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ABSTRACT 
We consider the Schrödinger operators on graphs with a finite or countable number of edges and Schrödinger 
operators on branched manifolds of variable dimension. In particular, a description of self-adjoint extensions of 
symmetric Schrödinger operator, initially defined on a smooth function, whose support does not contain the 
branch points of the graph and branch points of the manifold. These results are obtained for graphs with a single 
vertex, graphs with multiple vertices and graphs with a single vertex and countable set of rays. 
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1. Introduction 
Differential operators on graphs and other branched manifolds have applications to the description of a number 
of processes in quantum mechanics and biology. Fundamentals of the theory of differential equations on graphs 
presented in the monograph [1], in which a number of examples of physical problems leading to the study of 
differential operators on graphs. In the articles [2-4] spectral properties of such operators are investigated by the 
dynamic properties of the evolution determined by the Schrödinger equation on the graph. In the articles [5-8] 
we study the set of self-adjoint extensions Schrödinger operator defined initially in the space of compactly sup- 
ported smooth functions, whose support do not contain the branch points of the graph ([6-8]) or points of chang- 
ing the operator type [5]. Feynman approximation formulas for the unitary semigroups defined by some of the 
self-adjoint extensions are founded in the article [7]. This article contains the consideration of the Laplace oper- 
ators on graphs with a finite or countable number of edges. This article is a continuation of studies [7] in which 
we studied the graph with a finite set of edges are considered. 

The relevant problem under consideration consists of recently considerable interest in the description of par- 
ticle dynamics on graphs, branched dendrites and other manifolds from mathematical physics and quantum me- 
chanics. Mathematically, the operation of differentiation function is uniquely defined for functions on region or 
on a smooth manifold, which needs to be clarified for the functions defined on manifolds, containing the branch 
point. The purpose of this study is to determine the action of the Schrödinger operator on functions defined on a 
manifold with a finite set of branch points. For this purpose, we define the Schrödinger operator 0L  in the 
space 0,0C∞  finite and infinitely differentiable functions whose support does not contain the branching points. 
Schrödinger operator 𝐋𝐋 on a graph is called a self-adjoint extension of the operator 0L . In this article we de- 
scribe the set of all operators of Schrödinger operators on a graph in terms of conditions on the set of limit val- 
ues at the branch point functions in the domain of 𝐋𝐋 and its derivative. In this article we obtained the results with 
a single vertex (they represent a union n of semidirect with a common vertex), graphs with multiple vertices and 
graphs with a single vertex and a countable set of rays and the set of all operators of Schrödinger on branched 
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manifold in terms of conditions on the set of limit values on a manifold of branching functions in the domain of 
the operator 𝐋𝐋. 

In this article we found general description of a set of self-adjoint extensions, of the operator 0L , as on 
graphs and branched manifolds. 

2. Formulation of Problem and Notation 
We study the Schrödinger operator on the graph Γ, defining the processes of diffusion and quantum dynamics on 
a graph both on branched manifold. Following [1] terminology graph Γ is called finite or countable collection of 
smooth one-dimensional manifolds Γi  (called edges of the graph), each of which is diffeomorphic to the ray 
[ )0,+∞  or interval [0,1]. The boundary points of the edges will be called vertices of the graph. Each vertex of a 
graph is a boundary point of a non-empty set of edges of a graph. 

Assumed that on Γ given Borel measure, we determine the requirement that its restriction to each edge jΓ  
coincides with the standard Lebesgue measure, then ( ) ( )2 2Γ Γ jL L= ⊕ . 

Let ( )0,0 ΓC∞ -vector space of infinitely differentiable complex-valued functions on Γ with compact support not 
containing the vertices, and operator 0 0

j= ⊕L L  is linear operator defined on a linear space ( ) ( )0 0D L C Γ∞=  by 
the equation   

( )
( )( ) ( )0

B x u1 uu u iB x i C x u,
m x x

∂∂
= ∆ + + +

∂ ∂
L                      (2.1) 

 

in which the functions m , B , C -real-valued, bounded and continuous everywhere except at the vertex func- 
tion on Γ, function m  takes on each edge Γ j  a constant value m ,j  and 0m m 0j ≥ >  for all 1, , ;j n=   

( )0u ΓC∞∈ . 
We say that Γ is branched manifolds, if Γ defined as the union of n  instances of regions Γ ,α  { }1,2, , :nα ∈    

1Γ Γ ,n
αα=

=


 we assume that for each 𝛼𝛼 region Γα  is dα -dimensional bounded domain in the space dR α   
with ( )1dα −  dimensional smooth boundary αη . The boundary of the manifold Γ is defined as the union 
of n  instances of boundaries regions ( )1Γ ,n

αα
η η

=
∂ ≡ =



 where Γ .α αη = ∂   

Point Q  is called a branch point of the manifold Γ, if it is a boundary point of at least two different regions 
Γ ,Γα β  where .α β≠  

Assumed that on Γ given Borel measure, we determine the requirement that its restriction to each regions Γα  
coincides with the standard Lebesgue measure space .dR α  Then the space of square-integrable in the Lebesgue 
measure on the set of complex-valued functions Γ admits the representation ( ) ( )2 2 .L L αΓ = ⊕ Γ  

Let ( )0,0 ΓC∞ -vector space of infinitely differentiable complex-valued functions on Γ with compact support 
not containing branch points of the manifold, and 0 0

α= ⊕L L -linear operator defined on ( )0 Γ ,C∞  by relation 
{ }0 0 ,u uα

α= ⊕L L  where 

( )( ) ( )( ) ( )0
1u u i B x , u idiv B x u C x u,
m

= ∆ + ∇ + +L
 

                    (2.2) 

in which the functions m , B


, C -real-valued, bounded and continuous everywhere except at the branching 
points of Γ, function m  takes on each region Γα  a constant value m ,α  and 0m m 0,α ≥ >  for all 

1, ,n;α =   ( )0 Γu C∞∈ . Here { }, 1, ,u nα α =  -restricting a function u  on the region Γ .α  
Definition: The linear self-adjoint operator 𝐋𝐋 in the space ( )2 ΓH L=  is called Hamiltonian of quantum 

system with mass m  in the electromagnetic filed { }C,B


 if 𝐋𝐋 is self-adjoint extension of the operator 0.L   
We investigate the properties of the Cauchy problem for the Schrödinger equation 

( ) ( )u x, t
u x, t ,

x
i
∂

=
∂

L                                   (2.3) 

with the initial condition 
 

( ) ( )0u x, 0 u x ,x Γ.+ = ∈                                  (2.4) 

 

Here 𝐋𝐋-symmetric operator in a Hilbert space ( )2 Γ ,H L=  is an extension operator of 0L , given on linear 
manifold ( )0D L  by the equation (2.1) or (2.2). The purpose of the article is to describe the set of all self-ad- 
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joint extensions of the operator 0L , that may act as generators of the unitary group of the Cauchy problem (2.3), 
(2.4) for the Schrödinger equation. 

3. Graph with One Vertex 
Graph Γ with one vertex, is defined as the union of n  instances of semidirect [ )Γ 0, ,j = +∞  1, , ,j n=   with 
a common origin Q , called the vertex of the graph. Assumed that on Γ given Borel measure defined by the re- 
quirement that its restriction to each semidirect Γ j  coincides with the standard Lebesgue measure, then 

( ) ( )2 2Γ Γ jL L= ⊕ . Let ( )0,0 ΓC∞ -vector space of infinitely differentiable complex-valued functions on Γ with 
compact support not containing the point ,Q  and 0 0

j= ⊕L L -linear operator, defined on ( )0 Γ ,C∞  by the re- 
lation { }0 0 ,j

ju u= ⊕L L  

( )
( )( )

( )0 j

B x1 iB x i C x .
m x x

jj
j j j

j

j j
j j

uu
u u u

∂∂
= ∆ + + +

∂ ∂
L  

Here { }, j 1, ,ju n=  -restriction of a function u  on semidirect jΓ .  
Assumed that for all j  number m 0j >  and the function ( ) ( ) ( )1B x ,C x Γ ,j j jC R∈  and ( )b B 0j j=  we 

denote in the point .Q  
Operator 0L  with domain of definition ( ) ( ) ( )0 0,0 2D L C Γ L Γ∞= ⊂  is densely defined and symmetric. The 

domain ( )*
0D L  adjoint operator *

0L  is a linear subspace ( ) ( ) ( )* 2 2
0 1 2 2D Γ : Γ .n

j jW W H== ⊕ = ⊂L The restric- 

tion of any function ( )2
2 Γu W∈  on semidirect Γ ,j  1, ,j n=   possess boundary values at the vertex, which  

we denote by ( )j 0 ,u  where the symbol ( )0u  means ( ) ( ) ( ) ( )( )T
1 20 0 0 0 .n

nu u u u= ∈   This is also  

true for the first derivatives of these restrictions, which use similar notation.  
Von Neumann theorem ([9,10]) provides a description of a set of self-adjoint extensions of symmetric opera- 

tors. We obtain an explicit description of a set of self-adjoint extensions of the operator 0L  in terms of condi- 
tions on a linear subspace in the space of boundary values  

( ) ( ) ( ) ( )( ){ }* 2
0 0D D 0 , 0 .nG u u′= = =L L   

Theorem 1. Let m 1= , ( )B x 0=  and ( )C x 0.=  The operator 𝐋𝐋 with domain  

( ) ( ) ( ) ( ){ }2
2D Γ : 0 0 ,u W u Au′= ∈ =L  

self-adjoint if and only if the matrix A  satisfies the equality *.A A=  
Proof. If ( )Du∈ L  and ( )*

0D ,v∈ L  then we have the equality  

( ) ( ) ( ) ( )( ) ( ) ( )( )*
0, , 0 , 0 0 , 0 .n nH H

u v u v u v u v′ ′− = −L L
 

 

Hence ( ) ( ) ( ) ( ) ( )( )* *
0, , 0 , 0 0 .nH H

u v u v u v A v′− = −L L


 
Traces ( )0u  take arbitrary values, therefore the equality ( ) ( )*0 0v A v′ =  is necessary and sufficient for in- 

clusion ( )*D ,v∈ L  which proves Theorem 1. 
Corollary 1. If M  and  -diagonal matrices and the matrix elements are defined by the formula  
1 ,

m ij
i n n

δ
×

 
 
 

 1
b ij

i n n

δ
×

 
 
 

 , 1, ,i j n=   respectively, and ( )C c ,ij=  where ( )c Γ ,ij L∞∈  then the operator 𝐋𝐋  

with domain ( ) ( ) ( ) ( ){ }2
2D Γ : 0 0 ,u W u Au′= ∈ =L  self-adjoint if and only if the matrices ,A  M  and   sa- 

tisfy the equality 1 * 1M M 2iM .A A− −= −   
Proof. If ( )Du∈ L  and ( )*

0D ,v∈ L  then we have the equality 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )*
0, , 0 ,M 0 M 0 , 0 2i 0 , 0 .n nnH H

u v u v u v u v u v′ ′− = − −L L
 

  

Hence  

( ) ( ) ( ) ( ) ( ) ( )( )* *
0, , 0 ,M 0 M 0 2 0 .nH H

u v u v u v A v i v′− = − +L L


  

Traces ( )0u  take arbitrary values, therefore the equality ( ) ( ) ( )1 * 10 M M 2iM 0v A v− −′ = −   is necessary 
and sufficient for inclusion ( )*D ,v∈ L  which proves the corollary 1.  

Theorem 1 gives a description of a wide class of self-adjoint extensions of the operator 0 ,L  but does not de- 
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scribe the totality of self-adjoint extensions. This makes the next theorem. 
Theorem 2. The operator 𝐋𝐋 is self-adjoint if and only if its domain of definition ( )D L  consists of the func- 

tions in the space ( )2
2 Γ ,W  boundary values satisfy the equality ( ) ( )Z 0 0 0,u Au′ + =  where rank of the matrix 

( )Z | A  equals n  and the matrix is *ZA  is self-adjoint: * *Z Z .A A=  

Proof. Let m 1= , ( )B x 0=  and ( )C x 0.=  We denote by ( )
( ) 2 1

2 1

0
0 n n n

n

u
h

u × ×

×

   =  ′   
Φ  set of solutions of  

linear equations  

( ) ( )Z 0 0 0,u Au′ + =                                (3.1) 

where 2n n×Φ  is the fundamental matrix and 1nh ×  is a matrix of independent constants. Substituting each of the 
solutions of the fundamental equation ( ) ( )Z 0 0 0,u Au′ + =  specifying the domain, we obtain by following the 
relation of the fundamental matrix, with the matrix of the system of Equation (3.1) 
 

T
T

T
2

0 .n n
n n

A
Z ×

×

 
= 

 
Φ                                  (3.2) 

If ( )Du∈ L  and domain of the operator 𝐋𝐋 defined by a system of Equation (3.1), then for any ( )*
0Dv∈ L  

rightly the equality 

( ) ( ) ( )
( )

* T
0

2 2 2 1

00 1
, , , .

1 0 0H H
n n n

v
u v u v h

v× ×

  
− =     − ′   

L L Φ  

Element ( )*Dv∈ L  satisfies condition 

( ) ( )*
0, , 0.H H

u v u v− =L L                               (3.3) 

Let 
1

1

2

V
n

n

n n

v v

v v
×

 
=   ′ ′ 





-basis in the linear ( ) ( )0D D ,*L L  then each column of matrix V  satisfies  

(3.3), and therefore 

T
2

2 2

0 1
V 0 .

1 0 n n n n
n n

× ×
×

 
= − 

Φ                             (3.4) 

Of (3.2) and (3.4), it follows that the matrix V  can be selected 
*

*

Z
V .

A
 −

=  
 

  

The operator 𝐋𝐋 is self-adjoint if and only if ( ) ( )*D D ,=L L  so if V -matrix of the columns of the basis vec- 
tors in the subspace ( ) ( )0D D ,*L L  then ( ) ( )*D D=L L  if and only if V  is also the matrix of the columns 
of the basis vectors in the subspace ( ) ( )0D D ,L L  that is, any of its column satisfies the system of Equa- 

ation (3.1). And this is equivalent to the system of equations ( )
*

*

Z
Z 0,A

A
 −

= 
 

 which proves Theorem 2. 

Theorem 3. The operator 𝐋𝐋 is self-adjoint if and only if its domain of definition ( )D L  consists of the func- 
tions in the space ( )2

2 Γ ,W  boundary values satisfy the equality ( ) ( )1 00 0 0,A u A u′ + =  where rank of the ma- 
trix ( )1 0|A A  equals n  and the matrix is *

0 1A A  is self-adjoint: ( )1 * 1 * 1 *
0 1 1 0 1M M 2 M .A A A A i A− − −= +   

Proof. Let m 0≠ , ( )B x 0≠  and ( )C x 0.≠  We denote by ( )
( ) 2 1

2 1

0
0 n n n

n

u
h

u × ×

×

   =  ′   
Φ  set of solutions of  

linear equations 

( ) ( )1 00 0 0,A u A u′ + =                                 (3.5) 

where 2n n×Φ  is the fundamental matrix and 1nh ×  is a matrix of independent constants. Substituting each of the 
solutions of the fundamental equation ( ) ( )1 00 0 0,A u A u′ + =  specifying the domain, we obtain by following the 

OPEN ACCESS                                                                                       JAMP 



M. H. N. ELSHEIKH 5 

relation of the fundamental matrix, with the matrix of the system of Equation (3.5)  
T

T 0
T
1 2

0 .n n
n n

A
A ×

×

 
Φ = 

 
                                 (3.6) 

If ( )Du∈ L  and domain of the operator 𝐋𝐋 defined by a system of Equation (3.5), then for any ( )*
0Dv∈ L  

rightly the equality  

( ) ( ) ( )
( )

* T
0

2 2 2 1

02i M
, , , .

M 0 0H H
n n n

v
u v u v h

v× ×

 − 
− =     − ′   

L L Φ


 

Element ( )*Dv∈ L  satisfies condition 

( ) ( )*
0, , 0.H H

u v u v− =L L                                (3.7) 

Let 
1

1

2

V
n

n

n n

v v

v v
×

 
=   ′ ′ 





-basis in the linear ( ) ( )0D D ,*L L  then each column of matrix V  satisfies  

(3.7), and therefore 

T
2

2 2

2i M
V 0 .

M 0 n n n n
n n

× ×
×

− 
= − 

Φ


                             (3.8) 

Of (3.6) and (3.8), it follows that the matrix V  can be selected 
1 *

1
1 * 1 1 *

0 1

M
V .

M 2 M M
A

A i A

−

− − −

 −
=  

+ 
  

The operator 𝐋𝐋 is self-adjoint if and only if ( ) ( )*D D ,=L L  so if V -matrix of the columns of the basis vec- 
tors in the subspace ( ) ( )0D D ,*L L  then ( ) ( )*D D=L L  if and only if V  is also the matrix of the columns 

of the basis vectors in the subspace ( ) ( )0D D ,L L  that is, any of its column satisfies the system of Equation 
(3.5). And this is equivalent to the system of equations  

( )
1 *

1
0 1 1 * 1 1 *

0 1

M
0,

M 2 M M
A

A A
A i A

−

− − −

 −
= 

+ 
 

which proves Theorem 3. 

4. Graph with Multiple Vertices 
In the present article, a graph with multiple vertices is understood by one-dimensional cellular of complex [3]. 
Let graph Γ, be a collection of n  vertices 1, , ,nQ Q  from each of which proceeds ,jr  jr N∈  edges Γ ,i

j  
representing the infinity semidirect or line segments that connect vertex jQ  with other vertices. We fix on each 
edges Γ j  parametrization of the natural parameters. In this case, the edges of semidirect parameter increases 
from the boundary points and the edges of intervals, the orientation is chosen arbitrarily. Let d j -initial point of 
the edges semidirect, a j -initial point of edges Γ j  interval, b j -end point of edges Γ j  interval. Let 
c , 1, , Nk k =  -the collection of all boundary points of the edges 1Γ , ,Γ .n  We define the function s  on the 
set { }ck  so that ( )c 1ks =  if ck -beginning of edges and ( )c 1ks = −  if ck -end of the edges, denoted by S  
diagonal matrix with numbers ( )cks  on the diagonal. 

We introduce the operators 0 ,L  *
0L  and the space G  of boundary values of functions from ( )*

0D L  and 
their derivatives, linearly isomorphic to space 2 .N  Through ( )ju c  we denote the collection limit function 
values on edges of the boundary, which is the point ,jc  and by ( )u c  denote by N -dimensional vector of 

( ) ( ) ( )( )T
1 2 N ,u c u c u c  for the vector limit values of the derivative ( )u c′  use similar notation, and let 
( )Bjb c=  denoted in .Q  

Theorem 4. Let m 1= , ( )B x 0=  and ( )C x 0.=  The operator 𝐋𝐋 with domain  

( ) ( ) ( ) ( ){ }2
2D Γ : ,u W u c Au c′= ∈ =L  

adjoint if and only if the matrix A  satisfies the equality * .A SA S=  
Proof. If ( )Du∈ L  and ( )*

0D ,v∈ L  then we have the equality  
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( ) ( ) ( ) ( )( ) ( ) ( )( )2 2
*
0, , , , .n nH H

u v u v Su c v c Su c v c′ ′− = −L L
 

 

Hence 

( ) ( ) ( ) ( ) ( )( ) 2
* *
0, , , .nH H

u v u v u c Sv c A Sv c′− = −L L


 

Traces ( )u c  take arbitrary values, therefore the equality ( ) ( )*v c SA Sv c′ =  is necessary and sufficient for 
inclusion ( )*D ,v∈ L  which proves Theorem 4.  

Corollary 2. If M  and  -diagonal matrices and the matrix elements are defined by the formula  

2 2

1 ,
m ij

i n n

δ
×

 
 
 

 
2 2

1
b ij

i n n

δ
×

 
 
 

 , 1, ,2i j n=   respectively, and ( )C c ,ij=  where ( )c Γ ,ij L∞∈  then the operator  

𝐋𝐋 with domain ( ) ( ) ( ) ( ){ }2
2D Γ : ,u W u c Au c′= ∈ =L  self-adjoint if and only if the matrices ,A  M  and   

satisfy the equality 1 * 1M M 2iM .A SA S S S− −= −   
Proof. If ( )Du∈ L  and ( )*

0D ,v∈ L  then we have the equality  

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )T T T*
0, , ,M ,M 2i , .H H

u v u v S u c v c S u c v c S u c v c′ ′− = − −L L   

Hence  

( ) ( ) ( )( ) ( ) ( ) ( )( )T* *
0, , , M S M 2i .H H

u v u v u c S v c A v c Sv c′− = − +L L   

Traces ( )( )T
u c  take arbitrary values, therefore the equality ( ) ( ) ( )1 * 1c M M 2iMv SA S S S v c− −′ = −   is neces- 

sary and sufficient for inclusion ( )*D ,v∈ L  which proves the corollary 2. 

5. Graph with One Vertex and with a Countable Set of Rays 
Description of this graph is defined by the following structures [11]. In this case we denote by µ -locally finite 
non-negative countably additive measure on N such that ( ) 0,kkµ µ= >  denoted by ( )2 ,2 , ,NL N µ  —Hilbert 
space of boundary values with the norm  

{ } ( ) ( )
2,

2 2 2
1d .n n kkL N

u u n u k
µ

µ µ∞

=
= = ∑∫  

The restriction of any function on semidirect possesses the boundary values at the vertex:  
( ) ( ) ( )( )T

1 2,0 0 0 .nu u u L µ= ∈   This is also true for the first derivatives of these restrictions ( )0 .u′  
We denote by Λ,  M  and   diagonal matrices and their matrix elements are given by the formula ( ) ,i ijµ δ   

1
m ij

i

δ
 
 
 

 and ( )i ijbδ  respectively. 

Theorem 5. Let 1,kµ =  m 1= , ( )B x 0=  and ( )C x 0.=  The operator L  with domain 
( ) ( ) ( ) ( ){ }2

2D Γ : 0 0 ,u W u Au′= ∈ =L  self-adjoint if and only if the operator A  is self-adjoint in the space 2.l  

Proof. If ( )Du∈ L  and ( )*
0D ,v∈ L  then we have the equality  

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )T T T T* T
0, , 0 , Λ 0 0 , Λ 0 u 0 ,Λ 0 u 0 ,A Λ 0 .H H

u v u v u v u v v v′ ′ ′− = − = −L L  

Hence ( ) ( ) ( )( ) ( ) ( )( )T* T
0, , 0 ,Λ 0 Λ 0 .H H

u v u v u v A v′− = −L L  

Traces ( )( )T
0u  take arbitrary values in the space ( )2 ,2 , , ,NL N µ   therefore the equality 

( ) ( )1 *0 Λ Λ 0v A v−′ =  is necessary and sufficient for inclusion ( )*D ,v∈ L  which proves Theorem 5. 

Corollary 3. If 1,k lµ ∈  1 m ,m ,k k kb l∞∈  and Λ,    and M  are operators in the space ( )2 ,2 , , ,NL N µ   
given by diagonal matrices with elements ,kµ  ,kb  1 mk  on the diagonal, respectively, ( )C c ,ij=  where 

( )c Γ .ij L∞∈  Then the operator L  with domain ( ) ( ) ( ) ( ){ }2
2D Γ : 0 0 ,u W u Au′= ∈ =L  self-adjoint if and 

only if the operators ,A  M  and   acting in the space 2 ,l  satisfy the equality  
*ΛM ΛM 2iΛA A= −                                  (5.1) 
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Proof. If ( )Du∈ L  and ( )*
0D ,v∈ L  then we have the equality  

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )T T T*
0, , 0 , Λ M 0 0 ,ΛM 0 2i 0 , Λ 0 .H H

u v u v u v u v u v′ ′− = − −L L   

Hence ( ) ( ) ( ) ( ) ( ) ( )( )T* T
0, , ΛM 0 ΛM 0 2iΛ 0 0 .H H

u v u v v A v v u ′− = − − L L   

Traces ( )( )T
0u  take arbitrary values in the space ( )2 ,2 , , ,NL N µ   therefore the equality 

( ) ( ) ( )*Λ M 0 ΛM 2iΛ 0v A v′ = −   is necessary and sufficient for inclusion ( )*D ,v∈ L  as *=L L  if and 
only if ( ) ( )*D D ,=L L  then for the self-adjoint operator L  is necessary and sufficient to satisfy the Equality 
(5.1). 

6. Schrödinger Operators on Branched Manifolds 
The assumption H . Let the function m takes the constant values m 0α >  on each region Γα  for all  

{ }1, ,nα ∈  , and satisfy condition ( ) ( ) ( )1B Γ , Γ , ,d dx C R C Rα α
α α α∈


  ( ) ( )C Γ , .x C Rα α∈  Through 

b B
α

α α
η

=
 

 we denote the limiting values of the vector function Bα



 on the boundary .αη   

The operator 0L  with domain ( ) ( ) ( )0 0,0 2D L C Γ Γ ,L∞= ⊂  densely defined and symmetric. The domain 
( )*

0D L  adjoint operator *
0L  is a linear subspace ( ) ( ) ( )* 2 2

0 1 2 2D Γ : Γ .n W W Hα α== ⊕ = ⊂L   

Let the components Γα  manifold Γ  constitute a m  semidirect, k  finite intervals and ( )N m k− +  re-  
gions. In the case of one-dimensional region Γα  boundary value u

αα η
 is a set of complex numbers on the  

boundary ,αη  represents one or two points. In the case 2dα ≥  boundary value u
αα η

 is an element of the  

space ( )3 2
2 .W αη  According to the trace theorem ( ) ( )3 2 3 2

2 1 2
Nu W Wα αη

η η=∈ = ⊕  ([12]). Through u
η  de-  

note the collection of ( )
1

T
, ,

N
u u

η η
  limit values function u  on the boundary .η  Similarly, the limit value  

of the derivative u
n
α

α

∂
∂

 constriction uα  in the direction of the outer normal nα  to boundary αη  in the case  

semidirect αη  represents a an element of space  , in case of a limited interval-element of space 2 ,  and in 
the case of dimension 2dα ≥ -element of space ( )1 2

2 .W αη  

The boundary values of the normal derivative is denoted by 
1

T

1

, , ,
NN

u u u
n n nη η η

 ∂ ∂ ∂ ≡
 ∂ ∂ ∂ 



 where αn  is  

vector of the external relative to Γα  normal to the ,αη  1, , .Nα =    
We introduce the Hilbert space 

( ) ( ) ( )2
2 1 2 1 2 .N m k N

m kh L L Lα α α αη η η+
= = + += = ⊕ = ⊕  

We define space of boundary values 3 2 1 2 ,G h h= ⊕  where ( )3 2 2 3 2
1 2

m k N
m kh Wα αη

+
= + += ⊕  and similarly, 

( )1 2 2 1 2
1 2 .m k N

m kh Wα αη
+

= + += ⊕  
Boundary value u

η
 function ( )2

2 Γu W∈  is an element of the space 3 2 ,h  and the boundary value u
n η

∂
∂

 
its normal derivative-an element of the space 1 2.h  

We introduce in the space h  operators M  and .F  Operator M  acts on each element v h∈  as an op- 
erator of multiplication by a function 

( )
{ }

1 , ,
m

1, , .n

α
α

ξ η
µ ξ

α

 ∈= 
 ∈ 

 

And operator F  acts on each element v h∈  as an operator of multiplication by a function 

( )
( ) ( )( )
{ }

, , ,

1, , .

b n

n

α α αξ ξ ξ η
β ξ

α

 ∈= 
 ∈
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Theorem 6. Let performed assumption H  about functions m,  B,


 C  and m 1,=  b 0α =


 for any 
{ }1, , .nα ∈   Let A -linear operator in space h  with a dense domain 3 2 ,h  the values of which belongs in 

linear manifold 1 2.h  Let AD -linear manifold of functions ( )2
2 Γ ,u W∈  boundary values are related to the 

boundary values of the derivatives in the direction of the outward normal by relation 

A .u u
n η

η

∂
=

∂
 

Then the self-adjoint operator ( )
A

*
A 0 D
=L L  is necessary and sufficient to satisfy the equality *A A .=  

Proof. Since m 1,=  b 0α =


 for any ,α  then from conditions ( )ADu∈ L  and ( )*
0Dv∈ L  then we have 

the equality  

( ) ( )*
A 0, , , , .h h

h h

u vu v u v v u
n nη η

η η

   ∂ ∂
− = −      ∂ ∂   

L L  

Hence 

( ) ( )* *
A 0, , ,A .h h

h

vu v u v u v
nη η

η

 ∂
− = −  ∂ 

L L  

Traces u
η

 take arbitrary values, therefore the equality *Av v
n η

η

∂
=

∂
 is necessary and sufficient for inclu- 

sion ( )*
AD .v∈ L  Since the domain of definition operator AL  is determined by the equation A ,u u

n η
η

∂
=

∂
  

that 
*

A A=L L  then implies that *A A .=  
Corollary 4. Let performed assumption H  about functions m,  B,



 C.  Let A -linear operator in space 
h  with a dense domain 3 2 ,h  the values of which belongs in linear manifold 1 2.h  Let AD -linear manifold of 
functions ( )2

2 Γ ,u W∈  boundary values are related to the boundary values of the derivatives in the direction of 
the outward normal by relation 

A .u u
n η

η

∂
=

∂
 

Then the self-adjoint operator ( )
A

*
A 0 D
=L L  is necessary and sufficient to satisfy the equality *A A 2i .M M F= −   

Proof. Since performed assumption ,H  then from conditions ( )ADu∈ L  and ( )*
0Dv∈ L  then we have 

the equality 

( ) ( ) ( )*
A 0, , , , 2i , .h h h

h h

u vu v u v M v u M u F v
n nη η η η

η η

   ∂ ∂
− = − +      ∂ ∂   

L L  

Hence  

( ) ( )* *
A 0, , , A 2i .h h

h

vu v u v u M v M F v
nη η η

η

 ∂
− = − −  ∂ 

L L  

Traces u
η  take arbitrary values, therefore the equality ( )*A 2ivM M F v

n η
η

∂
= −

∂
 is necessary and sufficient  

for inclusion ( )*
AD .v∈ L  Since the domain of definition operator AL  is determined by the equation 

A ,u u
n η

η

∂
=

∂
 

that *
A A=L L  then implies that *A A 2i .M M F= −  
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7. Conclusion 
In this paper we describe the set of all Schrödinger operators on graph and branched manifold, defined as a 
self-adjoint extension of the operator, originally defined on smooth functions with supports, not contained in the 
branch points manifold. Thus, given a description of the various options, we determine the Laplace operator on 
the space of the functions defined on a branched manifold. Description of the definition of each of the self-ad- 
joint extensions is given in terms of linear relations satisfied by the limit at the branch points and the boundary 
points of the graph function value in the domain of operator and the its derivative. Each of the Laplace operators 
corresponds to the Markov process, whose behavior in a neighborhood of branch points, we determined by the 
choice of the domain of the Laplace operator, obtained in this paper results, which is an extension of the study 
work [8] describes the self-adjoint extensions of a graph with a single vertex and two edges, to the case of a 
graph with an arbitrary number of edges. In addition, this paper summarizes the results of [6] in the case of Lap- 
lace operators, for which the linear relation in the space of boundary values that define the domain of the opera- 
tor, do not admit the possibility of expressing the limit function values at the boundary points and branch points 
of the graph of the limiting values of its derivative. 
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