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Abstract 

We investigate the Hill differential equation ( )( ) ( ) ( ) ( ) ( )( ) ( )′′ ′1 0,A t y t B t y t D t y t+ + + + =λ  where 

( ) ,A t  ( ) ,B t  and ( )D t  are trigonometric polynomials. We are interested in solutions that are 
even or odd, and have period π  or semi-period π . The above equation with one of the above 
conditions constitutes a regular Sturm-Liouville eigenvalue problem. We investigate the repre-
sentation of the four Sturm-Liouville operators by infinite banded matrices. 
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1. Introduction 
The first known appearance of the Ince equation,  

( )( ) ( ) ( )( ) ( ) ( )( ) ( )1 cos 2 sin 2 cos 2 0,a t y t b t y t d t y tλ′′ ′+ + + + =  

is in Whittaker’s paper ([1], Equation (5)) on integral equations. Whittaker emphasized the special case 0a = , 
and this special case was later investigated in more detail by Ince [2] [3]. Magnus and Winkler’s book [4] 
contains a chapter dealing with the coexistence problem for the Ince equation. Also Arscott [5] has a chapter on 
the Ince equation with 0a = . 

One of the important features of the Ince equation is that the corresponding Ince differential operator when 
applied to Fourier series can be represented by an infinite tridiagonal matrix. It is this part of the theory that 
makes the Ince equation particularly interesting. For instance, the coexistence problem which has no simple 
solution for the general Hill equation has a complete solution for the Ince equation (see [6]). 

When studying the Ince equation, it became apparent that many of its properties carry over to a more general 
class of equations “the generalized Ince equation”. These linear second order differential equations describe 

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2014.213137
http://dx.doi.org/10.4236/jamp.2014.213137
http://www.scirp.org/
mailto:rmoussa@uwm.edu
http://creativecommons.org/licenses/by/4.0/


R. Moussa 
 

 
1172 

important physical phenomena which exhibit a pronounced oscillatory character; behavior of pendulum-like 
systems, vibrations, resonances and wave propagation are all phenomena of this type in classical mechanics, 
(see for example [7]), while the same is true for the typical behavior of quantum particles (Schrödinger’s equa- 
tion with periodic potential [8]). 

2. The Differential Equation  
We consider the Hill differential equation  

( )( ) ( ) ( ) ( ) ( )( ) ( )1 0,A t y t B t y t D t y tλ′′ ′+ + + + =                            (2.1) 

where  

( ) ( )
1

cos 2 ,j
j

A t a jt
η

=

= ∑  

( ) ( )
1

sin 2 ,j
j

B t b jt
η

=

= ∑  

( ) ( )
1

cos 2 .j
j

D t d jt
η

=

= ∑  

Here η  is a positive integer, the coefficients ,ja  ,jb  ,jd  for 1, 2, ,j η=   are specified real numbers.  

The real number λ  is regarded as a spectral parameter. We further assume that 
1

1.j
j

a
η

=

<∑  Unless stated  

otherwise solutions ( )y t  are defined for .t∈  We will at times represent the coefficients ,ja  ,jb  ,jd  for 
1, 2, ,j η=   in the vector form: 1 2, , , ,a a aη =  a   1 2, , , ,b b bη =  b   1 2, , , .d d dη =  d   

The polynomials  

( ) 2: 2 , 1, 2, , ,
2

j
j j j

d
Q a b jµ µ µ η= − − =                            (2.2) 

will play an important role in the analysis of (2.1). For ease of notation we also introduce the polynomials  

( ) ( )† : 1 2 , 1,2, , .j jQ Q jµ µ η= − =                             (2.3) 

Equation (2.1) is a natural generalization to the original Ince equation  

( )( ) ( ) ( )( ) ( ) ( )( ) ( )1 cos 2 sin 2 cos 2 0.a t y t b t y t d t y tλ′′ ′+ + + + =                 (2.4) 

Ince’s equation by itself includes some important particular cases, if we choose for example 0,a b= =  
2d q= −  we obtain the famous Mathieu’s equation  

( ) ( )( ) ( )2 cos 2 0,y t q t y tλ′′ + − =                               (2.5) 

with associated pzlynomial  
( ) .Q qµ =                                         (2.6) 

If we choose 0,a =  4 ,b q= −  and ( )4 1 ,d q ν= −  where ,q  ν  are real numbers, Ince’s equation 
becomes Whittaker-Hill equation  

( ) ( ) ( ) ( )( ) ( )4 sin 2 4 1 cos 2 0,y t q t y t q t y tλ ν′′ ′− + + − =                       (2.7) 

with associated polynomial  
( ) ( )2 2 1 .Q qµ µ ν= − +                                    (2.8) 

Equation (2.1) can be brought to algebraic form by applying the transformation 2cos .tξ =  For example 
when 2,η =  and 0,= =a b  we obtain  

( )
( )

( )

22
2 1 2 1 2

2

8 2 8d 1 1 2 d 1 0.
2 1 d 4 1d

d d d d dy y y
ξ ξ λξ

ξ ξ ξ ξ ξξ
   + − − + +−

+ + =     − −   
           (2.9) 
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3. Eigenvalues 
Equation (2.1) is an even Hill equation with period π . We are interested in solutions which are even or odd and 
have period π  or semi period π  i.e. ( ) ( ).y t y t+ π = ±  We know that ( )y t  is a solution to (2.1) then 
( ) ,y t + π  and ( )y t−  are also solutions. From the general theory of Hill equation (see [9], Theorem 1.3.4); we 

obtain the following lemmas:  
Lemma 3.1. Let ( )y t  be a solution of (2.1), then ( )y t  is even with period π  if and only if  

( ) ( )0 2 0;y y′ ′= π =                                      (3.1) 

( )y t  is even with semi period π  if and only if  

( ) ( )0 2 0;y y′ = π =                                      (3.2) 

( )y t  is odd with semi period π  if and only if  

( ) ( )0 2 0;y y′= π =                                      (3.3) 

( )y t  is odd with period π  if and only if  

( ) ( )0 2 0.y y= π =                                      (3.4) 

Equation (2.1) can be written in the self adjoint form  

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 ,A t t y t D t t y t t y tω ω λω′′− + − =                     (3.5) 

where  

( ) ( ) ( )
( )

exp d .
1

B t A t
t t

A t
ω

′ −
=   + 

∫                                (3.6) 

Note that ( )tω  is even and π -periodic since the function ( ) ( )
( )1

B t A t
A t

′−
+

 is continuous, odd, and π - 

periodic.  
Proof. Let ( ) ( )( ) ( )1 .r t A t tω= +  (3.5) can be written as,  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ,r t y t D t t y t t y tω λω′′− − =                          (3.7) 

which is equivalent to  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).r t y t r t y t D t t y t t y tω λω′ ′ ′′− − − =                         (3.8) 

Noting that  

( ) ( )( ) ( ) ( ) ( )1 ,r t A t t A t tω ω′ ′ ′= + +  

and  

( ) ( ) ( )
( ) ( ) ,

1
B t A t

t t
A t

ω ω
′−

′ =
+

 

we see that  

( ) ( ) ( ).r t B t tω′ =  

Therefore, (3.8) can be written as  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 .B t t y t A t t y t D t t y t t y tω ω ω λω′ ′′− − + − =                 (3.9) 

Since ( )tω  is strictly positive, the lemma follows. □ 
In the case of Ince’s Equation (2.4), we have the following formula for the function ω   
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( )
( ) 1 21 cos 2 if 0,

:
exp cos 2 if 0.

2

b aa t a
t b t a

ω

− − + ≠


=  −  =  
 

                             (3.10) 

When 2,η ≥  the function can be computed explicitly using Maple. For example, let us consider the case 

2,η =  with 1 1, ,
4 8
 =   

a  [ ]1,1 .=b  Applying (3.6), we obtain  

( )
( )( )32

1 .
7 2cos 2 2 cos 2

t
t t

ω =
+ +

 

Equation (2.1) with one of the boundary conditions in lemma 3.1 is a regular Sturm-Liouville problem. From 
the theory of Sturm-Liouville ordinary differential equations it is known that such an eigenvalue problem has a 
sequence of eigenvalues that converge to infinity. These eigen values are denoted by 2 ,mα  2 1,mα +  2 1,mβ +  and 

2 2 ,mβ +  0,1, 2,m =   to correspond to the boundary conditions in lemma 3.1 respectively. This notation is 
consistent with the theory of Mathieu and Ince’s equations (see [4] [10]). Lemma 3.1 implies the following 
theorem.  

Theorem 3.2. The generalized Ince equation admits a nontrivial even solution with period π  if and only if 
( )2 , ,mλ α= a b d  for some 0 ;m∈  it admits a nontrivial even solution with semi-period π  if and only if 

( )2 1 , ,mλ α += a b d  for some 0 ;m∈  it admits a nontrivial odd solution with semi-period π  if and only if 

( )2 1 , ,mλ β += a b d  for some 0 ;m∈  it admits a nontrivial odd solution with period π  if and only if 

( )2 2 , ,mλ β += a b d  for some 0 .m∈  
Example 3.3. To gain some understanding about the notation we consider the almost trivial completely 

solvable example, the so called Cauchy boundary value problem  

( ) ( ) 0,y t y tλ′′ + =                                     (3.11) 

subject to the boundary conditions of lemma 3.1. We have the following for the eigenvalues λ  in terms of 
0,1, 2,m =  . 

1) Even with period π  we have ( )2
2 2 .m mλ α= =  

2) Even with semi-period π  we have ( )2
2 1 2 1 .m mλ α += = +  

3) Odd with semi-period π  we have ( )2
2 1 2 1 .m mλ β += = +  

4) Odd with semi-period π  we have ( )2
2 2 2 2m mλ β += = + .  

The formal adjoint of the generalized Ince equation is  

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )1 0.A t y t B t y t D t y tλ′′ ′+ − + + =                       (3.12) 

By introducing the functions  

( ) ( ) ( ) ( ) ( )*

1
2 2 sin 2 ,j j

j
B t A t B t ja b jt

η

=

′= − = − +∑  

( ) ( ) ( ) ( ) ( ) ( )* 2

1
4 2 cos 2 ,j j j

j
D t D t A t B t j a jb d jt

η

=

′ ′′= + − = − + −∑  

we note that the adjoint of (2.1) has the same form and can be written in the following form:  

( )( ) ( ) ( ) ( ) ( )( ) ( )* *1 0.A t y t B t y t D t y tλ′′ ′+ + + + =                      (3.13) 

Lemma 3.4. If ( )y t  is twice differentiable defined on ,  then, ( )y t  is a solution to the generalized Ince 
equation if and only if ( ) ( )t y tω  is a solution to its adjoint. 
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Proof. We Know that  

* *2 , , ,
1
B AB A B D D A B

A
ω ω

′−′ ′′ ′ ′= − = + − =
+

 

and  

( )( ) ( ) ( )
( )

2

2

1
.

1

B A A A B A B A

A
ω ω

′ ′′ ′ ′ ′− + − − + −
′′ =

+
 

For ease of notation, let  

( )( ) ( ) ( )
( )

2

2

1
, ,

1 1

B A A A B A B AB Ap q
A A

′ ′′ ′ ′ ′− + − − + −′−
= =

+ +
 

then  

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

* *

* *

* *

1

1 2

1 2 .

A y B y D y

A y y y B y y D y

A q y p y y B p y y D y

ω ω λ ω

ω ω ω ω ω λ ω

ω ω ω ω ω λ ω

′′ ′+ + + +

′′ ′ ′ ′′ ′ ′= + + + + + + +

′ ′′ ′= + + + + + + +

 

Substituting for ,p  ,q  * ,B  and *D  and simplifying we obtain  

( )( ) ( ) ( )( ) ( ) ( )( )* *1 1 .A y B y D y A y By D yω ω λ ω ω λ′′ ′ ′′ ′+ + + + = + + + +
 
□ 

From lemma 3.4 we know that if y  is twice differentiable, y  is a solution to the generalized Ince’s 
equation with parameters ,λ  ,a  ,b  and d  if and only if yω  is a solution to its formal adjoint. Since the 
function ω  is even with period π , the boundary condition for y  and yω  are the same. Therefore we have 
the following theorem.  

Theorem 3.5. We have for 0 ,m∈   

( ) ( )2, , , 4 , 4 2 , 1,2, , ,m j j j m j j j j j ja b d a ja b d j a jb jα α η= − − − − =                (3.14) 

( ) ( )2
1 1, , , 4 , 4 2 , 1,2, , .m j j j m j j j j j ja b d a ja b d j a jb jβ β η+ += − − − − =               (3.15) 

From Sturm-Liouville theory we obtain the following statement on the distribution of eigenvalues.  
Theorem 3.6. The eigenvalues of the generalized Ince equation satisfy the inequalities  

31 2
0

31 2

αα α
α

ββ β
    

< < < <     
     

                                (3.16) 

The theory of Hill equation [4] gives the following results.  
Theorem 3.7. If 0λ α≤  or λ  belongs to one of the closed intervals with distinct endpoints ,mα  ,mβ  

0,1,2, ,m =   then the generalized Ince equation is unstable. For all other real values of λ  the equation is 
stable. In the case  

( ) ( ), , , , ,m mα β=a b d a b d                                   (3.17) 

for some positive integer m  and the parameters ,a  ,b  d  the degenerate interval [ ],m mα β  is not an 
instability interval: The generalized Ince equation is stable if  

( ) ( ), , , , .m mλ α β= =a b d a b d  

4. Eigenfunctions 
By theorem 3.2, the generalized Ince’s equation with ( )2 , ,mλ α= a b d  admits a non trivial even solution with 
period π . It is uniquely determined up to a constant factor. We denote this Ince function by  

( ) ( )2 2 ; , ,m mIc t Ic t= a b d  when it is normalized by the conditions ( )2 0 0mIc >  and  
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( )( )2 2
20

d .
4mIc t t

π π
=∫                                     (4.1) 

The generalized Ince’s equation with ( )2 1 , ,mλ α += a b d  admits a non trivial even solution with semi-period 
π . It is uniquely determined up to a constant factor. We denote this Ince function by ( ) ( )2 1 2 1 ; , ,m mIc t Ic t+ += a b d  
when it is normalized by the conditions ( )2 1 0 0mIc + >  and  

( )( )2 2
2 10

d .
4mIc t t

π

+
π

=∫                                       (4.2) 

The generalized Ince equation with ( )2 1 , ,mλ β += a b d  admits a non trivial odd solution with semi-period π . 

It is uniquely determined up to a constant factor. We denote this Ince function by ( ) ( )2 1 2 1 ; , ,m mIs t Is t+ += a b d  

when it is normalized by the conditions ( )2 1
d 0 0
d mIs
t + >  and  

( )( )2 2
2 10

d .
4mIs t t

π

+
π

=∫                                        (4.3) 

The generalized Ince equation with ( )2 2 , ,mλ β += a b d  admits a non trivial odd solution with period π . It is 

uniquely determined up to a constant factor. We denote this Ince function by ( ) ( )2 2 2 2 ; , ,m mIs t Is t+ += a b d  when 

it is normalized by the conditions ( )2 2
d 0 0
d mIs
t + >  and  

( )( )2 2
2 20

d .
4mIs t t

π

+
π

=∫                                      (4.4) 

From Sturm-Liouville theory ([11] Chapter 8, Theorem 2.1) we obtain the following oscillation properties.  
Theorem 4.1. Each of the function systems  

{ }2 0
,m m

Ic ∞

=
                                           (4.5) 

{ }2 1 0
,m m

Ic ∞
+ =

                                          (4.6) 

{ }2 1 0
,m m

Is ∞
+ =

                                          (4.7) 

{ }2 2 0 ,m mIs ∞
+ =

                                          (4.8) 

is orthogonal over [ ]0, 2π  with respect to the weight ( )tω , that is, for ,m n≠   

( ) ( ) ( )2
2 20

d 0,m mt Ic t Ic t tω
π

=∫                                    (4.9) 

( ) ( ) ( )2
2 1 2 10

d 0,m mt Ic t Ic t tω
π

+ + =∫                                (4.10) 

( ) ( ) ( )2
2 1 2 10

d 0,m mt Is t Is t tω
π

+ + =∫                                 (4.11) 

( ) ( ) ( )2
2 2 2 20

d 0.m mt Is t Is t tω
π

+ + =∫                                 (4.12) 

Moreover, each of the previous system is complete over [ ]0, 2π .  
Using the transformations that led to Theorem 3.5, we obtain the following result.  
Theorem 4.2. We have  

( ) ( ) ( ) ( ); , , , , ; , ; , ,m m mIc t c t Ic tω=* *a b d a b d a b a b d ,                      (4.13) 

( ) ( ) ( ) ( ); , , , , ; , ; , ,m m mIs t s t Is tω=* * * *a b d a b d a b a b d ,                     (4.14) 

where ( ), ,mc a b d  and ( ), ,ms a b d  are positive and independent of ,t  and  



R. Moussa 
 

 
1177 

* * * * * *
1 2 1 2, , , , , , , ,b b b d d dη η   = =   

* *b d   

with  
* * 24 , 4 2 , 1,2, , .j j j j j j jb ja b d d j a jb j η= − − = − − =   

The adopted normalization of Ince functions is easily expressible in terms of the Fourier coefficients of Ince 
functions and so is well suited for numerical computations [6]; However, it has the disadvantage that Equations 
(4.13) and (4.14) require coefficients mc  and ms  which are not explicitly known. 

Of course, once the generalized Ince functions mIc  and ,mIs  are known we can express mc  and ms  in the 
form  

( ) ( )
( )
( )
0; , ,1, , ,

0; , 0; , ,
m

m
m

Ic
c

Icω
=

* *a b d
a b d

a b a b d
                          (4.15) 

( ) ( )
( )
( )
0; , ,1, , .

0; , 0; , ,
m

m
m

Is
s

Isω
=

* *a b d
a b d

a b a b d
                          (4.16) 

If we square both sides of (4.13) and (4.14) and integrate, we find that  

( ) ( )( )2 22
0

; , ; , , d 4,m mc t Ic t tω
π

= π∫ a b a b d                           (4.17) 

( ) ( )( )2 22
0

; , ; , , d 4.m ms t Is t tω
π

= π∫ a b a b d                           (4.18) 

If ( ); ,tω a b  is very simple, then it is possible to evaluate the integrals in (4.17), (4.18) in terms of the 
Fourier coefficients of the generalized Ince functions. This provides another way to to calculate mc  and ms . 

Once we know mc  and ms , we can evaluate the integrals on the left-hand sides of the following equations  

( ) ( )( ) ( ) ( )2 2 *
0

; , ; , , d ; , , ; , , d .m m m mc t Ic t t Ic t Ic t tω
π

=∫ ∫ *a b a b d a b d a b d               (4.19) 

( ) ( )( ) ( ) ( )2 2 *
0

; , ; , , d ; , , ; , , d .m m m ms t Is t t Is t Is t tω
π

=∫ ∫ *a b a b d a b d a b d               (4.20) 

The integrals on the right-hand sides of (4.19) and (4.20) are easy to calculate once we know the Fourier 
series of Ince functions. 

5. Operators and Banded Matrices  
In this section we introduce four linear operators associated with Equation (2.1), and represent them by banded 
matrices of width 2 1.η +  It is this simple representation that is fundamental in the theory of the generalized 
Ince equation. We assume known some basic notions from spectral theory of operators in Hilbert space. 

Let 1H  be the Hilbert space consisting of even, locally square-summable functions :f →   with period 
π . The inner product is given by  

( ) ( )2

0
, d .f g f t g t t

π
= ∫                                     (5.1) 

By restricting functions to [ ]0, 2 ,π  1H  is isometrically isomorphic to the standard ( )2 0, 2L π . We also 
consider a second inner product  

( ) ( ) ( )2

0
, d .f g t f t g t t

ω
ω

π
= ∫                                 (5.2) 

We consider the differential operator  

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 1 .S y t A t y t B t y t D t y t′′ ′= − + − −                        (5.3) 

The domain ( )1D S  of definition of consists of all functions 1y H∈  for which y  and y′  are absolutely 
continuous and 1y H′′∈ , by restricting functions to [ ]0, 2π , this corresponds to the usual domain of a Sturm- 
Liouville operator associated with the boundary conditions (3.1). It is known ([12] Chapter V, Section 3.6) that  
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1S  is self-adjoint with compact resolvent when considered as an operator in ( )1, ,H
ω

, and its eigenvalues are 

( )2 , , ,mα a b d  0,1, 2, .m =   All eigenvalues of 1S  are simple. If we consider 1S  as an operator in the 

Hilbert space ( )1, , ,H  then its adjoint *
1S  is given by the operator  

( )( ) ( )( ) ( ) ( )( ) ( ) ( )1 ,y A t y t B t y t D t y t′′ ′→ − + + −  

on the same domain ( )1 ;D S  see ([12], Chapter III, Example 5.32). The adjoint *
1S  is of the same form as 1S  

but with ,b  d  replaced by * ,b  * ,d  respectively. By Theorem 3.5, we see that *
1S  has the same eigen- 

values as 1.S  Let ( )2
0   be the space of square-summable sequences { } 0n n

x x ∞

=
=  with its standard inner 

product , .  Then  

( ) ( )0
1

1
: cos 2 ,

2 n
n

x
T x x nt

∞

=

= +∑  

defines a bijective linear map ( )2
1 0 1: .T H→   Consider the operator 1

1 1 1 1:M T S T−=  defined on  

( ) ( )( ) ( ) 21 2 4
1 1 1 0

0
: .n

n
D M T D S x n x

∞
−

=

 = = ∈ < ∞ 
 

∑                         (5.4) 

Let ne  denotes the sequence with a 1 in the thn  position and 0’s in all other positions, we also define  

( ) ( )( )1: ,n nu t T e t=  i.e. ( )0
1
2

u t =  and ( ) ( )cos 2nu t nt=  for 1, 2, .n =   We find that the operator 1M   

can be represented in the following way,  

0
1

1

1 1

2 if 0,

if 1,

j
j

j
n

j j
n n n n j n n jn j

j j

q e n
M e

r e q e q e n

η

η η

δ

=

− − +−
= =


=

= 
 + + ≥

∑

∑ ∑
                       (5.5) 

where 0 2δ =  and 0kδ =  if 0,k ≠  and 24 ,nr n=  .n∈  Note that the factor 2  should appear only 
with 0.e  

1M  is self-adjoint with compact resolvent in ( )2
0   equipped with the inner product 1 1, .T x T y

ω
 This 

inner product generates a norm that is equivalent to the usual ( )2
0 .   The operator 1M  has the eigenvalues 

( )2 , ,mα a b d  and the corresponding eigenvectors form sequences of Fourier coefficients for the functions 2 .mIc  
Now consider the operator 2S  that is defined as 1S  in (5.3) but in the Hilbert space 2H  consisting of even 

functions with semi-period π . This operator has eigenvalues ( )2 1 , , ,mα + a b d  with eigenfunctions ( )2 1 ,mIc t+  
= 0,1,2, .m   Using the basis ( )cos 2 1 ,n t+  0 ,n∈  then,  

( ) ( ) ( )2
0

: cos 2 1 ,n
n

T x t x n t
∞

=

= +∑  

defines a bijective linear map ( )2
2 0 2: .T H→   Consider the operator 1

2 2 2 2:M T S T−=  defined on  

( ) ( )( ) ( ) 21 2 4
2 2 2 0

0
: .n

n
D M T D S x n x

∞
−

=

 = = ∈ < ∞ 
 

∑   

Let ( ) ( )( ) ( )2: cos 2 1 ,n nu t T e t n t= = +  for 0,1, 2, ,n =   we get the following formula for 2M   

† †
2 11 1

1 12 2

, 0,j j
n n n n n n j

n jj j
M e r e q e q e n

η η

− + +
− + −= =

= + + ≥∑ ∑                        (5.6) 
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where  

( )

†
0†

2

1 if 0,1 , 1, 2, , ,
2 2 1 if 1.

j
j

n j n

q n
q Q n j r

n n
η

 + = = − = =  
  + ≥

  

Now consider the operator 3S  that is defined as 1S  but in the Hilbert space 3H  consisting of odd func-  
tions with semi-period π . This operator has the eigenvalues 2 1mβ +  with eigenfunctions ( )2 1 ,mIs t+  0,1, 2, .m =   

Using the basis functions ( )sin 2 1 ,n t+  0 .n∈   

( ) ( ) ( )3
0

: sin 2 1 ,n
n

T x t x n t
∞

=

= +∑  

defines a bijective linear map ( )2
3 0 3: .T H→   Consider the operator 1

3 3 3 3:M T S T−=  defined on  

( ) ( )( ) ( ) 21 2 4
3 3 3 0

0
: .n

n
D M T D S x n x

∞
−

=

 = = ∈ < ∞ 
 

∑   

Let ( ) ( )( ) ( )3: sin 2 1 ,n nu t T e t n t= = +  for 0,1, 2, ,n =   we have the following formula for 3 ,M   

† † †
3 11 1

1 12 2

,j j
n n n n j n n j

n jj j
M e r e q e q e

η η

ε− + +
− + −= =

= + +∑ ∑                          (5.7) 

where  

( )

†1
0† †

2

1 if 0,1 , 1,2, , ,
2 2 1 if 1,

j
n j n

q n
q Q n j r

n n
η

 − = = − = =  
  + ≥

  

and 

1 if
.

1 ifj

n j
n j

ε
≥

= − <
 

Finally, consider the operator 4S  that is defined as 1S  but in the Hilbert space 4H  consisting of odd 
functions with period π . This operator has the eigenvalues 2 2mβ +  with eigenfunctions 2 2 ,mIs +  0,1, 2, .m =   
Using the basis ( )sin 2 2 ,n t+  0 ,n∈   

( ) ( ) ( )4
0

: sin 2 2 ,n
n

T x t x n t
∞

=

= +∑  

defines a bijective linear map ( )2
4 0 4:T H→  . Consider the operator 1

4 4 4 4:M T S T−=  defined on  

( ) ( )( ) ( ) 21 2 4
4 4 4 0

0
: .n

n
D M T D S x n x

∞
−

=

 = = ∈ < ∞ 
 

∑   

Let ( ) ( )( ) ( )4: sin 2 2 ,n nu t T e t n t= = +  for 0,1, 2, .n =   Then, the formula for 4M  is  

( )min ,

4 1 1 2 1
1 2 1

,
n

j j j
n n n n j n j n j n n n j

j j n j
M e r e q e q e q e

η η η

ε− − − − − − − + +
= = + =

= + − +∑ ∑ ∑                      (5.8) 

where  

( )22 2 , 0,1,2, .nr n n= + =   

Example 5.1. For the Whittaker-Hill Equation (2.7) in the following form [8]  

( )24 cos 2 2 cos 4 0, , ,y s t t y sλ α α α′′ + + + = ∈ ∈                         (5.9) 

the function ( )tω  from (3.6) is equal to 1, therefore the operators ,jS  1, 2,3, 4,j =  are self-adjoint on the  
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Hilbert spaces ( )1, , ,H  1, 2,3, 4,j =  respectively. Hence the infinite matrices ,jS  1, 2,3, 4,j =  are sy- 
mmetric. They are represented by 

2

2 2

2

2

1 2

2

0 2 2 2 0

2 2 4 2

2 2 16 2
0 2 36 ,
0 0 2
0 0 0
0 0 0 0

s

s s

s s
sM

s

α α

α α α α

α α α
α α

α α
α

 − −
 
 − − − −
 
− − − 

 − −=  
− − 

 − 
 
 
 















   

                         (5.10) 

( )
( )

2

2

2

2

2 2

2

1 2 2 0
2 9 2

2 25 2
0 2 49

,
0 0 2
0 0 0
0 0 0 0

s s
s s

s s
sM

s

α α α α
α α α α

α α α
α α

α α
α

 − − + −
 
− + − − 
 − − −
 

− − =  − − 
 −
 
 
 
 















   

                       (5.11) 

( )
( )

2

2

2

2

3 2

2

1 2 2 0
2 9 2

2 25 2
0 2 49

,
0 0 2
0 0 0
0 0 0 0

s s
s s

s s
s

M
s

α α α α
α α α α

α α α
α α

α α
α

 + − − −
 
− − − − 
 − − −
 

− − =  − − 
 −
 
 
 
 















   

                       (5.12) 

2 2

2

2

2

4 2

2

4 2 0
2 16 2

2 36 2
0 2 64

.
0 0 2
0 0 0
0 0 0 0

s
s s

s s
sM

s

α α α
α α α
α α α

α α
α α

α

 − − −
 
− − − 

 − − −
 

− − =  − − 
 −
 
 
 
 















   

                           (5.13) 

6. Fourier Series 
The generalized Ince functions admit the following Fourier series expansions  

( ) ( )0
2 2

1
cos 2 ,

2m n
n

A
Ic t A nt

∞

=

= +∑                                   (6.1) 

( ) ( )2 1 2
0

cos 2 1 ,m n
n

Ic t A n t
∞

+
=

= +∑                                   (6.2) 
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( ) ( )2 1 2 1
0

sin 2 1 ,m n
n

Is t B n t
∞

+ +
=

= +∑                                   (6.3) 

( ) ( )2 2 2 2
0

sin 2 2 .m n
n

Is t B n t
∞

+ +
=

= +∑                                   (6.4) 

We did not indicate the dependence of the Fourier coefficients on ,m  , , .a b d  The normalization of Ince 
functions implies  

2 0
2 2

1 1
1, 0,

2n n
n n

A
A A

∞ ∞

= =

= + >∑ ∑                                      (6.5) 

2
2 1 2 1

1 0
1, 0,n n

n n
A A

∞ ∞

+ +
= =

= >∑ ∑                                      (6.6) 

( )2
2 1 2 1

1 0
1, 2 1 0,n n

n n
B n B

∞ ∞

+ +
= =

= + >∑ ∑                                   (6.7) 

( )2
2 2 2 2

1 0
1, 2 1 0.n n

n n
B n B

∞ ∞

+ +
= =

= + >∑ ∑                                   (6.8) 

Using relations (4.13) and (4.14), we can represent the generalized functions in a different way  

( ) ( ) ( )( ) ( )1 * *, , ; , , , , , ,m m mIc t c Icω
−

=a b d a b a b d a b d                          (6.9) 

( ) ( ) ( )( ) ( )1 * *, , ; , , , , , ,m m mIs t s Isω
−

=a b d a b a b d a b d                         (6.10) 

where  
* * 24 , 4 2 , 1,2, , .j j j j j j jb ja b d d j a jb j η= − − = − − =   

Therefore, we can write  

( ) ( )( ) ( )1 0
2 2

1
, , ; , cos 2 ,

2m n
n

C
Ic t C ntω

∞−

=

 
= + 

 
∑a b d a b                         (6.11) 

( ) ( )( ) ( )1
2 1 2 1

0
, , ; , cos 2 ,m n

n
Ic t C ntω

∞−

+ +
=

 =  
 
∑a b d a b                         (6.12) 

( ) ( )( ) ( )1
2 1 2 1

0
, , ; , sin 2 ,m n

n
Is t D ntω

∞−

+ +
=

 =  
 
∑a b d a b                         (6.13) 

( ) ( )( ) ( )1
2 2 2 2

0
, , ; , sin 2 ,m n

n
Is t D ntω

∞−

+ +
=

 =  
 
∑a b d a b                         (6.14) 

where  

( )( ) ( )( )1 1
, , , , , ,m m m m m mC c A D s B

− −
= =a b d a b d  

and the Fourier coefficients nA  and nB  belong to the parameters * *, , .a b d  Properties of the coefficients nC  
and nD  follow from those of nA  and .nB  

A generalized Ince function is called a generalized Ince polynomial of the first kind if its Fourier series (6.1), 
(6.2), (6.3), or (6.4) terminate. It is called a generalized Ince polynomial of the second kind if its expansion 
(6.11), (6.12), (6.13), or (6.14) terminate. If they exist, these generalized Ince polynomials and their 
corresponding eigenvalues can be computed from the finite subsections of the matrices ,jM  1, 2,3, 4j =  of 
Section 5.  

Example 6.1. Consider the equation  

( ) ( )1 cos 2 cos 4 sin 2 sin 4 0,t t y t t y yλ′′ ′+ + + + + =                       (6.15) 
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one can check that if we set 0,λ =  any constant function y  is an eigenfunction corresponding to the  

eigenvalue 0 0.α =  The adopted normalization of Section 4 implies that ( )0
1 .
2

Ic t =  It is a generalized Ince 

polynomial (even with period π ). 
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