x B S x C x x B∈ ∈ ∈  

where the sequence { }kx  is a set of test points (passive tracers). See [5]. The computation of coherent pairs is a 
set-oriented method, but to compare the results to the other two methods which are defined in terms of boundary 
curves of sets, we must extract boundary curves from the boundaries that are approximated by the set of 
triangles covering the boundary, [21]. An effective way to extract the boundary is to shrink the size of triangles; 
then we approximate the boundary by connecting the centers of triangles on these boundary sets, and this is done 
either by line segments through adjacent triangles, or it could be done with some smoothing by a pair of 
smoothing splines. 

3. Examples 
We next apply the three methods to the Rossby wave system and double gyre system, both of which have 
become classic examples for studying and contrasting coherence and transport, [2] [10] [12] [17] [21]. 

3.1. The Nonautonomous Double Gyre. 
Consider the nonautonomous double gyre system,  

= sin( ( , ))cos( ) = cos( ( , ))sin( ) dfx A f x t y and y A f x t y
dx

π π π π π π−                     (11) 

where 2( , ) = sin( ) (1 2 sin( ))f x t t x t xε ω ε ω+ − , = 0.1ε , = 0.1A  and = 2 /10ω π . See [10] [25]. Let the time 
interval be [0,20] . Table 2, Figure 3 and Figure 4 show the numerical results of the comparison among the 
three theories of the nonautonomous double gyre system. 

Consider the example sets shown. Note that the LCS has the smallest arc length change, but the shape 
coherent sets have the highest shape coherence factor. While the coherent pair number of both the shape 
coherence derived set and the geodesic transport derived set are shown as 1, since if the image in definition Eq-
uation (9) is its image, as the pairing, then 1 will always be the result, but the theory is properly interpreted the 
entire definition of coherent pairs requires a more careful pairing of sets as discussed above. What is striking 
here is that three different methods can find comparable sets, as reflected that the measures are similar.On the 
other hand, not shown here, is that each can find different sets, but the measures between them would ne- 
cessarily be dramatically different. See Figure 4 for such a scenario where two methods sometimes produce 
substantially similar regions, but sometimes substantially different regions. 

3.2. An Idealized Stratospheric Flow 
The second benchmark problem is a quasiperiodic system which represents an idealized zonal stratospheric flow 
[12] [24]. Consider the following Hamiltonian system / = / , / = / ,dx dt y dy dt x−∂Φ ∂ ∂Φ ∂  where  
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(a)                                 (b) 

  
(c)                                   (d) 

   
(e)                                   (f) 

                
(g)                                      (h) 

Figure 3. (a) and (b) show the initial and final configuration of a zero-splitting curve (Left) and an elliptic LCS (Right) 
around the zero-splitting curve. (c) and (d) are the comparison of foliation angles versus arc lengths between the two curves. 
The foliation angles of the zero-splitting curves are very small, but the angles of the geodesic curve vary. (e) and (f) are the 
curvature versus arc lengths. (g) and (h) are registrations of the curves. The arc lengths change of the zero-splitting curve and 
the elliptic LCS are 1.14% and 0.93%; and the shape coherence factors are 0.9637 and 0.9362. (a) A nonhyperbolic splitting 
curve; (b)An elliptic LCS; (c) Foliations angles of the nonhyperbolic splitting curve; (d) Foliations angles of the elliptic LCS; 
(e) Curvature change of the nonhyperbolic splitting curve; (f) Curvature change of the elliptic LCS. 

 

   
(a)                                                       (b) 

          
(c)                                                        (d) 

Figure 4. (a) and (b) are the hierarchical partitions of the double gyre. The green curves around the upper left brown sets are 
the boundaries of our target coherent pairs. (c) and (d) are the foliation angles and change of curvature plot in different time. 
The arc lengths change is 1.9% and the shape coherence factor is 0.9210. (a) Relatively coherent sets at T = 0; (b) Relatively 
coherent sets at T = 20; (c) Foliations angles of the coherent pairs; (d) Curvature change of the coherent pairs. 
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2
3 0 3 0 1
2 2

2 0 2 2 1 0 1 1

( , , ) = tanh( / ) ( / )cos( )

( / )cos( ) ( / )cos( )

x y t c y U L y L A U Lsech y L k x

A U Lsech y L k x t AU Lsech y L k x tσ σ

Φ − +

+ − + −
                  (12) 

Let 0 2 0 3 0 3 2 1= 41.31, = 0.205 , = 0.461 , = 0.3, = 0.1, = 0.075U c U c U A A A  and the other parameters be the 
same as stated in [24]. The numerical results in Table 3, Figure 5 and Figure 6 show that the elliptic LCS 
shown maintains arc length better than the other three curves also in this system, but the coherent pairs have a 
shape coherence factor a little greater than the first smaller shape coherent sets. Note that although these 
measurements are so close, that it could be inferred that differences are within the level of numerical accuracy. 
The degree of coherence becomes rarer for bigger regions, than smaller ones, so we show the second shape 
coherent sets as a bigger one with the highest shape coherence factor. See Table 3. Again we see each does 
especially well within its own measures, but quite well across measures. So while each method can and often 
does develop comparable sets, sometimes they develop dramatically different sets. See Figure 4. It is shown 
there that the two perspectives often do reveal extremely similar boundaries, but sometimes quite different ones. 

4. Conclusions 
In this paper, we have reviewed three complementary theories of coherence that come with similar goals but 
from different perspectives. These are the geodesic theory of LCS which emphasizes stationarity of averaged 
strain and shear, coherent pairs which describes “very small leakage” of sets and shape coherent sets which 
emphasizes those sets that preserve their shape by a slowly evolving curvature. 

We have then presented two benchmark examples, the double gyre and the Rossby wave, to compare the 
different methods. In the examples described here, it has been illustrated that all three methods have reasonable 
and similar numerical results which agree with their own theories, and comparable results between given that 
similar sets were identified. For arc length, LCS always has the least change; and with respect to shape 
coherence, the zero-splitting curve has the best shape coherence number; coherent pairs has results very close to 
them. Notice that here we only compared similar elliptic shapes for all three methods, to allow each the best 
possibility of doing well relative to each other. On the other hand, each of the three methods can and does find 
clearly different sets and therefore with significant differences of performance measure. See Figure 7. 

 

     
(a)                                                     (b) 

     
(c)                                                     (d) 

     
(e)                                                    (f) 

Figure 5. (c) shows that the angle of zero-splitting curve keep small. From (e) and (f) we can see that the zero-splitting curve 
has the less change of curvature. The zero-splitting curve is the closest one to the elliptic LCS, but there are still differences 
on size. Figure 6 shows a bigger zero-splitting curve. The arc lengths change of the zero-splitting curve and the elliptic LCS 
are 3.69% and 1.2159%; and the shape coherence factors are 0.9184 and 0.9156. (a) A nonhyperbolic splitting curve; (b) An 
elliptic LCS; (c) Foliations angles of the nonhyperbolic splitting curve; (d) Foliations angles of the elliptic LCS; (e) Curva-
ture change of the nonhyperbolic splitting curve; (f) Curvature change of the elliptic LCS. 
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(a)                                                     (b) 

  
(c)                                                     (d) 

  
(e)                                                  (f) 

Figure 6. We observe that the zero-splitting curve keep better curvature than the coherent pairs, though the shape of zero- 
splitting curve is bigger. The arc lengths change of the zero-splitting curve and the coherent pairs are 2.44% and 1.2174%; 
and the shape coherence factors are 0.9525 and 0.9193. (a) A nonhyperbolic splitting curve; (b) Initial status of the coherent 
pairs; (c) Foliations angles of the nonhyperbolic splitting curve; (d) Final status of the coherent pairs; (e) Curvature change 
of the nonhyperbolic splitting curve; (f) Curvature change of the coherent pairs. 

 

    
(a)                                                 (b) 

Figure 7. Contrasting regions described by LCS and Shape Coherence. (a) LCS curves shown in red are contrasted to curves 
of slowly changing curvature in blue, which are meant to lead to shape coherent sets when they are closed. We see here that 
often the two perspectives lead to similar sets since the blue and red curves are extremely close to each other, but sometimes 
they are not close at all. Extracting one such set shows that the slowly changing curvature sets are significantly shape 
coherent when considered in terms of image registration (optimal rigid body transformations); (b) A set of slowly changing 
curvature (blue) highlighted by a box above is extracted and then evolved as shown here under optimal registration demon- 
strating its degree of shape coherence. 

 
We have not found an a priori reason to expect that each of the three definitions of coherence will usually, or 

even often, find the same sets. A theorem directly connecting them is lacking. Indeed sometimes we find that 
each finds sets that the others do not, but in such a case, a numerical comparison of the measures included here 
only points out dramatic differences. Stated in terms of choice, a practitioner may ask which method to use for 
their own applied problem, but there is no magic bullet or best method to compute coherence. By offering the 
contrasting perspective of three different concepts of the general idea of coherence, in the same light, we hope 
that this discussion offers the practitioner a richer mathematical perspective of what is the outcome of what they 
are computing, no matter what method they choose to use. 
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Appendix 
Here, we present an example of a continuous two-dimensional family of  simply connected sets with the same 
perimeter, and area, but different shapes. By this observation, we argue that a closed geodesic transport barrier 
may lose its shape through the flow. Figure 8 shows two simply connect sets, a rectangle A  with height a  
and width a  and an annulus sector B  with angle θ , inner radius r  and outer radius r h+ . The perimeter  
and area of A  are, AP  and AS , = 2 2 = .A AP a h and S ah+  And the perimeter and area of B  are, BP  and 

BS , 
22 (2 ) (2 )= 2 = .

360 360B B
r h rh hP h and Sπθ πθ+ +

+  Now we assume the two shapes A  and B  have the 

same area and perimeter, so we have the relationships as follows,  

(2 )= = =
360A B A B

r hP P and S S a πθ +
⇔                            (13) 

So, for example, let = 1h , = 10a , 1.4r ≈  and = 300degθ , we have = = 22A BP P  and = = 10A BS S . 
 

 
Figure 8. Two simply connected sets. 
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