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Abstract 
Based on the Krylov-Bogolyubov method of averaging the closed system of equations for particle 
motion and temperature in inhomogeneous rapidly oscillating velocity and temperature of fluid 
phase is derived. It is shown that the particle movement in a rapidly oscillating fluid velocity field 
occurs not only under the force of gravity and resistance, but also under force of migration. The 
migration force is the result of particle inertia and in homogeneity of oscillation of velocity field of 
the carrier phase. Effects of dynamic and thermal relaxation times of particle and gravity force 
have been studied. It is shown possibilities of accumulation of particles under the combined action 
of gravity and migration forces. For a linear dependence of the amplitude of velocity and temper- 
ature fluctuations of the fluid an analytical solution was presented. The analytical solutions have 
been found in good agreement with the results of numerical solution of system of equations of 
motion and heat transfer of particle. 
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1. Introduction 
Fluid or gas turbulent flows with particles or droplets widely occur in natural phenomena and are intensively 
used in various technical applications. Owing to the slip condition for fluid phase intensity of velocity and tem-
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perature fluctuations has substantial heterogeneity. In this case, the additional force of migration occurs, and 
consequently the particle drifts to a channel wall [1]-[4]. Temperature fluctuations and migration of particle to 
the wall lead to an additional heat flux. Magnitude of these effects is determined by dynamic and thermal relaxa- 
tion times of the particle and integral time scale of turbulence. In theoretical studies of two-phase turbulent 
flows migration force is included on the basis of the probability density function [2]-[4]. The main purpose of 
the present work is to investigate the physical mechanism of inertial particles drifting in the inhomogeneous 
turbulence. We use a simple model in which the fluctuations of velocity and temperature of the liquid phase are 
approximated by periodic oscillations. The amplitude of the oscillations is inhomogeneous in space. For separa- 
tion of a particle motion into fast and slow components is involved the method of averaging developed by Kry- 
lov and Bogolyubov [5]-[7]. Closed system of ordinary differential equations for particle trajectories and tem- 
perature averaged over the oscillation period was derived. It is shown that migration force is directed toward re- 
ducing the amplitude of the velocity fluctuations of liquid phase. Effect of particles drift reaches a maximum 
value for particles with dynamic relaxation time compared with the oscillation period. 

For a linear dependence of amplitude of velocity and temperature oscillation on the distance from a wall, the 
analytical solution was obtained. Combined influence of gravity and migration forces on a particle trajectory 
was studied. The results of numerical integration of complete system of differential equations of dynamics and 
temperature of particles are in satisfactory agreement with the calculations obtained by analytical formulas. 

2. Basic Equations 
For the purpose of compactness of the presentation and elucidate the physical meaning of obtained results, we 
consider one-dimensional case. We study oscillating field of fluid velocity in the direction normal to the solid 
wall (see Figure 1). Coordinate axis x  is directed along the normal to the wall. Fluid velocity ( ),U x t  and 
gravity vector g  are parallel to the normal. 

Differential equations for a particle velocity ( )V t , coordinate ( )X t  and temperature ( )tΘ  have the form  

( ) ( )( ) ( ) ( ) ( )
d d1 , ,

d dV
V

V t X t
U X t t g V t V t

t t
τ

τ
 = + − =  ,                   (1) 

( ) ( )( ) ( )
d 1 ,

d
t

X t t t
t τΘ

Θ
 = Ξ −Θ  ,                            (2) 

Here ( ),x tΞ is fluid temperature; ,Vτ τΘ  are dynamic and temperature relaxation times of the particle [4] 
23 1,

2 6Nu
p p p p p

V
f D p f f f

d c d
C U V c a

ρ ρ
τ τ

ρ ρΘ= =
−

. 

Here ,f pρ ρ  are densities of fluid and particle material; ,f pc c  are heat capacities of fluid and particle ma- 
terial; pd  is particle diameter; fa  is thermal diffusivity; DC  is coefficient of aerodynamic drag; Nu p  is 
Nusselt number of the particle. 

Generally, the drag coefficient and Nusselt number depends on the particle Reynolds number  
Re p p fU V d ν= −  ( fν  is kinematic viscosity coefficient of fluid phase). In the analysis we assume drag  
coefficient and Nusselt number as constant. This approximation corresponds to the Stokes flow regime. For  
Stokes flow regime 24 ReD pC = , Nu 2p =  and the ratio of dynamic and temperature time scales of the par- 
ticle is equal  

4 4 Pr
3 3

p f p
f

V f f f

c c
c a c

ντ
τ
Θ = = , 

where Pr  is Prandtl number of the fluid. 
It can be seen, that the distinction in the thermo-physical properties of liquid and material of particle leads to 

different values of thermal and dynamic relaxation times.  
The initial conditions for the system of Equations (1) and (2) have the form  
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                                   Figure 1. Sketch of the problem.      
 

( ) ( ) ( )0 0 00 , 0 , 0V V X X= Θ = Θ = .                            (3) 

Dependences of velocity and temperature of fluid on the distance from the wall (see Figure 1) are defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1, sin , , sinU x t F x t x t x x tω ω= Ξ = Φ +Φ .                   (4) 

The main purpose of this manuscript is to show that in an inhomogeneous, rapidly oscillating non-isothermal 
fluid flow appear migration force and an additional heat flux connected with inertia of the particles. 

3. The Averaging Method 
Equation (1) is reduced to the single equation for displacement of a particle 

( ) ( )( ) ( )2

2

d d1 ,
dd V

V

X t X t
U X t t g

tt
τ

τ
 

= + − 
 

.                         (5) 

To solve the Equation (5) we involved the Krylov-Bogolyubov method of averaging [4]-[6]. Displacement  
and temperature of particles composed of slow averaged components ( )X t , ( )tΘ and fast oscillations of  

displacement ( )X tδ  and temperature ( )tδΘ  

( ) ( ) ( ) ( ) ( ) ( ),X t X t X t t t tδ δ= + Θ = Θ + Θ . 

By averaging over the oscillation period 2πT ω=  we obtain the following expressions 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0

1 1 1 1d ,  d ,  d 0,  d 0
T T T T

X t X t t t t t X t X t t t t t
T T T T

δ δ δ δ= Θ = Θ = = Θ = Θ =∫ ∫ ∫ ∫ . 

Fluctuations of particle coordinate is substantially lesser than the averaged displacement ( ) ( )X t X tδ 
.  

Functions representing the amplitude of velocity and temperature of carrier fluid (4) along the particle trajectory 
are written in the form of an expansion in the sense of small oscillations of the particle coordinate 

( )( ) ( )( ) ( )
( )

( ) ( )( ) ( )( ) ( )
( )

( )
d d

,  
d d

x X t x X t

F x x
F X t F X t X t X t X t X t

x x
δ δ

= =

Φ
≈ + Φ ≈ Φ + . 

With these formulas and the equation for temperature (2) and coordinate (5) of the particle take the form 

( ) ( ) ( )( ) ( )
( )

( ) ( )
( ) ( )2 2

2 2

d dd d d1 sin
d d dd d V

V x X t

X t X tX t F x X t
F X t X t t g

x t tt t
δ δ

δ ω τ
τ

=

      + = + + − +  
       

  (6) 

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

0 1

0 1

sin
d d 1

d d

d d
sin .

d d
x X t

X t X t t
t t

t t

x x
t X t t t

x x

ω
δ

τ

ω δ δ

Θ

=

Φ +Φ
Θ Θ + = 


Φ Φ   + + − Θ + Θ    
  

           (7) 

Fluctuations of velocity and temperature of a particle represented as 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )sin cos ,  sin cosX t a t t b t t t t t t tδ ω ω δ α ω β ω= + Θ = + .                (8) 

Correctness of the above presentations are illustrates in Appendix. Period of oscillation T  is substantially 
less than the time scale of variation of averaged parameters for the particle. Time derivatives of velocity and 
temperature fluctuations of the particle have the form 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )
2

2
2

d
cos sin ,  

d
d

cos sin ,  
d

d
d

X t
a t t b t t

t
t

t t t t
t
X t

X t
t

δ
ω ω ω

δ
ω α ω β ω

δ
ω δ

≈ −  

Θ
≈ −  

≈ −

 

Upon substituting these expressions into the Equation (6) we write down  

( )
( ) ( ) ( ) ( )

( )( ) ( )
( )

( ) ( ) ( ) ( )( ) ( )

( )
( ) ( ) ( ) ( )

2
2

2

d
sin cos

d

d1 sin cos sin
d

d
  cos sin .

d

V x X t

V

X t
a t t b t t

t

F x
F X t a t t b t t t

x

X t
g a t t b t t

t

ω ω ω

ω ω ω
τ

τ ω ω ω ω

=

− +  

  = + +
  

 + − + − 
  

          (9) 

For particle temperature (7) following equation is rewritten 

( )
( ) ( ) ( ) ( )

( )( ) ( )( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

0 1

0 1

d
cos sin

d

1 sin

d d
sin sin cos

d d

sin cos .

x X t

t
t t t t

t

X t X t t

x x
t a t t b t t

x x

t t t t t

ωα ω ωβ ω

ω
τ

ω ω ω

α ω β ω

Θ

=

Θ
+ −

= Φ +Φ

Φ Φ 

+ + + 
 


 − Θ + +  


         (10) 

Unknown coefficients ( ) ( ) ( ) ( ), , ,a t b t t tα β  are obtained from the Equations (9) and (10) taking into  

account the orthogonally of functions ( )sin tω  and ( )cos tω  on the temporary interval [ ]0,t T∈  

( ) ( ) ( ) ( )
0 0 0

1 1 1sin d cos d sin cos d 0
T T T

t t t t t t t
T T T

ω ω ω ω= = =∫ ∫ ∫ , 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2

0 0 0 0

1 1 1 1 1sin d cos d ,  sin cos d sin cos d 0
2

T T T T

t t t t t t t t t t
T T T T

ω ω ω ω ω ω= = = =∫ ∫ ∫ ∫ . 

Equations (9) and (10) is multiplied sequentially by functions ( )sin tω , ( )cos tω  and integrated over the 
period of oscillation T . As a result, from Equation (9) we obtain expressions for the coefficients ( ) ( ),a t b t  

( )
( )( )

( )
( )

( )( )
( )2 2

,  
1 1

V

V

F X t F X t
a t b t

τ

ωτ ω ωτ
= − = −

 + + 

. 
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From Equation (10) we obtain expressions for the coefficients ( ) ( ),t tα β  

( )
( )

( )( )
( )

( )( ) ( )
( )

0
12 2

d1
d11

V

x X t

x
t X t F X t

x
τ τ

α
ωττ ω

Θ

=Θ

 Φ+ = Φ − 
++   

, 

( )
( )

( )( )
( ) ( )

( )( ) ( )
( )

2
0

12 2 2

d1
d1 1 1

V

x X t

x
t X t F X t

x
τ ω τ τ ω

β
τ ω ω τ ω ωτ
Θ Θ

=Θ Θ

Φ−
= − Φ −

   + + +  

. 

After averaging the Equations (9) and (10) over the period of oscillation we obtain the following equations for 
averaged velocity and temperature of the particle  

( )
( )

( )

( )

( ) ( )
( )2

2

d dd1 1 ,  
d 4 d d1

V
V

V V x X t

V t X tF x
g V t V t

t x t
τ

τ
τ ωτ

=

 
 = − + − = 

+  

,           (11) 

( )
( )( )

( )
( )( ) ( )

( )

( )1
0 2

d d1 1
d 2 d1

V

V x X t

t x
X t F X t t

t x
τ

τ ωτΘ
=

 Θ Φ = Φ − − Θ 
+  

.           (12) 

From the Equations (11) and (12) is seen that in homogeneity in amplitude of velocity and temperature fluc- 
tuations of carrier fluid leads to migration force and an additional heat transfer for particles. The drift velocity in 
Equation (11) is proportional to derivative of the square of amplitude of fluid velocity fluctuations and  
directed toward reducing intensity of fluctuations ( )d d 0F x x > . From Equation (12) one can notice that at  
inhomogeneous temperature of fluid on the particle acts additional cooling heat flux for ( )1d d 0x xΦ > .  

It follows from the Equation (11) that, for particles of low inertia V Tτ   additional migration force and  
additional heat flux disappears. Value of migration force and additional heat flux is also reduced for particles  
with high inertia V Tτ  . Migration force is maximal for particles with a relaxation time 1Vωτ ∼ . 

Actual coordinate and velocity of particles are calculated based on the following algebraic equations 

( ) ( )
( )( )

( )
( ) ( )2

sin cos
1

V

V

F X t
X t X t t tτ ω ω ω

ω ωτ
= − +   + 

,                      (13) 

( ) ( )
( )( )

( )
( ) ( )2 sin cos

1
V

V

F X t
V t V t t tω ωτ ω

ωτ
= + −  

+
.                    (14) 

Actual temperature of particle is 

( ) ( ) ( ) ( ) ( ) ( )sin cost t t t t tα ω β ωΘ = Θ + + .                        (15) 

From the formulas (3) it is follow the initial conditions for the averaged velocity, temperature and particle 
coordinate 

( )
( )( )

( )
( )

( )
0

0 02 2

0
0

1 1
V V

V V

F X F X
V V V

ωτ ωτ

ωτ ωτ
= + ≈ +

+ +
, 

( )
( )( )

( )
( )

( )
0

0 02 2

0
0

1 1
V V

V V

F X F X
X X X

τ τ

ωτ ωτ
= + ≈ +

+ +
, 

( )
( )

( )
( ) ( )

( ) ( )

0

2
0

0 1 0 02 2 2

d1
0

d1 1 1
V

x X

x
X F X

x
τ ω τ τ ω

τ ω ω τ ω ωτ
Θ Θ

=Θ Θ

Φ−
Θ ≈ Θ + Φ +

   + + +  

. 
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4. Linear Dependence of Velocity and Temperature Amplitudes 
Consider the analytical solution for the case of linear dependence of amplitude of fluctuations of velocity and 
temperature of liquid with the distance from the wall (see Figure 1) 

( ) ( ) ( )0 0 1 1,  ,  UF x U x L x x L x x LΞ Ξ= Φ = Ξ Φ = Ξ . 

4.1. Solution of the Equations for a Particle Velocity and Coordinate 
In considered case the equation for averaged particle coordinate has the following form 

( ) ( )
( )

( )
22

2 2

d d 1
d 2d 1

V
V V

UV

X t X t U X t g
t Lt

τ
τ τ

ωτ

 
+ + = 

+  



. 

Solution of the last equation can be written as 

( ) ( ) ( )

( )
( )

1 2
1 2 1 1 2 2

1 2 1 1 2 2 1 2

2

1,2 2

e e ,  ,  

21 1 1 .
2 1

t t

V U

V V

g g gX t A A A A A A

U L

γ γ

γ γ γ γ γ γ γ γ

τ
γ

τ ωτ

= + + = + = −
− −

 
 = − ± − 

+ 
 

   



 

Constants 1 2,  A A  is founded from the initial conditions (3) 

( ) ( )
0

1 2 0 1 1 2 2 0 22
1 ,  

11
U V

UVV

U L X
A A X A A V U

L
τ ω

γ γ
ωτω ωτ

 
 + = + + = + 

  ++   



 . 

Expression for actual coordinate of particle follows from (13) 

( ) ( )
( )

( ) ( )2
1 sin cos

1
U

V

V

U L
X t X t t tτ ω ω ω

ω ωτ

 
 = − +    +   



. 

In this considered special case equation for averaged particle velocity has the form 

( )
( )

( )
( )

2

2

d 1
d 2 1

V
V V

UV

V t UV t X t g
t L

τ
τ τ

ωτ

 
+ = − + 

+  



. 

Solution of this equation is 

( ) ( )
( )

1 2

2

2

1 2

1 2 1 2

10 e 1 e
2 1

e e e e 1 e
1 1

V V

V

t t
V

V
UV

tt t
t t

V V

UV t V g
L

A A g

τ τ

τγ γτ τ

τ
τ

ωτ

γ τ γ τ γ γ

− −

−− −

   
 = + − −    +   

       × − + − + −         + +      



 

. 

Initial values for the averaged coordinate and velocity of a particle are  

( )
( )

( )
( )

0
0 02 20 1 ,  0

1 1
V V

UV V

U X
X X V V U

L
τ ωτ

ωτ ωτ

 
 = + = +
 + + 



 . 

Actual velocity of a particle follows from expression (14) 

( ) ( )
( )

( )
( ) ( )2 cos sin

1
V

UV

X tUV t V t t t
L

τ ω ω ω
ωτ

= − −  
+



 . 
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4.2. Solution of Equation for a Particle Temperature  
Equation for averaged temperature of a particle follows from Equation (12) and has the form 

( )
( )

( )
( )1

0 2

d
d 2 1

V

UV

t X tUt
t L L

τ
τ

ωτ
Θ

Ξ

 Θ Ξ + Θ = Ξ − 
+  



.                    (16) 

Initial value of average temperature of a particle is equal 

( )
( ) ( ) ( )

2
0

0 0 1 22 2

1
0

11 1
V

U

XU
L L

τ τ ω τ ω

τ ωω τ ω ωτ
Θ Θ

ΞΘΘ

 
− Θ = Θ + Ξ +Ξ 

    ++ +    



. 

Solution of Equation (16) represented 

( ) ( )
( )

( )1
0 2

0

0 e e d
2 1

t t st
V

UV

X sUt s
L L

τ ττ

ωτ
Θ Θ

−
− −

Ξ

 Ξ Θ = Θ + Ξ − 
+  

∫


. 

By substituting in the above integral expression for the averaged particle displacement ( )X s , we find  

out the following formula 

( ) ( )
( )

1 2
1

0 1 22
1 2 1 2

1 e e e e0 e 1 e
2 1 11

t t
t tt t

V

UV

U gt A A
L L

τ τγ γ
τ ττ

γ τ γ τ γ γωτ

Θ Θ
Θ Θ

− −
− −

Ξ Θ Θ

    Ξ − −    Θ = Θ − Ξ − + − −    + ++       



  . 

Formula for actual temperature of a particle follows from expression (15) and takes the form  

( ) ( )
( )

( )
( )

( )

( )
( ) ( )

( )

0 12 2

2

0 12 2

1 sin
11

11 cos .
11

V

U

V

U

X t Ut t t
L L

X t U t
L L

τ τ
ω

ωττ ω

τ τ ω
τ ω ω

ω ωττ ω

Θ

ΞΘ

Θ
Θ

Ξ Θ

 +
Θ = Θ − Ξ −Ξ 

+ +  
 

− − Ξ + Ξ 
   ++      





 

5. Calculation Results 
We give comparison of the results of analytical research with the data of direct numerical calculation of the sys- 
tem of Equations (1) and (2). As dimensionless variables we used Stokes number St V Tτ= , dimensionless  
temporary variable t t T∗ =  and dimensionless coordinates Ux x L∗ = , UX X L∗ = . Dimensionless gravity  
acceleration is g Tg U∗ = 

 and dimensionless thermal relaxation time is Tτ τ∗
Θ Θ= . 

Figure 2 illustrates a satisfactory agreement between results of calculations using analytical formulas from 
the previous paragraph and numerical integration the ordinary differential Equations (1) and (2). Migration of 
particles towards the wall is a result of its inertia. One can see that particle drifts to the wall. This effect can be 
explained as follows. On the one hand, a particle leaves the region with high level of velocity fluctuations and 
enters in a region with low level. On the other hand, viscous resistance leads to loss of kinetic energy of the par- 
ticle. Particle due to its inertia cannot return to the region with a higher level of velocity fluctuations.  

The Figure 3 illustrates the effect of preferential concentration of particles at some distance from the wall  
when the gravity force is directed along the normal to the wall (see Figure 1). Unlike the case ( 0g∗ = ), the par- 
ticle periodically fluctuates at a certain distance from the wall. 

The Figure 4 presents a satisfactory agreement between the results of numerical integration of differential 
Equations (1) and (2) and calculations using analytical formulas for the particle temperature. Figure represent 
the alteration of temperature with time (a) and change the particle temperature along its trajectory (b). The par- 
ticle drift toward the wall and its temperature decreases. 
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Figure 2. Dimentionless coordinate (a), velocity (b) and phase diagram (c) for St = 1: 1—analytical formulas for actual 
coordinate and velocity of a particle; 2—solution of ODE; 3—average trajectory.                                     
 

 
Figure 3. Nondimensional coordinate (a), velocity (b) and phase diagram (c) for St = 1, g* ≠ 0. Other designations as in 
Figure 2.                                                                                              
 

 

Figure 4. Nondimensional temperature (a) and phase diagram (b) for St = 1, 2τ ∗
Θ = . Other 

designations as in Figure 2.                                                        

6. Conclusions 
Simple model of a particle motion and heat transfer in inhomogeneous field of fluctuating velocity and temper- 
ature of fluid was suggested. The proposed model reflects the main features of the turbulent flow near the wall. 
For separation of the fast and slow components of velocity and temperature fluctuations of a particle averaging 
method of Krylov-Bogolyubov was used.  

Physical interpretation of migration force and additional feat flux in inhomogeneous rapidly oscillating veloc- 
ity and temperature of fluid phase is established. It is shown that the force of migration and additional heat flux 
disappear for low inertia particles and decrease with increasing particles Stokes number.  

For a linear dependence of the amplitude of velocity and temperature fluctuations on the distance to the wall 
analytical solutions was found. The results of numerical solution of the system of equations of motion and heat 
transfer of a particle are in satisfactory agreement with the calculations by analytical formulas. 

The possibility of formation regions with preferential concentration of particles in a gravitational field and in 
inhomogeneous velocity fluctuations is illustrated. 
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Appendix 
Here we will illustrate the correctness of presentation of velocity and temperature fluctuations in the form (8). 
For a homogeneous fluid velocity in dimensionless variables we have the equation for a particle velocity  

( ) ( ) 0
d 1 sin , 0

Std
V U t V V V
t

ω
∗

∗ ∗ ∗ ∗ ∗
∗

 = − = 
 . 

Particle velocity with the initial condition is  

( ) ( ) ( ) ( )
( )

St
St St St

0 0 2
0

sin St cos Ste
e e sin d e

St 1 St

t
t t s tt t tUV t V s s V U

ω ω ω ω
ω

ω

∗ ∗∗
−∗ ∗ ∗ ∗ ∗ ∗−

− − −∗ ∗ ∗ ∗ ∗

∗

− +
= + = +

+
∫



 . 

For a sufficiently long interval of time Stt∗  , we obtain the following expression 

( ) ( ) ( )
( )

( ) ( )2

sin St cos
sin cos

1 St

t t
V t U a t b t

ω ω ω
ω ω

ω

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗

−
= = +

+

 . 

From above expression we see that stationary amplitude of oscillation decreases with increasing Stokes num- 
ber. 

The Figure A1 illustrates process of reaching the stationary regime for particle velocity fluctuations. 
 

 
Figure A1. Particle velocity in versus of time. 
Dached line shows velocity oscillation of fluid 
phase.                                   
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