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Abstract 
In this paper, a high order compact difference scheme and a multigrid method are proposed for 
solving two-dimensional (2D) elliptic problems with variable coefficients and interior/boundary 
layers on nonuniform grids. Firstly, the original equation is transformed from the physical domain 
(with a nonuniform mesh) to the computational domain (with a uniform mesh) by using a coordi-
nate transformation. Then, a fourth order compact difference scheme is proposed to solve the 
transformed elliptic equation on uniform girds. After that, a multigrid method is employed to 
solve the linear algebraic system arising from the difference equation. At last, the numerical expe-
riments on some elliptic problems with interior/boundary layers are conducted to show high ac-
curacy and high efficiency of the present method. 
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1. Introduction 
Elliptic equations are widely used in the fields of solid mechanics, material science, and image processing and 
so on. So it is both theoretically and practically important to investigate numerical methods for such equations. 
Finite difference method is a general and effective method to solve elliptic equations. In the past three decades, a 
large number of high order compact (HOC) difference schemes [1]-[14] have been developed to overcome the 
deficiencies (lower accuracy or numerical oscillation, etc.) of the conventional difference schemes. These HOC 
schemes own high accuracy with small mesh stencil and very effective for solving the problems with smooth 
solutions. And they can suppress numerical oscillations that may occur if standard second order central differ-
ence scheme is used to solve the convection-dominated problem or high Reynolds number problems [12]. But 
we notice that many HOC schemes among them are constructed directly on the uniform grids because it is easy 
to be implemented in practice. However, for the computation of many problems whose physical quantities un-
evenly distributed in spaces or with areas of steep solution gradients, the advantages of the HOC scheme may be 
lost if there were no enough grid points inside the large gradient areas. Very fine discretization could be used in 
the whole domain to yield an approximate solution of acceptable accuracy with uniform grids. But such a fine 
discretization results in a very large linear system that demands a large computational cost. In other words, it 
would lead huge waste of computational amount if uniform grids are used in the whole physical domain. To 
avoid too many grid points in the computational domain and to reduce the total computational cost, we can place 
clustered mesh grids in the area of large gradient while relatively few grids in the smooth region. So, developing 
efficient difference schemes on nonuniform grids has a very important application value and actual significance.  

Coordinate transformation method [11]-[15] is a commonly-used method to achieve computation on physical 
nonuniform grids. This method needs to transform the nonuniform grids in the physical domain to the uniform 
grids in the computational domain by using reversible coordinate transformation functions. After computation, it 
returns the computed results back to the physical domain by the inverse transformation. The method has its ad-
vantages. Firstly, it can be used to construct HOC schemes more easily on uniform grids than on nonuniform 
grids by discretizing the derivative terms directly; secondly, such transformations are also used to reflect many 
interior/boundary layer phenomena without refining the mesh near to the interior/boundary layers in the compu-
tational domain. A few researchers have used this method to deal with convection diffusion equations or Navier- 
Stokes equations. For instance, Choo and Schultz [11] used the transformation method and developed a fourth 
order compact difference scheme to solve the steady Navier-Stokes equations. The results show that the method 
is accurate and stable. Spotz [12] developed a class of HOC finite difference schemes for steady convection dif-
fusion equation on uniform grids. And then he extended them to nonuniform grids by using the coordinate 
transformation method. Ge and Zhang [13] also solved the 2D convection diffusion equations with boundary 
layers using the coordinate transformation method and a fourth order scheme was applied on the uniform com-
putational grids. The authors extended the coordinate transformation method to the three-dimensional (3D) case 
[14] to resolve 3D boundary layer problems. Liu C. and Liu Z. [15] employed the coordinate transformation and 
combined it with a fourth order finite difference scheme and multigrid method to simulate the whole process of 
flow transition in 3D boundary layers. If we fix our attention on elliptic equations, we notice that the coefficients 
of the first or second order derivatives in the original model equations considered in the literature are constant 
[11]-[14]. Although after coordinate transformation, the coefficients turn to be variable, the high order differ-
ence schemes, which are developed based on it, could not be used to compute the solutions of original model 
equations in which the coefficients of the first or second order derivatives are variable. So, the potential advan-
tages of applying coordinate transformation method and HOC schemes to solve variable coefficients elliptic 
problems have not been fully investigated.  

In this paper, we consider the 2D elliptic equation with variable coefficients as follows:  

xx yy x yLu Au Cu Du Eu Fu G= + + + + =                             (1) 

where ( ),u x y  is unknown function and the coefficients A, C, D, E, F and the right hand term G are the func-
tions of ,x y  and are assumed to be continuously differentiable. We are aiming at developing an HOC scheme 
which is based on coordinate transformation and multigrid method to solve Equation (1) on nonuniform grids. 
The remainder of this paper is arranged as follows. Section 2 gives the method of coordinate transformation, 
which transforms nonuniform grids in physical domain onto uniform grids in computational domain. In Section 
3, an HOC scheme on uniform grids is constructed to solve the transformed equation in the computational do-
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main. After that, a multigrid method based on the HOC scheme is introduced in Section 4. In Section 5, numeri-
cal experiments are carried out to show the accuracy and efficiency of the present method. Especially, some 
problems with interior or boundary layers are considered in this section. Finally, some concluding remarks are 
given in Section 6.  

2. Coordinate Transformation  
We consider a rectangular physical domain Ω  and ∂Ω  is its boundary. We transform the independent va-
riables x and y in the physical domain into new independent variables ξ  and η  in the computational domain. 
The transformation functions are written as: 

( ) ( ), , , .x x y yξ η ξ η= =                                  (2) 

Then, Equation (1) is transformed into the form as: 
ˆ ˆ ˆ ˆ ˆ ˆau bu cu du eu fu gξξ ξη ηη ξ η+ + + + + =                            (3) 

where the coefficients a, b, c, d, e, f and the right hand term g are the functions of ,ξ η , and 

( ) 2 2ˆ ˆ, ,x ya A Cξ η ξ ξ= +                                        (4) 

( ) ˆ ˆ, 2 2 ,x x y yb A Cξ η ξ η ξ η= +                                  (5) 

( ) 2 2ˆ ˆ, ,x yc A Cξ η η η= +                                        (6) 

( ) ˆ ˆ ˆ ˆ, ,xx yy x yd A C D Eξ η ξ ξ ξ ξ= + + +                             (7) 

( ) ˆ ˆ ˆ ˆ, ,xx yy x ye A C D Eξ η η η η η= + + +                             (8) 

( ) ( ) ˆˆ, , ,f F g Gξ η ξ η= =                                    (9) 

where Â , Ĉ , D̂ , Ê , F̂  and Ĝ  are the functions of ξ  and η . By use of the coordinate transformation, 
Equation (1) is transformed into Equation (3) and physical domain Ω  is transformed into another domain 
which is called computational domain and we mark it as Ω̂ . Then, we suppose to build an HOC scheme for 
Equation (3) in the computational domain. In Ref. [5], the authors point out that there does not exist fourth order 
compact difference scheme for the general elliptic equations like Equation (3). However, if we adopt the 1D 
transformation grids to respectively discrete the difference equation in the two directions (x- and y-direction); 
i.e., if we use ( )xξ ξ=  and ( )yη η= , by this transformation, we get orthogonal grids in the computational 
domain and the coefficient ( ),b ξ η  is identically zero throughout Ω̂ . Under such circumstance, Equation (3) 
is simplified as 

ˆ ˆ ˆ ˆ ˆ .au cu du eu fu gξξ ηη ξ η+ + + + =                              (10) 

Then, for Equation (10), a fourth order compact difference scheme can be derived. We will give the deriva-
tion process of the fourth order compact scheme in the next section.  

3. HOC Difference Scheme 
Firstly, we divide the computational domain Ω̂  with uniform grid and assume 1h  and 2h  are step lengths in 
the ξ - and η -direction. To keep compactness of the scheme, we use reference grid point ( ),ξ η  and its eight 
neighbor grid points ( )1,hξ η± , ( )2, hξ η ± , ( )1 2,h hξ η± ± . Correspondingly, the values of û  are denoted 
by , 1, , 1 1, , 1 1, 1 1, 1 1, 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,i j i j i j i j i j i j i j i ju u u u u u u u+ + − − + + + − − +  and 1, 1ˆi ju − − . Then, we use Taylor’s series expansions and 
central difference operators (the detailed expressions about these central difference operators are given in Ap-
pendix), and the following derivatives approximations can be obtained: 

( ) ( ) ( )
2

41
1ˆ ˆ ˆ ,

6ijij ij

hu u u O hξ ξ ξξξδ= − +                               (11) 

( ) ( ) ( )
2

42
2ˆ ˆ ˆ ,

6ijij ij

hu u u O hη η ηηηδ= − +                               (12) 
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( ) ( ) ( )
2

2 41
1ˆ ˆ ˆ ,

12ijij ij

hu u u O hξξ ξ ξξξξδ= − +                              (13) 

( ) ( ) ( )
2

2 42
2ˆ ˆ ˆ ,

12ijij ij

hu u u O hηη η ηηηηδ= − +                              (14) 

( ) ( ) ( )2 2 4 3 2 2 3 4
1 2 1 1 2 1 2 1 2 2

1ˆ ˆ ˆ ˆ .
6ijij ij

u u h u h u O h h h h h h h hξη ξ η ξξξη ξηηηδ δ= − + + + + + +               (15) 

Then the following difference equation is got if we substitute Equations (11)-(15) into Equation (10): 
2 2ˆ ˆ ˆ ˆ ˆ .ij ij ij ij ij ij ij ij ij ij ij ija u c u d u e u f u T gξ η ξ ηδ δ δ δ+ + + + + =                        (16) 

Equation (16) is actually the second order central difference scheme and ijT  is the truncation error, which 
can be written as: 

( ) ( ) ( ) ( )
( )

2 2 2 2
1 2 1 2

4 3 2 2 3 4
1 1 2 1 2 1 2 2

1 ˆ ˆ ˆ ˆ2 2
12

.

ij ij ij ij ijij ij ij ij
T a h u c h u d h u e h u

O h h h h h h h h

ξξξξ ηηηη ξξξ ηηη
 = − + + +  

+ + + + +
               (17) 

In order to get an HOC scheme, the third order and fourth order derivatives in ijT  need to be discretized, so 
we use Equation (10) to get the following equations:  

( ) ( )1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,u g a d u eu cu c u d f u e u f u
aξξξ ξ ξ ξξ ξη ξηη ξ ηη ξ ξ ξ η ξ = − + − − − − + − −               (18) 

( ) ( )1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,u g c e u du au a u e f u d u f u
cηηη η η ηη ξη ξξη η ξξ η η η ξ η = − + − − − − + − −               (19) 

( ) ( )
( )

1ˆ ˆ ˆ ˆ ˆ2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ2 2 ,

u g a d u a d f u eu c u
a

c u e u cu d f u e u f u

ξξξξ ξξ ξ ξξξ ξξ ξ ξξ ξξη ξ ξηη

ξξ ηη ξ ξη ξξηη ξξ ξ ξ ξξ η ξξ

= − + − + + − −

− − − − + − − 

                   (20) 

( ) ( )
( )

1ˆ ˆ ˆ ˆ ˆ2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ2 2 .

u g c e u c e f u du a u
c

a u d u au e f u d u f u

ηηηη ηη η ηηη ηη η ηη ξηη η ξξη

ηη ξξ η ξη ξξηη ηη η η ηη ξ ηη

= − + − + + − −

− − − − + − − 

                  (21) 

Using the central differences, the difference approximation of ûξξξ , ûηηη , ûξξξξ  and ûηηηη  at the grid 
point ( ),i jξ η  can be obtained as follows: 

( ) ( )

( ) ( )

2 2 2

2 2
1 1 2 2

1ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ,

ij ij ij ij ij ij ij ij ij ijij
ij

ij ij ij ij ij ij ij

u g a d u e u c u c u
a

d f u e u f u O h h h h

ξξξ ξ ξ ξ ξ η ξ η ξ η

ξ ξ ξ η ξ

δ δ δ δ δ δ δ δ δ

δ δ δ δ δ

= − + − − −

− + − − + + +

              (22) 

( ) ( )

( ) ( )

2 2 2

2 2
1 1 2 2

1ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ,

ij ij ij ij ij ij ij ij ij ijij
ij

ij ij ij ij ij ij ij

u g c e u d u a u a u
c

e f u d u f u O h h h h

ηηη η η η ξ η ξ η η ξ

η η η ξ η

δ δ δ δ δ δ δ δ δ

δ δ δ δ δ

= − + − − −

− + − − + + +

              (23) 

( ) ( )( ) ( )

( ) ( )

2 2 2

2 2 2 2 2 2

2 2 2 2 2
1 1 2 2

1ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ2 ,

ij ij ij ij ij ij ijij ij
ij

ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij ij ij

u g a d u a d f u
a

e u c u c u e u c u

d f u e u f u O h h h h

ξξξξ ξ ξ ξξξ ξ ξ ξ

ξ η ξ ξ η ξ η ξ ξ η ξ η

ξ ξ ξ ξ η ξ

δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

= − + − + +

− − − − −

− + − − + + +

            (24) 
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( ) ( )( ) ( )

( ) ( )

2 2 2

2 2 2 2 2 2

2 2 2 2 2
1 1 2 2

1ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ2 .

ij ij ij ij ij ij ijij ij
ij

ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij ij ij

u g c e u c e f u
c

d u a u a u d u a u

e f u d u f u O h h h h

ηηηη η η ηηη η η η

ξ η η ξ η η ξ η ξ η ξ η

η η η η ξ η

δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

= − + − + +

− − − − −

− + − − + + +

           (25)  

Finally, substituting Equations (22)-(25) into Equation (17), combining it with Equation (16) and neglecting 
high order truncation error term, we have: 

2 2

2 2 2 2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ,
ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij ij ij ij ij

A u B u C u D u E u

F u P u Q u R u G
ξ ξ η η ξ η

ξ η ξ η ξ η

δ δ δ δ δ δ

δ δ δ δ δ δ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

+ + + +

+ + + + =
                     (26) 

where 

( )( ) ( )2 2 2 2
1 2

1 2 ,
12ij ij ij ij ij ij ij ij ij ij ijA a h a d f a d h a aξ ξ ξ η ηδ δ α δ δ β δ∗  = + + + + + + +            (27) 

( ) ( )2 2
1 2

1 2 2 ,
12ij ij ij ij ij ij ijB h e e h d dξ ηα δ β δ∗  = + + +                                  (28) 

( ) ( )( )2 2 2 2
2 1

1 2 )) ,
12ij ij ij ij ij ij ij ij ij ij ijC c h c e f c e h c cη η η ξ ξδ δ β δ δ α δ∗  = + + + + + + +            (29) 

( )( ) ( )2 2 2 2
1 2

1 2 ,
12ij ij ij ij ij ij ij ij ij ijD d h d f d f h d dξ ξ ξ η ηδ δ α δ δ β δ∗  = + + + + + +                (30) 

( )( ) ( )2 2 2 2
2 1

1 2 ,
12ij ij ij ij ij ij ij ij ij ijE e h e f e f h e eη η η ξ ξδ δ β δ δ α δ∗  = + + + + + +                 (31) 

( ) ( )2 2 2 2
1 2

1 ,
12ij ij ij ij ij ij ij ijF f h f f h f fξ ξ η ηδ α δ δ β δ∗  = + + + +                            (32) 

( )* 2 2
2 1

1 ,
12ij ij ijP h a h c= +                                                       (33) 

( )* 2 2
1 2

1 2 ,
12ij ij ij ij ijQ h e h a aηδ β = + +                                             (34) 

( )* 2 2
2 1

1 2 ,
12ij ij ij ij ijR h d h c cξδ α = + +                                             (35) 

( ) ( )2 2 2 2
1 2

1 ,
12ij ij ij ij ij ij ij ijG g h g g h g gξ ξ η ηδ α δ δ β δ∗  = + + + +                            (36) 

2 2
, .ij ij ij ij

ij ij
ij ij

d a e c
a c

ξ ηδ δ
α β

− −
= =                                            (37) 

So Equations (26) with (27)-(37) is the HOC difference scheme based on the coordinate transformation for 
solving Equation (1) on nonuniform grids. The present HOC scheme can be written in the form of nine-point 
scheme and the corresponding coefficients of them can be written as follows: 

*
0 1 1, 2 , 1 3 1, 4 , 1 5 1, 1 6 1, 1 7 1, 1 8 1, 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,ij i j i j i j i j i j i j i j i j ijl u l u l u l u l u l u l u l u l u G+ + − − + + − + − − + −+ + + + + + + + =         (38) 

where 

* * * *
0 2 2 2 2

1 2 1 2

2 2 4 ,ij ij ij ijl A C F P
h h h h

= − − + +                                   (39) 

* * * *
1 2 2 2 2

11 1 2 1 2

1 1 2 1 ,
2ij ij ij ijl A D P R

hh h h h h
= + − −                                (40) 
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* * * *
2 2 2 2 2

22 1 2 1 2

1 1 2 1 ,
2ij ij ij ijl C E P Q

hh h h h h
= + − −                                (41) 

* * * *
3 2 2 2 2

11 1 2 1 2

1 1 2 1 ,
2ij ij ij ijl A D P R

hh h h h h
= − − +                                (42) 

* * * *
4 2 2 2 2

22 1 2 1 2

1 1 2 1 ,
2ij ij ij ijl C E P Q

hh h h h h
= − − +                                (43) 

* * * *
5 2 2 2 2

1 2 1 2 1 2 1 2

1 1 1 1 ,
4 2 2ij ij ij ijl B P Q R

h h h h h h h h
= + + +                           (44) 

* * * *
6 2 2 2 2

1 2 1 2 1 2 1 2

1 1 1 1 ,
4 2 2ij ij ij ijl B P Q R

h h h h h h h h
= − + + −                         (45) 

* * * *
7 2 2 2 2

1 2 1 2 1 2 1 2

1 1 1 1 ,
4 2 2ij ij ij ijl B P Q R

h h h h h h h h
= + − −                           (46) 

* * * *
8 2 2 2 2

1 2 1 2 1 2 1 2

1 1 1 1 .
4 2 2ij ij ij ijl B P Q R

h h h h h h h h
= − + − +                          (47) 

From the process of derivation, it is easy to know that the truncation error of this scheme is  
( )4 3 2 2 3 4

1 1 2 1 2 1 2 2O h h h h h h h h+ + + + ; i.e., the present HOC scheme has fourth order accuracy.  

4. Multigrid Method 
In order to solve the linear algebraic systems which are arising from various difference schemes, generally, 
some iterative methods are used. But the convergence speed of traditional iterative methods is very slow, so ap-
pears multigrid method [16]-[18]. It has been proved that multigrid method is an optimal numerical method at 
least for solving the linear elliptic problems. Its main characteristics is to use the traditional iterative methods to 
solve the residual equations on different coarse grid levels by gradually transferring the errors to coarser grids 
until the error is convergent, then to return the corrected results to the finer grid levels by using the interpolation. 

Multigrid method is achieved by some circulation algorithms such as V cycle, W cycle or Full Multigrid V 
cycle (FMV) etc. The whole process has three elements: relaxation operator, projection operator and interpola-
tion operator. The function of relaxation operator (or iteration) is to dump the high frequency components of the 
errors on the current grid. The function of projection and interpolation operators is to transfer error residuals 
from finer grids to coarser grids and to return the corrected errors from the coarser grids to the finer grids. The 
multigrid ( )1 2,V v v  cycle means 1v  relaxations are performed at each level before projecting the residual to 
the coarse grid space (pre-smoothing) and 2v  relaxations after interpolating the solution back to the fine grid 
space (post-smoothing).  

Multigrid method has been used to solve various linear elliptic equations such as Poisson equation [19]-[21], 
convection-diffusion equations [22]-[25] and so on. Gupta et al. [19] [22] [24] and Zhang [20] [23] used it to 
solve the 2D and 3D Poisson equations and the convection diffusion equations discretized by the fourth order 
compact scheme on uniform grids. Ge and Cao [25] and Ge et al. [21] developed multigrid method on nonuni-
form grids to solve 2D convection diffusion equation and 3D Poisson equation with boundary layer problems 
based on the transformation-free HOC difference schemes. In terms of the method of coordinate transformation, 
Ge and Zhang [13] [14] used it to map the nonuniform grid to a uniform grid, and then employed a fourth order 
compact difference scheme to the transformed uniform grid and a multigrid method to solve the 2D and 3D 
convection diffusion equation with boundary layers.   

In this paper, we adopt the multigrid V cycle method to solve the linear algebraic system arising from the dif-
ference schemes. In order to match the HOC scheme, we choose the full weighting projection operator on uni-
form grids [18] 

( ), 1, , 1 1, , 1 1, 1 1, 1 1, 1 1, 1,
1 4 2

16 i j i j i j i j i j i j i j i j i ji jr r r r r r r r r r− − + + − − + − + + − +
 = + + + + + + + + 
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where ,i jr  is residual at the fine grid points ( ),i j  and ,i jr  is the corresponding residuals at coarse grid 
points ( ),i j , so it has 2i i=  and 2j j= . For the interpolation operator, we use the conventional bilinear 
interpolation operator on uniform grids [18] 

, , ,i j i jr r=  

( )1, 1, ,
1 ,
2i j i j i jr r r− −= +  

( ), 1 , 1 ,
1 ,
2i j i j i jr r r− −= +  

( )1, 1 1, , 1, 1 , 1
1 .
4i j i j i j i j i jr r r r r− − − − − −= + + +  

Then, for relaxation operator, we use the alternating direction line Gauss-Seidel relaxations to remove the re-
siduals on each coarse grid.  

5. Numerical Experiments 
In order to demonstrate the high accuracy and high efficiency of the present method, we use it to solve the fol-
lowing three elliptic problems with Dirichlet boundary conditions. All of the problems have the exact solutions. 
All computation is started with zero initial guesses and is terminated when the residuals in 2L -norm on the fin-
est grids are reduced by 1010. For each problem, we give the multigrid V cycles (Num), the CPU time in seconds, 
maximum absolute errors (Error) and convergence rates (Order) about different grid numbers in the tables. The 
procedure is written in Fortran 77 programming language with double precision arithmetic and run on a Pentium 
IV/Dual-core/3 GHz private computer with 2 GB memory. The convergence order can be got by the following 
formula: 

( ) ( )( )
( )

1 2

2 1

log Error Error
Order .

log
N N
N N

=  

where 1N  and 2N  represent for different grid numbers and ( )1Error N  and ( )2Error N  are correspon-
dingly the maximum absolute errors. 

5.1. Problem 1 
We consider the following 2D convection diffusion problem [26]: 

( ) ( ) ( ) ( ) [ ] [ ], , , , , 0,1 0,1xx yy x yu u p x y u q x y u f x y x y+ + + = ∈ ×  

where  

( ) ( )( ) ( ) ( )( ), Re 1 1 2 , , Re 1 1 2 .p x y x x y q x y y y x= − − = − −  

The boundary conditions are: 

( ) ( ) ( ) ( ) ( ) ( )
2 2 20.5 0.5 1 0.25,0 e , ,1 e , 0, 1, e .x x yu x u x u y u yσ σ σ− − − − − − −= = = =  

The exact solution is: 

( ) ( )2 20.5, e .x yu x y σ− − −=  

This problem has a steep solution gradient near 0.5x = . This kind of problems is also referred to as interior 
layer problems in the Ref. [26]. We choose the following transformation functions: 

( ) ( ) ( )sin 2π ,
2π

xx y
γ

ξ ξ ξ η η= + =   

where xγ  ( )1 1xγ− < <  is grid stretching parameter controlling the density of grid in the x direction. For in-
stance, if 1 0xγ− < < , the density of grids around 0x =  is more concentrate, and the xγ  is smaller, the more 
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grids are distributed around 0x = ; if 0 1xγ< < , the density of grids around 1x =  is more concentrate, and 
the xγ  is larger, the more grids are distributed around 1x = ; if 0xγ = , the grids turn to be uniform in the 
physical domain. 

For this problem, we set Re = 1000 and choose 0.6xγ =  for 310σ = , 0.8xγ =  for 410σ =  and 0.85xγ =  
for 510σ =  for nonuniform grids. From the data in Table 1, we find that the HOC scheme has fourth order 
accuracy with 310σ =  and 410σ =  on the uniform grids ( )0xγ = . When 510σ = , the computational results 
are very poor on the uniform grids, so it can not well approximate the exact solutions. However, it can be ob-
served that the computed results on the nonuniform grids can keep fourth order convergence for all σ  com-
puted and give very accurate solutions. So, it shows that the present scheme with nonuniform grids has high ac-
curacy for the problems whose solutions change violently near the area of steep solution gradient. Meanwhile, 
Table 1 also gives the numbers of multigrid V(1,1) iterations and the CPU time in seconds with different σ  
for Problem 1. We can see that multigrid method can rapidly converge in a short time with no more than 12 
multigrid V(1,1) iterations for all cases. 

In order to illustrate the computational accuracy in the whole domain, with the grid number 64 × 64, we give 
the figures about the contours of the exact solution (Figure 1(b)), the computed results on uniform grids (Figure 
1(c)) and on nonuniform grids (Figure 1(d)) for 510σ =  for Problem 1. As can be seen from the figures, the 
computed results can approximate the exact solutions very well on the nonuniform grids. This is because enough 
grid points are distributed in the area of large solution gradient on nonuniform grids. On the contrary, it appears 
very large computational error in the area of large solution gradient on uniform grids because it can not obtain 
enough grid points in the interior layer with 64 × 64 grids. 

5.2. Problem 2 
Next, we consider an elliptic problem as follows: 

( ) ( ) ( ) ( ) ( )2 , , , , ,xx yy x yxu yu D x y u E x y u F x y u G x y+ + + + =  

where 

( ) ( )( ) ( ) ( )( ) ( ) 2 2, Re 1 1 2 , , Re 1 1 2 , , .D x y x x y E x y y y x F x y x y= − − = − − = −  

The boundary conditions are: 

( ) ( ) ( ) ( ) ( ) ( ),0 0, ,1 1 , 0, 0, 1, 1 ,u x u x b x u y u y b y= = − = = −  

 
Table 1. Maximum absolute errors and the convergence rates for Problem 1, Re = 1000.                                         

Grids 
Uniform grids Nonuniform grids 

Num CPU Error Order Num CPU Error Order 
310σ =      0.6xγ =  

64 × 64 11 0.042 1.28 (−2)  11 0.078 5.05 (−4)  

128 × 128 11 0.266 8.44 (−4) 3.97 11 0.250 3.14 (−5) 4.05 

256 × 256 10 1.016 5.32 (−5) 4.01 11 1.110 1.98 (−6) 4.01 

410σ =      0.8xγ =  

64 × 64 11 0.063 2.72 (+0)  12 0.062 2.18 (−3)  

128 × 128 10 0.250 3.00 (−2) 6.58 11 0.265 1.48 (−4) 3.92 

256 × 256 10 1.079 2.15 (−3) 3.82 11 1.140 9.43 (−6) 3.99 
510σ =      0.85xγ =  

64 × 64 11 0.062 7.67 (+1)  10 0.063 2.46 (−2)  

128 × 128 11 0.281 3.70 (+1) 1.06 10 0.266 1.50 (−3) 4.08 

256 × 256 10 1.125 1.36 (+0) 4.79 10 1.110 9.41 (−5) 4.02 
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Figure 1. (a) Nonuniform grids ( 0.85xγ = , 65 × 65); (b) Exact solution; (c) Computed solution on 
uniform grids; (d) Computed solution on nonuniform grids for 510σ = , 3Re 10= .                             

 
in which 

( ) ( ) ( ) ( ) ( ) ( )Re 1 Re 1Re Ree 1 e 1 , e 1 e 1 .x yb x b y− − − −   = − − = − −     

The exact solution is: 

( ) ( ) ( ), 1 1 .u x y b x b y= − −        

For this problem, there are two boundary layers near 0x =  and 0y = . So, we can choose the following 
transformation functions: 

( ) ( ) ( ) ( )sin π , sin π .
π π

yxx y
γγ

ξ ξ ξ η η η= + = +  

We choose Re = 10, 100 and 1000. From Table 2 we find that when Re = 10, the computation can approx-
imately achieve fourth order convergence on both uniform and nonuniform grids ( )0.8x yγ γ= = − . But when 
Re increases to 100, the convergence rate on uniform grids decreases to the third order while still approximately 
the fourth order accuracy is kept on nonuniform grids ( )0.95x yγ γ= = − . When Re = 1000, the convergence 
rate drops to under the first order on uniform grids while the second to third order is shown on nonuniform grids  
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Table 2. Maximum absolute errors and the convergence rates for Problem 2.                                                   

Grids 
Uniform grids Nonuniform grids 

Num CPU Error Order Num CPU Error Order 

Re = 10     0.8x yγ γ= = −  

64 × 64 8 0.062 6.72 (−5)  8 0.063 9.01 (−6)  

128 × 128 8 0.281 5.71 (−6) 3.60 8 0.296 6.28 (−7) 3.89 

256 × 256 8 1.172 4.56 (−7) 3.67 8 1.203 4.26 (−8) 3.90 

Re = 100     0.95x yγ γ= = −  

64 × 64 8 0.062 1.36 (−1)  10 0.062 2.18 (−4)  

128 × 128 8 0.281 2.10 (−2) 2.73 9 0.313 1.71 (−5) 3.71 

256 × 256 9 1.182 2.38 (−3) 3.18 9 1.296 1.22 (−6) 3.83 

Re = 1000     0.999x yγ γ= = −  

64 × 64 17 0.140 9.63 (−1)  22 0.188 9.03 (−4)  

128 × 128 17 0.625 9.36 (−1) 0.04 21 0.672 2.72 (−4) 1.75 

256 × 256 17 2.656 7.24 (−1) 0.37 21 2.891 3.87 (−5) 2.83 

 
( )0.999x yγ γ= = − ; i.e., the computed accuracy for large Re is not maintained on both uniform and nonuniform 
grids, this agrees with the findings of Zhang [14]. In such condition, the boundary layers are very steep, solu-
tions in the boundary layers change very violently, which makes the computated results so poor on the uniform 
grids. On the other hand, although this violent change leads to slow down the convergence rate on nonuniform 
grids, the computed accuracy on nonuniform grids is very ideal. The computed results show that the solutions on 
nonuniform grids are more accurate than that on uniform grids. Besides, Table 2 gives the numbers of multigrid 
V(1,1) iterations and the CPU time in seconds with different Re for Problem 2. We can see that the multigrid 
algorithm is very efficient and at most 22 multigrid V(1,1) cycles are needed to get convergence for all cases. 

Figure 2, with grid number 64 × 64, gives the contours of exact solution (Figure 2(b)), the computed results 
on uniform grids (Figure 2(c)) and on nonuniform grids (Figure 2(d)) for Re = 1000. We find that the present 
HOC scheme produces amazingly satisfying solution on nonuniform grids, while it appears a big computed error 
near the boundary layers on the uniform grids. 

5.3. Problem 3 
We consider the following elliptic equation: 

( )2 1 2 2 2 22 2 , .y x
xx yy x ye u e u x yu xy u x y u G x y++ + + + =  

The boundary conditions are: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2Re 2Re 2Re

2Re 2Re 2Re 2Re

,0 2Re 1 1 e 1 , ,1 2 Re 1 e 2 e 1 ,

0, 2Re e 2 e 1 , 1, e 2 e 1 .y y

u x x u x x

u y u y

 = − − − = − + − −    

= + − − = − −
 

The exact solution is: 

( ) ( ) ( )2 Re 2 Re, 2Re 1 e 2 e 1 .yu x y x = − + − −   

There is a boundary layer near 1y = , so here we choose the following transformation functions: 

( ) ( ) ( ), sin π .
π

yx y
γ

ξ ξ η η η= = +  

For this problem, the multigrid V(2,2) cycles are used. Table 3 gives the computed results, where 0.9yγ =  
for Re = 100, 0.97yγ =  for Re = 1000 and 0.994yγ =  for Re = 10,000 are chosen. From the data we find 
that for Re = 100, it gets the approximately fourth order accuracy on the uniform grids. And for Re = 1000 and  
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Figure 2. (a) Nonuniform grids ( 0.999x yγ γ= = − , 65 × 65); (b) Exact solution; (c) Computed solu-
tion on uniform grids; (d) Computed solution on nonuniform grids for Re = 1000.                             

 
Re = 10,000, it just gets the second order accuracy on the uniform grids, the computed errors are dramatically 
distorted with the increase of Re, and this gives very poor solution. Especially for Re = 10,000, the solution is 
very bad and unacceptable. Compared with computed results on the uniform grids, it shows that the fourth order 
accuracy is achieved for all the Re numbers on the nonuniform grids and the computed results are very accurate. 
So, it demonstrates that the present transformed HOC scheme is effective for solving the boundary layer prob-
lems with nonuniform grids in the physical domain. Table 3 also gives the numbers of multigrid V(2,2) itera-
tions and the CPU time in seconds for this problem. We can see that the multigrid algorithm is very effective 
and the numbers of multigrid V(2,2) cycles are no more than 10 times to get convergence for all cases. 

Figure 3 gives the comparison of the exact and the computed solutions with the grid number 64 × 64 while 
Re = 10,000 and the transformation parameter is 0.994yγ = . We find that the computed results are good to ap-
proximate the exact solutions on the nonuniform grids, while it appears very large computed errors near the 
boundary layer on the uniform grids. 

6. Concluding Remarks 
The aim of this paper is to build an efficient and high accuracy numerical method for solving 2D elliptic equa-
tions with variable coefficients and interior/boundary layers on nonuniform grids. Coordinate transformation  
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Table 3. Maximum absolute errors and the convergence rates for Problem 3.                                                  

Grids 
Uniform grids Nonuniform grids 

Num CPU Error Order Num CPU Error Order 

Re = 100     0.9yγ =  

64 × 64 6 0.063 2.66 (−1)  8 0.078 5.67 (−5)  

128 × 128 6 0.289 2.14 (−2) 3.68 7 0.313 3.54 (−6) 4.05 

256 × 256 6 1.187 1.43 (−3) 3.93 7 1.359 2.20 (−7) 4.03 

Re = 1000     0.97yγ =  

64 × 64 6 0.094 7.79 (+1)  9 0.110 8.42 (−4)  

128 × 128 6 0.391 1.91 (+1) 2.05 8 0.438 4.82 (−5) 4.17 

256 × 256 6 1.703 4.08 (+0) 2.24 6 1.609 2.86 (−6) 4.15 

Re = 10000     0.994yγ =  

64 × 64 6 0.093 7.88 (+3)  8 0.094 1.17 (−2)  

128 × 128 6 0.406 2.00 (+3) 2.00 6 0.391 5.40 (−4) 4.49 

256 × 256 6 1.703 5.04 (+2) 2.00 5 1.515 2.59 (−5) 4.41 

 

 
Figure 3. (a) Nonuniform grids ( 0, 0.994x yγ γ= = , 65 × 65); (b) Exact solution; (c) Computed solution on uniform grids;  
(d) Computed solution on nonuniform grids for Re = 10000.                                                                
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method is employed to transfer nonuniform grids in the physical domain, which concentrates clustered grid 
points inside the interior/boundary layers, to uniform grids in the computational domain. A high order compact 
difference scheme is derived for the transformed equation to achieve the purpose of simplified calculation on 
uniform grids. It needs to be pointed out that when the transformation parameter is zero, the present HOC 
scheme reduces to the HOC difference scheme on uniform grids in the physical domain. So, it fits computation 
on both uniform and nonuniform grids. In order to accelerate the convergence of the traditional iterative me-
thods and to reduce computational cost, a multigrid method is employed to solve the linear algebraic system 
which is arising from the difference scheme. Some numerical experiments with interior or boundary layer prob-
lems are conducted to demonstrate the performances of the present method. It indicates that a nonuniform grid is 
necessary for solving 2D elliptic problems with interior or boundary layers. By coordinate transformation, a 
certain number of grid points are clustered in the interior or boundary layers to guarantee that the HOC scheme 
for transformed equation obtains very accurate numerical solution with not so fine grids. Otherwise, the HOC 
scheme produces very poor approximation solution on uniform grids. 
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h hξ ηδ δ + + − − + + − + − − + −− + + + + + + +
=     
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