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Abstract 
This paper concerns the linear stability of three viscous fluid layers in porous media. The system 
is composed of a middle fluid embedded between two semi-infinite fluids, in which the effect of 
the normal magnetic field is to introduce. The principle aim of this work is to investigate the in-
fluence of fluid viscosity and the porosity effect on the growth rate in the presence of normal 
magnetic field. The parameters governing the layers flow system, the magnetic properties and 
porosity effects strongly influence the wave forms and their amplitudes and hence the stability of 
the fluid. The stability criteria are discussed theoretically and numerically and stability diagrams 
are obtained, where regions of stability and instability are identified. It is found that the stabiliz-
ing role for the magnetic field is retarded when the flow is in porous media. Moreover, the in-
crease in the values of permeability parameters plays a dual role, in stability behavior. It has been 
found that the phenomenon of the dual (to be either stabilizing or destabilizing) role is found for 
increasing the permeability parameter. It is established that both the viscosity coefficient and the 
magnetic permeability damps the growth rate, introducing stabilizing influence. The role of the 
magnetic field and Reynolds number is to increase the amplitude of the disturbance leading to the 
destabilization state of the flow system, promote the oscillatory behavior. Influence of the various 
parameters of the problem on the interface stability is thoroughly discussed. 
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1. Introduction 
There has been a great deal of interest in magnetic fluids of the stability of hydrodynamic stability. A magnetic 

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2015.33044
http://dx.doi.org/10.4236/jamp.2015.33044
http://www.scirp.org
mailto:sameh7977@yahoo.com
http://creativecommons.org/licenses/by/4.0/


S. A. Alkharashi 
 

 
311 

fluid, also known in the literature as a ferromagnetic fluid or simply a ferrofluid. In many previous researches 
has shown the importance of studying the hydrodynamic stability problems, for example capillary-gravity waves 
of permanent form at the interface between two unbounded magnetic fluids in porous media are investigated in 
paper [1]. In which the system is influenced by the horizontal direction of the magnetic field to the separation 
face of two semi-infinite homogeneous and incompressible fluids. It is found that the stabilizing role for the 
magnetic field is retarded when the flow is in porous media. In paper [2] the influence of viscosity on the stabil-
ity of the plane interface separating two incompressible superposed fluids of uniform densities, when the whole 
system is immersed in a uniform horizontal magnetic field, has been studied. The authors in the research [3] 
have carried out the instability of viscous potential flow in a horizontal rectangular channel. The analysis leads 
to an explicit dispersion relation in which the effects of surface tension and viscosity on the normal stress are not 
neglected but the effect of shear stresses is. The unsteady electrohydrodynamic stability has been investigated by 
Elhefnawy [4], where the stability analysis has been made of a basic flow of streaming fluids in the presence of 
an oblique periodic electric field. A series of studies for hydrodynamics stability have also been initiated by 
Drazin and Reid [5] and Joseph [6]. 

The authors in paper [7] have investigated the stability properties of time periodically streaming superposed 
magnetic fluids through porous media under the influence of an oblique alternating magnetic field. Also, Zakaria 
et al. [8] have analyzed the effect of an externally applied electric field on the stability of a thin fluid film over 
an inclined porous plane, using linear and non-linear stability analysis in the long wave limit. Wray et al. [9] have 
investigate the evolution and stability of a wetting viscous fluid layer flowing down the surface of a cylinder, 
and surrounded by a conductive gas. Liu et al. [10] have studied the instability properties of two-dimensional non- 
Newtonian liquid sheets moving in an inviscid gaseous environment. 

Based on a modified Darcy’s law for a viscoelastic fluid, Sirwah [11] has discussed the linear stability analy-
sis of the electrified surface separating two coaxial Oldroyd-B fluid layers confined between two impermeable 
rigid cylinders in the presence of both interfacial insoluble surfactant and surface charge through porous media. 
Also, Tan and Masuoka [12] have extended Stokes? first problem to that for an Oldroyd-B fluid in a porous half 
space, where an exact solution was obtained by using Fourier sine transform. Zakaria [13] has investigated the 
time evolution of superposed layers of fluid flowing down inside an inclined permeable channel. Using the 
Kármán-Pohlhausen approximation, the problem is reduced to the study of the evolution equation for the liquid? 
liquid interface of the liquids film derived through a long wave approximation. Khan et al. [14] have demon-
strated the analytical solutions for the magnetohydrodynamic flow of an Oldroyd-B fluid through a porous me-
dium. They obtained the expressions for the velocity field and the tangential stress by means of the Fourier sine 
transform. Kumar and Singh [15] have investigated the stability of a plane interface separating two viscoelastic 
(Rivlin-Ericksen) superposed fluids in the presence of suspended particles. 

In the present work we wish to consider an investigation of stability for flow in a porous medium under the 
effect of a magnetic field that is normal to the interface between the fluids. The considered system is composed 
of a viscous fluid layer of finite thickness embedded between two semi-infinite fluids. We have concentrated in 
this work to investigate the mechanisms of stability of three porous layers of fluids in the presence of normal 
magnetic field. This paper is organized as follows: This section has presented the motivation for the investiga-
tion in addition to relevant background information. In next section, we will give a formulation of the problem 
statement, including the basic equations of the fluid mechanics and Maxwell’s equations governing the motion 
of our model. In the third section and its subsections, are concerned with the derivation of the characteristic equ-
ation and numerical estimations for stability configuration. The salient results of our analysis are discussed and 
some important conclusions are drawn in final section of this paper. 

2. Formulation of the Problem 
The system under consideration is composed of an infinite horizontal viscous fluid sheet of vertical height 2L  
confined between two semi-infinite superposed incompressible viscous fluids. The fluids are considered to be 
influenced by the gravity force in the negative y-direction. The x-axis of the co-ordinate system is parallel to the 
direction of the fluid sheet flow, and the y-axis is normal to the fluid sheet with its origin located at the middle 
plane of the fluid sheet as shown in Figure 1. The superscripts (1), (2) and (3) refer to the lower fluid, middle 
sheet and upper fluid respectively, where ( )rρ , ( )1, 2, 3r =  is the fluid densities, ( )rµ  is the magnetic per-
meability and ( )rη  represents the viscosities of the fluids. The fluids are subjected to external magnetic field  
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Figure 1. Sketch for the system under consideration. The y-axis is taken vertically upwards, the x-axis is 
taken horizontally at the half of the middle sheet. 

 
acting in the positive y-direction. The two interfaces are parallel and the flow in each phase is every where pa-
rallel to each other. The surface deflections are expressed by ( )1 ,y x tξ=  at y L= −  and ( )2 ,y x tξ=  at y L= , 
where at the initial state of the system, we assume that the fluid phases are viscous and have a common flat in-
terfaces at y L= −  and y L= . 

2.1. Scaling Variables for the Evolution Equations 
First, we will use the dimensionless variables to provide improved insight into the physics and in order to under-
stand hydrodynamic stability better. So we define the corresponding dimensionless variables using the half 
thickness of the middle fluid sheet L as a length scale. Thus the stream velocity and the time are made dimen-
sionless using Lg  and L g , while the applied magnetic field and the magnetic potential are made dimen-  

sionless by ( ) ( )2 2Lgρ µ  and ( ) ( )2 2L Lgρ µ , respectively. In addition the viscosity ( )2 2L gρ , the pres-  
sure 2Lgρ , the stream function 3L g  and the permeability of the porous medium 2L Q . Furthermore, in the 
equations of motion, we use the symbols: the magnetic permeability ratio ( ) ( ) ( )2ˆ r rµ µ µ=  the fluid density ra-
tio ( ) ( ) ( )2ˆ r rρ ρ ρ=  the dynamic viscosities ratio ( ) ( ) ( )2ˆ r rη η η= . Also the Weber number ( )22

j jW T L gρ= , 
( )1,2j = , where jT  is the surface tension coefficient. 

The dynamics of the problem are described by the simultaneous solution of three field equations: Maxwell’s 
equations, Navier-Stokes equation, and the continuity equation. Assuming a quiescent initial state, therefore the 
base state velocity in the fluid layers is zero in which the flow is steady and fully developed. Fluid flow through 
a porous medium is often given by the phenomenological Darcy’s equation. Thus, the equations governing two- 
dimensional motion of a viscous incompressible fluid through porous medium are [3]-[7] 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( )
2ˆ ˆ ˆ

r r
r r r r r r r

e e r
R R P

t Q
ρ η η

 ∂
+ ⋅∇ = − ∇ + ∇ +  ∂ 

V VV V V                   (1) 

and the equation of continuity will be 
( ) 0r∇⋅ =V                                       (2) 



S. A. Alkharashi 
 

 
313 

where ( ) ( )2 23
eR d gρ η=  denotes the Reynolds number of the middle layer and ( )rQ  represents the per-  

meability parameter and ( ) ( ) ( )r r rP p gyρ= +  is the total hydrostatic pressure and ,
x y

 ∂ ∂
∇ ≡  ∂ ∂ 

 is the hori-  

zontal gradient operator. 
In writing Maxwell’s equations for the problem, we supposed that the electro-quasi-static approximation is 

valid for the problem, and hence the magnetic field equations read 

( ) ( )( ) ( )0   and   r r rµ∇ ⋅ = ∇× =H H 0                             (3) 

Here, ( )rH  refers to the magnetic field intensity vector and ( )rµ  is the magnetic permeability. The construc- 
tion of a potential function ( )rχ , can be representable as the gradient of the scalar potential such that 

( )
( )

( )
( )

1 0 2

r r
r rH

x y
χ χ ∂ ∂

= − + −  ∂ ∂ 
H e e                             (4) 

and thus we have the Laplace equation in the form 

( ) ( )2 2

2 2 0
r r

x y
χ χ∂ ∂

+ =
∂ ∂

                                  (5) 

where 1e  and 2e  are unit vectors in x −  and y −  directions. 

2.2. Boundary Conditions 
Solution of the equations of motion cited before is accomplished by utilizing the convenient boundary condi-
tions. The flow field solutions of the above governing equations have to satisfy the kinematic and dynamic 
boundary conditions at the two interfaces, which can be taken as 1y ≈ ± . The normal component of the velocity 
vector in each of the phases of the system is continuous at dividing surface [16] [17]: 

( ) ( ) ( )1 0,    1 ,   1, 2jj j
j j y j+⋅ = ⋅ = = − =n V n V                        (6) 

where 
( )

1 2

,j
j

x t
x

ξ∂
= − +

∂
n e e  is the outward normal unit vector to the interfaces. The condition that the inter-  

faces are moving with the fluids lead to 

( ) ( ), 1 0,    1 ,   1, 2jjj jv y j
t
ξ+ ∂

+ = = − =
∂

                            (7) 

In addition the jump in the shearing stresses is zero across the interfaces, this gives 

( ) ( )
1( ) ( )

ˆ  0,    1
jj j

jj

j

u v y
y x

η
+

 ∂ ∂
+ = = − 

∂ ∂ 
                           (8) 

where, ( ),u v=V  is the velocity vector due to disturbances and the notation ⋅  denotes the jump of a quan-
tity across the interfaces. 

Furthermore, the Maxwell’s conditions on the magnetic field where no free surface charges are present on the 
interfaces. The continuity of the normal component of the magnetic displacement at the interfaces reads: 

( )
( )

( ) ( )
( )

( )2 1 2 3
1 2ˆ ˆ0   at   1   and   0   at   1y y

y y y y
χ χ χ χµ µ∂ ∂ ∂ ∂

− = = − − = =
∂ ∂ ∂ ∂

               (9) 

The tangential component of the magnetic field is zero across the interfaces, this requires that from this equa-
tion, we have 
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( ) ( )
( )( ) ( )

2 1
2 1 1

0ˆ 1    at   1H y
x x x

ξχ χ µ
∂∂ ∂

− = − = −
∂ ∂ ∂

                       (10) 

( ) ( ) ( )

( )
( ) ( )

3 2 1
1 1 2

02

ˆ ˆ    at   1
ˆ

H y
x x x

ξχ χ µ µ
µ

  ∂∂ ∂
− = − =  ∂ ∂ ∂ 

                     (11) 

where, we use the zero order from continuity of the normal component of magnetic field to express both ( )2
0H  

and ( )3
0H , in terms of ( )1

0H . 
The completion of the mathematical description of the problem requires an additional interfacial condition 

determine the shape of the interface between the fluids, which is the dynamical equilibrium boundary condition 
in which the surface traction suffers a discontinuity due to the surface tension: 

1
2 212  

2

j

n j j
j

vp H H W
y

η µ
+

∂  − + + − = ∇ ⋅ ∂  
n                         (12) 

These boundary conditions represented here are prescribed at the interface jy ξ= . As the interface is de-
formed, all variables are slightly perturbed from their equilibrium values. 

2.3. Linear Perturbation and Solutions 
The analysis of linear theory, as presented in Chandrasekhar book [18], depends on neglecting the nonlinear 
terms from equation of motion as well as from the boundary conditions. The solution of the above system of 
governing equations and boundary conditions can be facilitated by defining a stream function, ψ of the time and 
space coordinates, which automatically satisfies Equation (2), where 

,    u v
y x
ψ ψ∂ ∂

= = −
∂ ∂

                                 (13) 

To solve the equations for the fluid phases under consideration, the two-dimensional finite disturbances are 
introduced into the equation of motion and continuity equation as well as the boundary conditions. As a custo-
mary in hydrodynamic stability analysis [18], where all quantities have exponential time and a spatial depen-
dence and in view of a standard Fourier decomposition, we may assume that the solutions are in the form 

( ) ˆ, eikx t
j jx t c cωξ ξ += + ⋅                                   (14) 

( ) ( ) ( ) ( )ˆ, , er r ikx tx y t y c cωψ ψ += + ⋅                            (15) 

( ) ( ) ( ) ( )ˆ, , er r ikx tx y t y c cωχ χ += + ⋅                            (16) 

( ) ( ) ( ) ( )ˆ, , er r ikx tp x y t p y c cω+= + ⋅                            (17) 

where l̂ξ  is the initial amplitude of the disturbance, which is taken to be much smaller than the half-thickness 
L of the middle sheet, k is the wave number of the disturbance, which is assumed to be real and positive, ω is a 
complex frequency ( r iiω ω ω= + , where rω  represents the rate of growth of the disturbance, iω  is 2π  
times the disturbance frequency), the symbol i denotes 1− , the imaginary number and c c⋅  represents the 
complex conjugate of the preceding terms. 

Eliminating the pressure term from Equations (1) and (2) and using (15) and (17), we obtain the following 
equation 

( )

( )
( )

( )
4 2

2 2 2 2
4 2

ˆ ˆd d ˆ 0
d d

r r
r

r rk k
y y
ψ ψ ψ− + + =                           (18) 

and 
( )

( ) ( )
2 2 ˆ 1

ˆ

r
e

r r r

R
k

Q
ρ ω
η

= + +  
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Using the normal mode solution (17) we can obtain the pressure from Equation (1): 

( )
( ) ( ) ( )

( )
( )

( )
( )3 3 2

1
3 2

ˆ1 ˆ 
r r r r r

r r r

e

p Q
ik R y x ty x y

η ψ ψ ψ ψρ−
  ∂ ∂ ∂ ∂ = + − −  

∂ ∂ ∂∂ ∂ ∂    
               (19) 

Substituting, the solution of the analytical solution of Equation (18) into Equation (15) we get 

( ) ( )1 2 3 4e e e e er rr y yky ky ikx t
r r r rA A A A c cωψ −− += + + + + ⋅                    (20) 

Also, the solution of the magnetic potential, in view of Equation (5) may be taken the form 

( ) ( )1 2e e er ky ky ikx t
r rB B c cωχ − += + + ⋅                           (21) 

Since the disturbances vanish as y → ±∞ , this required that 21 41 13 33 0A A A A= = = =  and 21 13 0B B= = . 

3. Results and Discussion 
3.1. Derivation of the Characteristic Equation 
In this section, we will derive the dispersion relation controlling the stability behavior of the system. When the 
obtained solutions of the stream function, magnetic potential and surface tension are inserted into Equations (6)- 
(12), we have a linear homogeneous system of algebraic equations of the fourteen unknown coefficients pjA , 

ljB , l̂ξ , ( )1,2,3,4p = . These homogeneous system of equations can be expressed in matrix form as 

=MZ 0                                      (22) 

where 0 is a null vector, Z is a vector of unknown coefficients defined as 

( )T
11 31 12 22 32 42 23 43 11 12 22 23 1 2

ˆ ˆ, , , , , , , , , , , , ,A A A A A A A A B B B B ξ ξ=Z       (23) 

where the superscript T indicates the matrix transpose. A non-trivial solutions of the unknown coefficients prA , 
lrB , ˆ

jξ , exists if and only if the determinant of the 14 × 14 matrix M must be equal to zero, which yields a dis-
persion relation between the wave number k and the perturbation frequency ω for specified values of other pa-
rameters, given by 

( ) ( ) ( ) ( )( )1
0 ˆ ˆ ˆ, ; , , , , , , 0r r r r

e jD k R H Q Wω η ρ µ =                       (24) 

which represents the linear dispersion equation for surface waves propagating through a viscous layer embedded 
between two other fluids with the influence of constant horizontal magnetic field. This dispersion relation con-
trols the stability in the present problem. That is, each negative of the real part of ω corresponds to a stable mode 
of the interfacial disturbance. On the other hand, if the real part of ω is positive, the disturbance will grow in 
time and the flow becomes unstable. 

It is clear that the eigenvalue relation (24) is somewhat more general and quite complex, since r  involves 
square roots and so one can obtain other characteristic relation as limiting cases. For an inviscid fluid we get the 
characteristic equation as special case from Equation (24) when ( )ˆ 0rη = . Thus by collecting the real and the 
imaginary terms in power order of ω with the help of symbolic computation software Mathematica, Equation 
(24) can be transformed into a polynomial algebraic equation of fourth order in the frequency ω. Zakaria et al. 
[7] obtained a similar equation in their study of temporal stability of an inviscid fluids in porous media. Also, in 
the special case when the effect of the magnetic forces is absent and for the fluids flow through no-porous media,  

we get 
( )

( )
2 ˆ   

ˆ

r
e

r r

R
k

ρ ω
η

= +  and in this case the dispersion relation (28) is reduced to a non-polynomial alge-  

braic equation for the frequency ω which coincides with that obtained by Kwak and Pozrikidis [19]. Another 
case is the limiting case of one interface between two continuum layers (non-porous medium), in which highly 
viscous fluids are considered. Thus we obtain a polynomial equation of fifth order in ω, which is obtained before 
by Kumar and Singh [15] and Sunil et al. [20]. 
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In the following, numerical applications are carried out to demonstrate the effects of various physical para-
meters on the stability criteria of the system. In the present work, we will numerically solve the implicit disper-
sion relation by means of the Chebyshev spectral tau method [21]. 

3.2. Numerical Estimation for Stability Configuration 
In this section, the goal is to determine the numerical assess for the stability pictures for surface waves propa-
gating through porous media. In order to present this examination, Equation (24) is used to control the stability 
behavior, which requires specification of the parameters: the magnetic field, the magnetic permeability, the po-
rosity effect, the density, the viscosity. In the calculations given below all the physical parameters are sought in 
the dimensionless form as defined above. The stability of fluid sheets corresponds to negative values of the dis-
turbance growth rate (i.e. 0rω < ), and the disturbance growth rates of different fluids can be gained through 
solving the above corresponding dispersion relation numerically. 

To show the effect of changes of the magnetic permeability ratio ( ) ( ) ( )( )3 3 2µ̂ µ µ=  on the stability behavior, 
the results for the calculations are displayed in Figure 2, partitions (a), (b) and (c) indicate the plane ( )r kω − . 
The graph displayed in this plane is evaluated for a system having the parameters given in the caption of Figure 
2, while the magnetic permeability ( )3µ̂  has some variation for the sake of comparison. In the graph 2 the val-
ues 0.5, 1.5 and 1.5 are selected for ( )3µ̂  correspond to the continuous, dashed and dotted curves respectively. 
Before, we discuss the stability of this graph we firstly define the critical wave number (also called the cutoff 
wave number) as given in [10] the value of the wave number at the point where the growth rate curve crosses the 
wave number axis in the plots of wave growth rate versus wave number. In other words the critical wave num-
ber is the value of the wave number, which separates the stable motions from the unstable ones and conversely, 
and can be obtained from the corresponding dispersion relations by setting 0rω = . It is apparent from the 
inspection of Figure 2, under the influence of the magnetic permeability ( )3µ̂ , the growth rates with different 
magnetic permeability ratio keep almost identical for the wave numbers less than 0.4, but increase 

 

 

Figure 2. Influence of the magnetic permeability ( )3µ̂  in the plane ( )r kω −  at ( )1
0 0.5H = , ( )1ˆ 1.2µ = , 

( )1ˆ 0.6ρ = , ( )3ˆ 0.8ρ = , 0.9eR = , ( )1ˆ 0.5η = , ( )3ˆ 0.7η = , ( )1 0.3Q = , ( )2 0.8Q = , ( )3 0.1Q = , 1 3W = , 

2 2W =  on the wave growth rate, with ( )3ˆ 0.5µ =  (solid), 1 (dashed), 1.5 (dotted). 
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correspondingly at higher values of the wave number, further the plane ( )r kω −  is divided into two regions. 
The first is 0 0.11k< < , which represent a stabilizing effect for increasing the parameter ( )3µ̂ . The second re-
gion lie in the range 1.5<<0.11 k , since in this range, we notice that, when the magnetic permeability is in-
creased, both the growth rates and the cutoff wave numbers of fluid sheets decrease. A general conclusion of the 
graph 2 reveals that, the stabilizing influence is found for increasing magnetic permeability ratio. 

The examination of the influence of the magnetic field ( )1
0H  on the stability picture is illustrated in Figure 3, 

for the same system considered in Figure 2. The results for calculations are displayed in the plane ( )r kω − . 
Since the stability arises according to the negative sign of the real part of the complex frequency ω. Thus when 
the wave number is over the cutoff wave number, the fluid sheet is unstable. In this figure the solid curve is 
plotted at the value ( )1

0 1H = , and the value ( )1
0 2H =  corresponds to the dashed line, while the dotted curve 

represents the value ( )1
0 3H = . The inspection of Figure 3 indicates that as the magnetic field is increased the 

growth rates increased, on other meaning the stable regions under the curves are decreased. Therefore, it is con-
cluded that the magnetic field effects has destabilizing influence in the fluid sheets. 

The examination of change of the lower to the middle fluid viscosity ratio ( )1η̂  in the stability criteria is illu-
strated in Figure 4, where the values 0.2, 2.5 and 3 are choosing for the quantity ( )1η̂ . It is obvious from this 
graph, for every value of the ( )1η̂ , the corresponding curve crosses the wave number axis at three points (the 
cutoff wave numbers) and formed areas of stability and instability regions. Inspection of Figure 4 revels that the 
increasing of the viscosity ratio ( )1η̂  tends to a reduction in the width of the unstable regions, whereas the sta-
bility region extended under the influence of the increasing ( )1η̂ . It is clear that from Figure 4 the viscosity ratio 

( )1η̂  has a stabilizing influence on the stability of the movement of the waves. Ozen et al. [22] have been ob-
tained a similar conclusion in their studies of electrohydrodynamic linear stability of two immiscible fluids in 
channel flow. In Figure 5, in which the real part of the frequency ω is plotted against the wave number, the 
Reynolds number eR  has the values 0.1, 0.3 and 0.7 to show its effect on the stability picture. Having checked 
the stability diagrams of this figure, it is discovered that the increasing of the Reynolds number leads to a con-
traction in the stability areas under the wave number axis, and consequently the Reynolds number has a destabi-
lizing role on the stability behavior. Similar results were reported by Liu et al. [10] in their studies of the insta-
bility of two-dimensional non-Newtonian liquid sheets. 

 

 

Figure 3. Effects of the magnetic field ( )1
0H  in the plane ( )r kω − , on the wave growth rate with 

( )1
0 1H = , 2, 3 at the same system given in Figure 2. 
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Figure 4. The graph is constructed for rω  versus k , with ( )1ˆ 2η = , 2.5, 3. 
 

 
Figure 5. Represents the stability diagrams in the plane ( )r kω −  at the Reynolds number 0.1eR =  (solid), 
0.3 (dashed), 0.7 (dotted). 
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Figure 6 exhibits the effects of the the permeability parameter ( )2Q  on the stability behavior of the fluid 
layers. In this graph the solid, dashed and dotted curves represent the values 0.2, 0.4 and 0.9 in the plane 
( )r eRω −  of the parameter ( )2Q  respectively. Having noted the stability chart of this diagram, it is observed 
that the increasing of the permeability in the range 0 0.7eR< < , leads to an contraction in the width of the in-
stability regions (the regions under the curves and above the wave number axis correspond to the positive sing 
of the disturbance growth rate). On the other hand, through the interval 0.7 2eR< <  the growth rates of insta-
bilities with different ( )2Q  are increased. In general view of the graph 6, it is noticed that there are two roles of 
the variation of the the porous parameter ( )2Q , the first one is a stabilizing when the Reynolds number eR  less 
than the value 0.7, and the other role is a destabilizing when eR  lies between the values 0.7 and 2. Hence the 
phenomenon of the dual (irregular) role is found for increasing the permeability parameter ( )2Q . 

The influence of magnetic field ( )1
0H  on the flow behavior in terms of streamlines field is discussed through 

the parts of Figure 7 (a curve formed by the velocity vectors of each fluid particle at a certain time is called a 
streamline, in which the tangent at each point of this curve indicates the direction of fluid at that point). The 
streamlines in the physical domain are thus mapped into horizontal grid lines in the computational plane, thus 
resulting in a rectangular computational region. The streamlines show to be very effective tools to visualize a 
qualitative impression of the flow behavior during the motion. In the parts (a-c) of Figure 7, the streamlines 
picture is achieved by fixing the value of all the physical parameters as given in Figure 2, with 0.7k = , 

0.4t = , 1̂ 0.3ξ =  and 2̂ 0.4ξ =  where ( )1
0H  has three value for comparison. Snapshots of instantaneous 

streamlines of the stream function, are shown in Figure 7(a) at ( )1
0 0.8H = . The inspection of this graph reveals 

that the flow consists of cells (contours) consisting of clockwise (positive values of streamlines) and anti clock-
wise (negative values of streamlines) circulations. In parts (b) and (c) of this graph, the values of ( )1

0H  are in-
creased to 1.2 and 1.8 respectively. 

A conclusion that may be made from the comparison among the parts (a-c) of Figure 7 is that the magnetic 
field leads to crowd in the concentration of the streamlines in the movement of the fluids. In other words, in the 
light of stability configuration, we notice that corresponding the parts (a-c) of Figure 7 there are three different 
values of the disturbance growth rate ( )rω , which are 0.049, 0.66 and 0.502. Since the stability of fluid sheets 
arises to negative values of growth rate, thus it can be observed that the streamlines contours represent an unsta-
ble system. Hence the magnetic field has destabilizing influence, which coincide with the result given in Figure 3. 
 

 

Figure 6. Illustrated in the plane ( )r eRω −  with the permeability parameter ( )2 0.2Q = , 0.4, 0.9. 
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Figure 7. Streamlines contours for a system having the same parameters considered in Figure 2, with 0.7k = , 0.4t = , 

1̂ 0.3ξ =  and 2̂ 0.4ξ = , where ( )1
0 0.8H = , 1.2 and 1.8 of the parts (a), (b), and (c), respectively. 

4. Conclusions 
This work is concerned with the influence of the normal magnetic field on the gravitational stability of a viscous 
fluid sheet of finite thickness. The sheet is embedded between two semi-infinite fluids layers moving in porous 
media, under the influence of magnetic field. The solutions of the linearized equations of motion under the 
boundary conditions lead to an implicit dispersion relation between the growth rate and wave number. The pa-
rameters governing the layers flow system, the magnetic properties and porosity effects strongly influence the 
wave forms and their amplitudes and hence the stability of the fluid. The stability criteria have been performed 
theoretically and numerically in which the physical parameters are put in the dimensionless form. Some stability 
diagrams have been plotted and discussed, in which the influence of the various parameters of the problem on 
the interface stability is thoroughly analyzed. 

It has been found that the phenomenon of the dual (to be either stabilizing or destabilizing) role is found for 
increasing the permeability parameter. It is established that both the viscosity coefficient and the magnetic per-
meability damps the growth rate, introducing stabilizing influence, where a part of its kinetic energy may be ab-
sorbed. However, it is expected to be a more careful search would clarify that the motion of the interfacial waves 
will be more stable with the increase of the values of the viscosity as well as the magnetic permeability. In addi-
tion an increase of the lower to the middle fluid viscosity ratio decrease both the growth rate and the stability 
range of fluid sheet, which give a stabilizing influence on the stability behavior of the waves. This result con-
firmed the fact that when the lower fluid is more viscous than the upper, thus the system is stable. The role of 
the magnetic field and Reynolds number is to increase the amplitude of the disturbance leading to the destabili-
zation state of the flow system, promote the oscillatory behavior. 
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