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Abstract 
This paper investigates the effects of Hall currents and radiation on free-convective steady laminar 
boundary-layer flow past a semi-infinite vertical plate for large temperature differences. A uni-
form magnetic field is applied perpendicular to the plate. The fluid density is assumed to vary ex-
ponentially and the thermal conducting linearly with temperature. The fluid viscosity is assumed 
to vary as a reciprocal of a linear function of temperature. The usual Boussinesq approximation is 
neglected. The nonlinear boundary layer equations governing the problem under consideration 
are solved numerically by applying an efficient numerical technique based on the shooting me-
thod. The effects of the magnetic parameter Μ , the Hall parameter m, the density/temperature 
parameter n , the radiation parameter Ν , the thermal conductivity parameter S , the viscosity 
temperature θr , and the temperature ratio parameter θw  are examined on the velocity and tem- 
perature distribution as well as the coefficient of heat flux and shearing stress at the plate. 
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1. Introduction 
The study of natural convection boundary layer flow of an electrically conducting fluid over a continuously 
stretching heated semi-infinite plate is considered very essential to understand the behavior of the performance 
of fluid motion in several applications. This is because it serves understanding of some phenomenon occurring 
in several environmental and engineering fields. Prominent applications are the aerodynamic extrusion of plastic 
sheets, cooling of an infinite metallic plate in a cooling path, Fibers spinning and continuous casting, glass 
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blowing, packed bed reactors or absorbent and others. The analysis of such flow forms the bases of a series of 
further investigations for laminar boundary layers. The first who presented boundary layer flow over a conti-
nuous solid surface with constant speed is Sakiadis [1] [2]. Erickson et al. [3] extended Sakiadis problem to in-
clude blowing or suction at the moving plate and study its effects on heat and mass transfer in the boundary 
layer. Vayjravelu and Hadyinicolaou [4] studied the convective heat transfer in an electrically conducting fluid 
near an isothermal stretching sheet with uniform free stream. Various aspects of this problem have been studied 
by Grffith [5], Ghin [6], Gupta et al. [7] and Gorla [8]. Many investigations have concentrated on the problem of 
a stretched sheet with a linear velocity and different thermal boundary conditions, see for instance, Chakrabarti 
et al. [9], Rajagopal et al. [10] and Chamkha [11]. The problem becomes more interesting when the viscous and 
thermal boundary layer is subjected to the action of an applied magnetic filed. Free-convection flow with mass 
transfer along a vertical plate in the presence of magnetic field has been investigated by Elbashbeshy [12]. 
another problem in this filed is the study of Hall current effects on the consequent flow and heat transfer charac-
teristics that are brought about by the movement of a stretched isothermal sheet in the presence of a strong 
magnetic field. The effect of Hall current on unsteady hydromagnetic free convective flow past an infinite 
heated vertical plate is studied by Abo-Eldahab et al. [13] and Khaled K. Jaber [14]. Pop and Watanabe [15] 
studied the Hall effects on the steady boundary layer free convection flow about a semi-infinite vertical flat plate. 
Recently, Abo-Eldahab [16] studied the Hall effect on MHD free-convection flow past a stretching surface with 
uniform free stream. Also, Khaled K. Jaber [17] studied the Hall and ion slip currents on MHD free-convective 
heat generating flow past a semi-infinite vertical flat plate. Joule heating effect on MHD fee-convective flow of 
a micropolar fluid is studied by Abd El-Hakiem et al. [18]. 

Most of the effort in understanding fluid radiation is devoted to the derivation of reasonable simplifications. 
One of these simplifications was made by Cogley et al. [3] who assumed that the fluid was in the optical thin 
limit and, accordingly the fluid did not absorb its own radiation but it only absorbed radiation emitted by the 
boundaries. 

Accordingly, Cogley et al. showed that for an optically thin nongray gas near equilibrium, the following rela-
tion holds: 

( ) ( )
0

4 e e dr w b b wq K T Tλ λ λ λ
∞

 ∇ ⋅ = − ∫                             (1) 

In addition, they simplified (1) by assuming small temperature differences ( )wT T− . Hence, under this as-
sumption, (1) reduces to 

( )4r wq I T T∇⋅ = −  

where 

0

e
db

wI K
T
λ

λ λ
∞ ∂ =  ∂ 
∫                                    (2) 

For an optically thick gas, the gas self-absorption rises and the situation becomes difficult. However, the 
problem can be simplified by using the Rosseland approximation [19], which relates the radiative heat flux to 
the gradient of the total emissive power of the gray gas as follows, 

4 e
3r b

R

q
K

 
= − ∇ 

 
                                    (3) 

Previous studies of convective flow along vertical plates in the presence of radiation were restricted, in gener-
al, to the case where the temperature difference between the plate and the fluid was small. In this case, the flu-
id’s physical properties such as its viscosity and thermal conductivity may be taken as constant. Also, for small 
temperature differences, the Boussinesq approximation [20] can be used to treat the fluid density as a constant in 
the continuity equation, energy equation, and convective terms in the momentum equation and treat it as a vari-
able only in the buoyancy term of the momentum equation. 

In situations where there is large temperature differences between the plate and the fluid, the fluid’s physical 
properties are affected by the high temperature and they can no longer be regarded as constant. Also, in this case, 
the Boussinesq approximation can no longer be used. 
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Some recent studies for radiating fluids have taken into account variations of the physical properties with 
temperature. For example, Aboeldahab [21] studied radiation and variable density effects on the free convective 
flow of a gas past a semi-infinite vertical plate and showed that for high-temperature differences the Boussinesq 
approximation leads to substantial errors in velocity and temperature distributions also Jaber [22] studied the 
combined effects of Hall currents and variable Viscosity on Non-Newtonian MHD flow past a stretching vertical 
plate. He showed that the variable viscosity effect the temperature and flow velocity. Aboledahab and El Gendy 
[23] studied the radiation effect on convective heat transfer in an electrically conducting fluid at a stretching 
surface with variable viscosity and uniform free stream. They showed that the flow characteristics are markedly 
affected by the variation of viscosity with temperature. Aboeldahab and Salem [24] studied the radiation effect 
on the MHD free-convective flow of a gas past a semi-infinite vertical plate with variable viscosity. Also, they 
showed that the flow characteristics are markedly affected by the variation in viscosity with temperature. 

Previous studies of convective flow along vertical plates in the presence of radiation were restricted, in gener-
al, to the case where the temperature difference between the plate and the fluid was small. In this case, the flu-
id’s physical properties such as its viscosity and thermal conductivity may be taken as constant. Also, for small 
temperature differences, the Boussinesq approximation [20] can be used to treat the fluid density as a constant in 
the continuity equation, energy equation, and convective terms in the momentum equation and treat it as a vari-
able only in the buoyancy term of the momentum equation. 

It is worth mentioning that using the Cogley-Vincenti-Gilles model (2) depends on the assumption that the 
temperature differences ( )wT T−  are small. Of course, this assumption will lead to an error when the variable 
property problems (high-temperature differences problems) take place. To avoid such an error we should use (1), 
which includes a difficult integration. This integration can be simplified by assuming that the gas is gray and so 
the absorption coefficient wKλ  is independent of the wavelength (see [15]). Accordingly, for an optically thin 
gray gas and for high-temperature differences Equation (1) reduces to  

( )4 44r w wq K T Tσ∇ ⋅ = −                                  (4) 

The above relation is more suitable for expressing the radiation term in the energy equation for the variable 
physical property problems. 

Hence, in the present work, we study Hall currents effects on the MHD free-convective flow of an optically 
thin gray gas past a semi-infinite vertical plate with variable density, viscosity and thermal conductivity for high 
temperature differences neglecting the Boussinesq approximation. The nonlinear boundary layer equations, go-
verning the problem, are solved numerically by applying an efficient numerical technique based on the shooting 
method. The velocity and temperature distributions as well as the coefficient of heat flux and the shearing stress 
at the plate are determined for different values of the Hall parameter m, the temperature ratio parameter wθ , the 
thermal conductivity parameter S , the viscosity-temperature parameter rθ , the magnetic field M , and the 
radiation parameter N . 

2. Mathematical Formulation 
A steady laminar free-convective flow of a viscous gray gas in the optically thin limit past an isothermal semi- 
infinite vertical plate is considered. The x -axis is chosen along the plate and the y –axis is taken as normal to 
it (see Figure 1). 

A uniform magnetic field is applied transversely to the direction of the flow. The magnetic Reynolds number 
is taken to be small enough so that the induced magnetic field can be neglected. 
 

 
Figure 1. Physical coordinate system. 
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The viscous dissipation; the radiative heat flux in the x -direction, in comparison to the y -direction; and the 
velocity of the gas far away from the plate are assumed to be negligible. 

The density is assumed to vary exponentially with temperature as follows: [19] 
( )e T Tβρ ρ ∞− −

∞=                                      (5) 

where 

1

PT
ρβ

ρ
∂ = −  ∂ 

                                     (6) 

The fluid thermal conductivity is assumed to vary as a linear function of temperature in the form  

( )1K k b T T∞ ∞= + −                                     (7) 

where b  is a constant depending on the nature of the fluid. In general, 0b >  for fluids such as water and air, 
while 0b <  for fluids such as lubricating oils. 

The fluid viscosity is assumed to vary as a reciprocal of a linear function of temperature in the form (see Lai 
and Kulacki, ref. [13])  

( )1 1 1 T Tγ
µ µ ∞

∞

= + −                                    (8) 

or 

[ ]1
ra T T

µ
= −                                      (9) 

where 

a γ
µ∞

=  and 1
rT T

γ∞= −  are constants and their values depend on the reference state and the thermal prop-

erty of the fluid γ . In general 0a >  for liquids and 0a <  for gases. 
Then the steady laminar two-dimensional free-convective flow is governed by the following boundary-layer 

equations: 

( ) ( ) 0u
x y
ρ ρν∂ ∂

+ =
∂ ∂

                                 (10) 

( )( ) ( )0
21 e

1
T T o Bu u uu g u mw

x y y y m
β σ

ρ ν µ ρ ∞− −
∞

   ∂ ∂ ∂ ∂
+ = + − − +   ∂ ∂ ∂ ∂ +   

               (11) 

( )0
21

o Bw w wu mu w
x y y y m

σ
ρ ν µ
   ∂ ∂ ∂ ∂

+ = + −   ∂ ∂ ∂ ∂ +   
                       (12) 

r
p

qT T TC u k
x y y y y

ρ ν
    ∂∂ ∂ ∂ ∂

+ = −   ∂ ∂ ∂ ∂ ∂   
                          (13) 

The physical problem suggests the following initial and boundary condition  

0,     at  0  0,     as  .u v T T y u T T yω ∞= = = = → → →∞                    (14) 

By using Equations (1), (3) and (5), Equations (7), (8) and (9) become 

( )

( )
( )( ) ( ) ( )2

1 1e 1 e
1

T T T T o o

r

B uu u uu g u mw
x y y a T T y m

β β σ
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ρ ρ
∞ ∞− − − −

∞ ∞

  ∂ ∂ ∂ ∂
+ = + − − +    ∂ ∂ ∂ − ∂ +   

       (15) 
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( ) ( ) ( )2

1 1e
1

T T o o
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B uw w wu mu w
x y y a T T y m

β σ
ν

ρ ρ
∞− −

∞ ∞

  ∂ ∂ ∂ ∂
+ = − −    ∂ ∂ ∂ − ∂ +   

              (16) 
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( ) ( ){ } ( )4 44
e 1 w wT T

p

K T TT T Tu b T T
x y y y C

β
σ

ν α
ρ

∞− −
∞

∞

−   ∂ ∂ ∂ ∂
+ = + − −   ∂ ∂ ∂ ∂   

               (17) 

Introducing the following dimensionless variables  

( )
( )3 1 1 1

44 2 2 4
20

1
4 , ,     ,     ,     ,     .

4

n
y

w

g eT TCX f X L CX C
T T

ρψ υ ξ η ξ η θ
ρ υ

∞

−− −
∞

∞
∞ ∞

−−
= = = = =

−∫     (18) 

The continuity equation is satisfied by  

,     .u
y x

ρ ρψ ψν
ρ ρ
∞ ∞∂ ∂

= = −
∂ ∂

                              (19) 

From (14) and (15) we find that  
1 1

2 2 44 ,     3 2 .fu C X f CX f fρ
υ ν υ ξ η

ρ ξ
−

∞
∞ ∞

 ∂′ ′= = − + − ∂ 
                  (20) 

Also, let 

( )
1

2 24 ,w C X gυ ξ η∞=                                  (21) 

Using the above transformation the governing equations are reduced to: 

( )
( )

( ) ( )

2
2

1 2 2

1 e2 3 2 e e
1 e

                                                        2 .
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e2 3 2 e e 2
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− − ∂ ∂′ ′ ′ ′ ′ ′ ′′ ′ ′ ′− + − = + − + − ∂ ∂ − +− 
(23) 
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4 4
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1 e e 3 2 0
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The boundary conditions are transformed into  

0 : ,     1,     3 2 0

: ,     0.

ff o f

f o
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η θ

∂′= = = + =
∂
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And primes denote differentiation with respect to η  only 
The most important characteristics of the flow are shearing stress at the plate 
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4 2
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( ) ( )3 1 4

0

4 2
,0

1
w r

wz
ry

w C X g
y

θ θ
τ µ µ υ ξ

θ ∞ ∞
=

−∂ ′= − = −
∂ −

                     (27) 

And the rate of heat transfer at the plate (Nusselt number) 

( ) ( )1 41 e ,0n
uN L S CX θ ξ− − ′= +                              (28) 

3. Results and Discussion 
Equations (22), (23) and (24) with the boundary conditions (25), are approximated by a system of nonlinear or-
dinary differential equations replacing the derivatives with respect to ξ . By two-point backward finite differ-
ences with step-size 0.1h =  this system is solved numerically by using the fourth-order Runge-Kutta method 
algorithm with a systematic estimation of ( ),f ξ η′′ , ( ),g ξ η′  and ( ),θ ξ η′  by the shooting technique to ob-
tain ( ),f ξ η , ( ),g ξ η  and ( ),θ ξ η . 

The value of η  at infinity is fixed at 2; the requirement that the variation of velocity and temperature distri-
bution is less that 10−9 between any two successive iteration is employed as the criterion of convergence. We use 
the symbolic computational software Mathematica to solve this system. Solutions are obtained for the Prandtl 
number 0.7rP =  and the Grashoff number 0.5Gr = . 

In view of Equation (18) Equation (5) can be written in the form 

e nθρ ρ −
∞=                                       (29) 

Since θ  varies from 0, at the edge of the boundary layer, to 1 at the vertical plate surface, the density of the 
fluid adjacent to the plate is related to its free-stream value by the following expression: 

e n
wρ ρ −

∞=  

From this expression it is obvious that, since free-convection flow is studied, n  can not be identically zero, 
otherwise 0rG = , hence for our problem we have the constant 0n > . 

It is worth mentioning that when the temperature difference T T Tω ∞∆ = −  is small, Equation (29) reduces to: 

( )1 nρ ρ θ∞= − , 

where the higher order terms are omitted, in addition, it is assumed that 1nθ  , i.e. 0n →   
Then according to the above relation the density can be treated as a constant in the continuity equation, energy 

equation and convective terms in the momentum equation and treated as a variable only in the buoyancy term of 
the momentum equation (Boussinesq approximation). Therefore, when 0n → , Equations (10)-(13) reduce to 
the Boussinesq equations and for high temperature differences the condition 0n →  is disregarded. 

It is to be noted that, as n  becomes closer to zero the density variation is negligible except in the buoyancy 
term as n  takes values considerably higher than zero the density variation becomes increasingly significant. So 
according to the definition of the density-temperature parameter, ( )wn T Tβ ∞= − , for a given β , variation of 
n  means, in fact variation of the temperature difference T T Tω ∞∆ = − . 

Figure 2 and Figure 3 show the effect of the magnetic field parameter M  on the velocity and temperature 
profiles within the boundary layer. In which the increasing of the magnetic field parameter M  is to decrease 
the dimensionless primary flow velocity f ′  and increases the dimensionless secondary flow velocity g . The 
decreasing of f ′  due to the increasing of the Lorentz force, which opposes the flow. The increasing of Hall 
parameter m increases the secondary flow velocity g  as shown in Figure 4. Form Figures 5-7 it is observed 
that the dimensionless velocities f ′  and g increase while the dimensionless temperature θ  decreases as the 
density -temperature parameter n  increases. An increase in the density temperature parameter n  means an 
increase of the velocity in the fluid particles due to an increase in the buoyancy forces (the density variation with 
temperature increases). Hence as n increases the fluid will be under two forces: the first force increase the velo-
cityies of the fluid due to the increase in the buoyancy forces and the second force decrease the velocities of the 
fluid due to the decrease in the temperature. 

Figure 8 presents typical profiles for the velocity f ′  for different values of the radiation parameter N . The 
increasing of the radiation parameter N  is to increase the dimensionless velocity. This increasing also increase 
the secondary flow velocity and temperature. This is can be explained by the fact that the effect of radiation is to  



K. K. Jaber 
 

 
894 

 
Figure 2. Effect of magnetic parameter M on the primary flow 
velocity V.                                           

 

 
Figure 3. Effect of magnetic parameter M on the secondary flow velocity 
G.                                                             

 

 
Figure 4. Effect of hall parameter m on the primary flow velocity V.       
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Figure 5. Effect of the parameter n on the primary flow velocity V.             

 

 
Figure 6. Effect of the parameter n on the secondary flow velocity G.           

 

 
Figure 7. Effect of the parameter n on the temperature.                       
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Figure 8. Effect of the parameter N on the temperature.                    

 
increase the rate of energy transport to the fluid and accordingly increases the fluid temperature. This increase in 
the fluid temperature increases the velocity of the fluid particles f . 

Figures 9-11 show as expected, that the dimensionless velocities and temperature increase as the thermal 
conductivity parameter S  increases. This is because as S  increase the thermal conductivity of the fluid in-
crease. This increase in the fluid thermal conductivity increases the fluid temperature and accordingly the fluid 
velocity. Figures 12-14 show that the increasing in the temperature ratio parameter ωθ  tends to increase the 
dimensionless velocities f ′ , g  and the dimensionless temperature θ . This result is expected because as ωθ  
increases the temperature difference T Tω ∞−  increases and so the temperature of the fluid Also, it is observed 
from Figures 15-17 that as the viscosity -temperature parameter rθ  increases the dimensionless velocities f ′ , 
g  increase and the dimensionless temperature θ  decreases. A decrease in the dimensionless temperature θ  
means a decrease in the fluid viscosity, which is a gas in this problem. This decrease in the fluid viscosity in-
crease its velocity. 

Table 1 shows that the dimensionless wall-velcioty gradient ( )  ,0f x′′  increases as N , m , S , rθ , wθ  
and N  increase where as it decreases as M  increases, the dimensionless wall-velcioty gradient ( )  ,0g x′  
increases as n , M , S , rθ , wθ  and N  increase where as it decreases as m  increases. Moreover, the di-
mensionless rate of heat transfer- ( )  ,0xθ ′ ) increases as m , n  and rθ  increase as it decrease as S , M , wθ , 
N  increases. 

4. Concluding Remarks 
In this paper, we have studied the effects of Hall currents and radiation on the MHD free convective steady la-
mina boundary layer flow past an isothermal semi-infinite vertical plate, for high temperature differences, the 
fluid is considered to be electrically conducting in the sence that it is ionized due to radiation. 

The fluid density is assumed to vary exponentially and the thermal conductivity linearly with temperature the 
fluid viscocity is assumed to vary as a reciptocal of a linear function of temperature. Because of the high tem-
perature differences between the fluid and the plate, the Boussinesq approximation is neglected the formula 

( )4 44r w wq K T Tσ∇ ⋅ = −  is used to describe the radiative heat flux in the energy equation. 
This paper demonstrates the fact that the Boussinesq approximation gives substantial errors in the velocity 

and temperature distribution for high temperature differences. Therefore, to conclude more accurate results the 
density variation has to be taken into consideration in the continuity equation, energy equation and all terms of 
the momentum equation. 

Besides, it is observed that: 
1) The increasing in the radiation parameter N  yields to an increasing in the fluid velocities f ′  and g , 

the fluid temperature, the dimensionless wall-velocity gradient and the rate of heat transfer from the plate to the 
fluid. 
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Figure 9. Effect of the parameter s on the primary flow velocity V.         

 

 
Figure 10. Effect of the parameter s on the secondary flow velocity G.       

 

 
Figure 11. Effect of the parameter s on the temperature.                   
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Figure 12. Effect of the parameter θw on the primary flow velocity V.        

 

 
Figure 13. Effect of the parameter θw on the secondary flow velocity G.      

 

 
Figure 14. Effect of the parameter θw on the temperature θ.                 
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Figure 15. Effect of the parameter θr on the primary flow velocity.            

 

 
Figure 16. Effect of the parameter θr on the secondary flow velocity.          

 

 
Figure 17. Effect of the parameter θr on the temperature θ.                 
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Table 1. Variation of dimensionless wall-velocity gradient and  dimensionless rate of heat transfer at the plate with the 
dimensionless θw, N, M, S, m and θr for Prandtl number = 0.72 and Gr = 0.5.                                          

n M m N S θw θr f ′  g -θ' 

0.1 0.2 0.1 0.1 0.2 1.1 1.2 0.148867 0.000046254 0.512446 

0.5 0.2 0.1 0.1 0.2 1.1 1.2 0.268777 0.000113357 0.664167 

1 0.2 0.1 0.1 0.2 1.1 1.2 0.533357 0.000297222 0.95982 

1 1 0.1 0.1 0.2 1.1 1.2 0.525044 0.00141242 0.952498 

1 2 0.1 0.1 0.2 1.1 1.2 0.515072 0.0026532 0.943453 

1 0.2 1 0.1 0.2 1.1 1.2 0.534418 0.00151062 0.960776 

1 0.2 2 0.1 0.2 1.1 1.2 0.535081 0.00121293 0.961244 

1 0.2 0.1 0.2 0.2 1.1 1.2 0.543009 0.000305804 0.921002 

1 0.2 0.1 0.3 0.2 1.1 1.2 0.552471 0.000314226 0.883659 

1 0.2 0.1 0.1 0.5 1.1 1.2 0.556452 0.00031661 0.854017 

1 0.2 0.1 0.1 1 1.1 1.2 0.586593 0.000343934 0.743981 

1 0.2 0.1 0.1 0.2 1.4 1.2 0.540372 0.000303249 0.929716 

1 0.2 0.1 0.1 0.2 1.8 1.2 0.554563 0.000315406 0.870098 

1 0.2 0.1 0.1 0.2 1.1 1.5 0.955568 0.000621407 1.012 

1 0.2 0.1 0.1 0.2 1.1 2.2 1.40311 0.00101715 1.05857 

 
2) The increasing in the Hall parameter m yields to a significant increasing in the secondary flow velocity, a 

slight increasing in the fluid velocities f ′  and the fluid temperature the dimensionless wall-velocity gradients 
and the rate of heat transfer from the plate to the fluid. 

3) The increasing in the magnetic parameter M  yields to an increasing in the fluid temperature, the second-
ary flow velocity, the dimensionless wall-velocity gradient and the rate of heat transfer from the plate to the flu-
id and a decreasing in the fluid velocity. 

4) The increasing in the thermal conductivity parameter s yields to an increasing in the fluid velocities, the 
fluid temperature the dimensionless wall-velocity gradient and the plate to the fluid. 

5) The increasing in the viscosity-temperature parameter rθ  yields to an increasing in the fluid velocities, the 
dimensionless wall-velocity gradient and a decreasing in the fluid temperature and the rate of the heated transfer 
from the plate to the fluid. 

6) The increasing in the density-temperature parameter n  yields to an increasing in the fluid velocities and 
the dimensionless wall-velocity gradient and a decreasing in the fluid temperature and the rate of the heated 
transfer from the plate to the fluid. 

7) The increasing in the temperature ratio parameter wθ  yields to an increasing in the fluid velocities and the 
fluid temperature, the dimensionless wall-velocity gradient and a decreasing in the fluid temperature and the rate 
of the heated transfer from the plate to the fluid. 
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Nomenclature 
fC  Coefficient of skin friction Y  Direction normal to the plate 

pc  Specific heat at constant pressure Greek Symbols 

eb  Blackbody emissive power α  Thermal diffusivity 

ebλ  Planck’ function β  Coefficient of thermal expansion 

f  Dimensionless stream function η  Pseudo similar variable 
g  Acceleration due to gravity λ  Wavelength 

Gr  Grashof number µ  Dynamical viscosity 

k  Thermal conductivity ν  Kinematical viscosity 

Kλ  Absorption coefficient θ  Dimensionless temperature 

RK  Rosseland absorption coefficient rθ  Viscosity/temperature parameter 

L  Characteristic length wθ  Temperature ratio parameter 

N  Radiation parameter ρ  Density 

Nu  Nusselt number σ  Stefan-Boltzmann constant 

Pr  Prandtl number τ  Shearing stress 

m  Hall parameter ξ  Dimensionless streamwise coordinate 

n  Density temperature parameter ψ  Stream function 

S  Thermal conductivity parameter Subscripts 

T  Temperature w  Property at the wall 

u  Velocity component in x -direction ∞  Freestream condition 

υ  Velocity component in y -direction Superscripts 
x  Streamwise coordinate ′ Differentiation with respect to η  only 
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