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ABSTRACT 

The Laplace transform is a very useful tool for the solution of problems involving an impulsive excitation, usually rep- 
resented by the Dirac delta, but it does not work in nonlinear problems. In contrast with this, the parametric representa- 
tion of the Dirac delta presented here works both in linear and nonlinear problems. Furthermore, the parametric repre- 
sentation converts the differential equation of a problem with an impulsive excitation into two equations: the first equa- 
tion referring to the impulse instant (absent in the conventional solution) and the second equation referring to post-im- 
pulse time. The impulse instant equation contains fewer terms than the original equation and the impulse is represented 
by a constant, just as in the Laplace transform, the post-impulse equation is homogeneous. Thus, the solution of the pa- 
rametric equations is considerably simpler than the solution of the original equation. The parametric solution, involving 
the equations of both the dependent and independent variables in terms of the parameter, is readily reconverted into the 
usual equation in terms of the dependent and independent variables only. This parametric representation may be taught 
at an earlier stage because the principle on which it is based is easily visualized geometrically and because it is only 
necessary to have a knowledge of elementary calculus to understand it and use it. 
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1. Introduction 

The purpose of this paper is to present a more rigorous 
derivation of the parametric Dirac delta than that which 
was presented in [1], and also to illustrate its application 
in partial differential equations and nonlinear problems.  

According to distribution theory, the Dirac delta is the 
result of differentiating the Heaviside unit step. The par- 
ticular parameterization presented in [1] permits this dif- 
ferentiation to be carried out by means of elementary cal- 
culus and the resulting pair of parametric equations are 
exact and closed. 

The delta equations have the same function values as 
those specified in the definition; the area involved has a 
unit value; they comply with the fundamental property 
and yield the correct Laplace and Fourier transforms [1]. 
In the solution of differential equations, they are handled 
exclusively by calculus and algebra, both at an elemen- 
tary level. The parameterized representation can be read-  

ily visualized geometrically. These two features should 
make these parametric equations particularly convenient 
as a useful research tool, and also, for the purpose of tea- 
ching the Dirac delta concept at an early stage in under- 
graduate school. 

2. Basic Concepts 

For the sake of simplicity and readability, in this paper, 
the Dirac delta will be derived and applied considering it 
to represent a time concentration, and not a space con- 
centration, and that the point of concentration occurs at 
time equal to zero, i.e., in the form often referred to as 
the “Impulse Function”. 

2.1. Various Unit Steps 

There are three different definitions of the Heaviside unit 
step in common use [2-6]: 
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see Figure 1. 

2.2. The Cauchy Limiting Coefficient 

Cauchy proposed a limiting coefficient and represented it 
by the following equation [7]: 

 
 2

1
1

2

t a
t a

t a


     


            (2) 

This coefficient he used to delimit the interval of va- 
lidity of a function.  

It is worth pointing out that both in the third definition 
of the Heaviside unit step, Equation (1), and in the Cau- 
chy limiting coefficient, Equation (2), the value of the 
jump point is undefined; as a matter of fact, their graphi- 
cal representation is identical, Figure 1. However, they 
differ in that the derivative of the Cauchy coefficient is 
zero, it is not the Dirac delta, this is easily confirmed by 
Mathematica, Maple and by the TI 92 calculator. 

2.3. Unit Step with a Riser 

Consider a variant of the Heaviside unit step which, un- 
like it, the jump point is filled with a vertical straight line. 
We will call this the unit step with a riser, HR, Figure 2. 

3. Derivation of the Parametric Dirac Delta 

Consider the approximation of the unit step with a near 
vertical riser, HRa, shown in Figure 3. 

It is clear that: 

0

dd
Lim

d d
RaR

a

HH

t t
               (3) 

From Figure 3, the equation for HRa is easily establi- 
shed: 

    0 a
Ra a a a

t
H t t t     


            (4) 

Notice that, in this paper, λ is used as a switch, i.e., to 
switch on functions at the beginning of their interval of 
validity and to switch them off at the end of their interval 
of validity. In this manner, various different functions are 
linked together into a single composite function. 

3.1. Parametric Representation 

Figures 4 and 5 together are the parametric representa-  

 

Figure 1. Graphical representation of both the third defini- 
tion of the Heaviside unit step, Equation (1), and the Cau- 
chy limiting coefficient, Equation (2). Note: Matlab was us- 
ed for this plot because, unlike other software, it does not 
leave a trace at the jump point. 
 

 

Figure 2. Unit step with a riser. 
 

 

Figure 3. Approximate unit step with a riser. 
 

 

Figure 4. Unit step with a near vertical riser HRa as a func- 
tion of the parameter w. 
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Now: 
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Carrying out the slash division in a piecewise fashion 
yields:  
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(10) 

Figure 5. Approximate time ta versus the parameter w. 
 
tion of HRa, with the length of the curve w as the para- 
meter. 

From Figures 4 and 5 we obtain the equations: 
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or simply 
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and 
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which means: 
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      (13) 
These two functions would be continuous were it not 

for the fact that they are undetermined at the points 
 and 0w  21w   , however, since their left limit 

is the same as their right limit at those points, they will 
be treated as if they were continuous because this “··· is 
generally inconsequential in applications”, [6], see also 
[4,5,7]. This is true also for most of the functions con- 
tained in the equations in the rest of this paper. It is sig- 
nificant that this conversion of a discontinuous function 
into a “continuous” function by means of a parameteriza- 
tion has been used also to eliminate the Gibbs phenome- 
non [8]. 

but this is the Dirac delta, 

  d
,

d
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But also, 
d
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a

H

t
 may be expressed as: 

taking the limit yields: 
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in accordance with Equation (14): From this point on, all the derivatives have been veri- 
fied by using Mathematica.  
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       (17) Differentiating Equations (5) and (6): 
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    (7) Taking the limit of  as at 0   of Equation (6) 
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    1 0 1t w w w w         1       (18) 

Thus the pair of Equations (17) and (18) is the para- 
metric representation of the Dirac delta. However, an ab- 
breviated version of these equations for the application 
referring to the impulse function will be established in 
Section 3.4. 

3.2. Illuminating Plots 

Some very illuminating plots result if we invert the order 
of the operations on parametric Equations (5) and (6), i.e., 
we first carry them to the limit as 0  , Figures 6(c) 
and (d), and we differentiate them afterwards, Figures 
6(e) and (f). 

1st Step. Carrying them to the limit yields: 

    0 1RH w w w w          1      (19) 

    1 0 1t w w w w         1       (20) 

see Figures 6(c) and (d). 
2nd Step. Differentiating Equations (19) and (20) 

yields: 

  d
0

d
RH

w w
w

     1         (21) 

  d
1 0

d

t
w w

w
      1

1

       (22) 

see Figures 6(e) and (f). 
Substituting Equations (21) and (22) into Equations (9) 

and (14) yields Equation (17), thus confirming it. 
Figures 6(a)-(d), illustrate the process of converting 

the unit step function into a virtually continuous function. 
Figure 6(a) illustrates the usual unit step with a gap at 
the jump point. Figure 6(b) shows the fundamental idea 
of a unit step with a riser, the parameter w is the length 
along this function. Figures 6(c) and (d) represent the 
parameterized unit step with a riser, these are the plots of 
the resulting virtually continuous functions. It is signifi- 
cant that the single point, , of Figure 6(b) has been 
expanded into the finite interval, , in Figures 
6(c)-(f). 

0t 
0 w 

3.3. Displaced Point Plots 

If we now plot 

 d ,0

d
RH t

w
 and 

d

d

t

w
 

versus t, and not versus w, the finite intervals, from 0 to 1, 
of Figures 6(e) and (f) become the single points 0t   
of Figures 7(a) and (b). As can be seen in Figure 7(c), 
even though, the scale of the ordinate is very compressed 
(up to 10 × 1030), no displaced point appears since it is  

 

Figure 6. (a) Plot of either the Heaviside unit step, H(t − 0), 
third version, Equation (1), or Cauchy’s limiting coefficient, 
λ(t − 0), Equation (2). (b) Parametric plot of the unit step 
with a riser, Equation (19) versus Equation (20). (c) Plot of 
Equation (20). (d) Plot of Equation (19). (e) Plot of Equation 
(22). (f) Plot of Equation (21). Note: Matlab was used for 
these plots because it makes a clear distinction between the 
step with a riser and the step without a riser and so does the 
TI 92 graphics calculator. A plot of the riserless step, Figure 
6(a), in another software or another graphics calculator 
may result in a trace at the jump point making it indistin-
guishable from the step with a riser. 
 

 

Figure 7. (a) Plot of Equation (21) versus Equation (20). (b) 
Plot of Equation (22) versus Equation (20). The plots (a) 
and (b) may be called displaced point plots. The circles help 
to locate the gaps which are very narrow and the points 
which are very faint. (c) Plot of Equation (17) versus Equa-
tion (18). 
 
located at infinity. 

3.4. Plot of a True Single Point 

It is interesting to compare Figures 7(a) and 8, both are 
plots of Equation (21) versus Equation (20), but the plot- 
ting increment of Figure 8 is much greater than that of 
Figure 7(a), and consequently the gap of Figure 8 is also 
much greater than that of Figure 7(a). Notice however,  
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Figure 8. Direct plot of Equation (21) versus Equation (20), 
with a very large plotting increment. Notice that the gap is 
much larger than in plot 7(a), however the displaced point 
remains the same size and just as faint since it is truly a 
single point. 
 
that the size of the displaced point remains the same, 
since it really refers to a single point. 

Considering that there is no negative time, the plots of 
Figure 6 are conveniently substituted by those of Figure 
9. 

From Figure 9 we obtain the following abbreviated 
equations: 

  1t w w  1              (23) 

    0 1RH w w w w    1         (24) 

     d 0 d 0 d
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d d
R RH t H t w

t
t w


 

  
dt

     (25) 
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1
d

RH t
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t



1           (26) 

d
1

d

t
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w
                 (27) 

   
 

  

1 1
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1

1 1

w
t

w

t w w








  
   

   

           (28) 

Thus the remarkably simple pair of parametric Equa- 
tion (28) represent what is often called the “impulse func- 
tion”. These are the equations to be used in the solution 
of problems. 

4. Examples 

4.1. Example 1 

Consider a one dimensional rod subject to an impulsive 
heat source with initial temperature of 0˚C along its full  

 

Figure 9. These plots lead to the representation of the im- 
pulse function, Equations (23) to (28), and they are obtained 
by simply cutting off the negative time. The pertinent equa- 
tions are obtained from these plots. (a) Parametric plot of 
HR(w − 0), Equation (24) vs. t, Equation (23). (b) Plot of 
Equation (23). (c) Plot of Equation (24). (d) Plot of Equation 
(27). (e) Plot of Equation (26). 
 
length and with the ends kept at 0˚C throughout the 
whole process. The governing equation is: 


2

2
0

T T
c k q t

t x
     
 

        (30) 

(here q has units of energy/volume) 
Subject to the boundary conditions: 

 
 
0, 0

, 0

T t

T L t




              (31) 

and to the initial condition: 

 , 0 0T x  .              (32) 

Nomenclature: 
c = coefficient of heat transfer; 
k = conductivity; 
q Q V

;Q = heat energy; 
; 

m = mass; 
T = temperature; 
t = time; 
V = volume; 
x = position along the rod; 

m V   mass density. 
Following the method of separation of variables [9]: 

    ,T x t F x J t  .          (33) 

Substituting Equations (25) and (33) into Equation (30) 
yields: 

 2

2

dd d

d dd
RH tJ F

c F kJ q
t tx




 
0

.       (34) 

Introducing the parameter w into Equation (34): 
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 2
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d 0d d d d

d d d dd
RH tJ w F

c F kJ q
w t w tx




 
w

    (35) 

multiplying Equation (35) by 
d

d

t

w
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   2

2

d dd d

d d dd
RF x H tJ t

c F kJ q
w wx




 
0

w
    (36) 

Substituting Equations (26) and (27) into Equation 
(36), yields what we will call the control equation: 

   
2

2

d d
1 1 1

d d

J F
cF kJ w q w

w x
              (37) 

4.1.1. Impulse Instant 
During the impulse instant, designated as interval i, 

, , Equation (23), accordingly Equation 
(37) becomes 
0 1w  0t 

   d

d
i

i

J w
c F x q

w
  ,          (38) 

or according to Equation (33): 

d

d
iT

c
w

  q               (39) 

Comparing Equation (39) with the original differential 
Equation (30) it stands out that, during the impulse in- 
stant, the term referring to conduction is absent. This is 
as it should be, since there is no time for conduction to 
take place, in perfect agreement with physical reality. 
Also the Dirac delta, as such, is absent and the forcing 
function is simply a constant. 

Dividing Equation (38) by  iF x : 

 
 

d

d
i

i

J w q
c

w F x
             (40) 

where  is a separation constant, then 

 

 

d

d
i

i

J w

w c

q

F x




 


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             (41) 

integrating: 

1i

i

J w c
c

q
F


   


  

             (42) 

Substituting Equations (42) into Equation (33): 

1
i i i

qcq
T F J w

c
  


            (43) 

At the “beginning” of the impulse instant, w = 0, and 

according to the initial condition, Equation (33), 
   0 0iT T 0  . Substituting this into Equation (43) 

requires that: 

1 0c                    (44) 

and thus Equation (43) reduces to: 

 i

q
T w w

c
 .             (45) 

Equation (45) governs during the impulse instant, thus: 

   0 0 and 1i i

q
T T

c
           (46) 

the change of temperature during the impulse instant is  

   1 0i i i

q
T T T

c
             (47) 

but q Q V  and m V  , substituting these values 
in Equation (47) yields: 

iQ mc T  ,              (48) 

since m remains constant, we have the principle  

Q c mT                (49) 

or in words: “The heat impulse is equal to the change in 
sensible heat”.  

This is somewhat similar to the mechanical impulse 
and change in momentum principle. 

4.1.2. Post Impulse Time 
At post impulse time, designated as interval p, w ≥ 1, 

, Equation (23), and thus Equation (37) becomes: 0t 
2

2

d d
0

d d
p p

p p

J F
c F kJ

w x
   .         (50) 

Physical considerations require that: 

  1p iT T 1                (51) 

To make things clear, it is convenient to emphasize 
that: 

   
1, 0 1, 0

1 and 1i i p p
w t w t

T T T T
  






t

      (52) 

But in this interval, , substituting this and 
making use of Equation (33), Equation (50) is equivalent 
to the following homogeneous equation:  

d dw 

2

2
0p pT T

c k
t x


 

 
 

.           (53) 

and in view of the second of Equations(46) and Equation 
(51), the initial temperature of post-impulse time is: 

 ,0p

q
T x

c
                 (54) 

and, of course, the boundary conditions are the same as 
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the original ones, Equation (31), thus: 

 
 
0, 0

, 0

p

p

T t

T L t




                (55) 

The problem made up of Equations (53)-(55) has the 
well known conventional solution, see for instance [9]:  

 
2 2

2

1

2 1 cos
e sin

n k
t

cL
p

n

nq n
T x

c n L




 



     
 

   (56) 

see plot, Figure 11. 

4.1.3. The Complete Solution 
Using Equations (45) and (56) the complete parametric 
solution is obtained thus: 

     

   

     

2 2

2

1

, 1 1 1

2 1 cos
e sin

1 1   

n k
t w

cL

n

q
T x w w w w

c

nq n
x

c n L

t w w w



 





 



       

    

 
  



 (57) 

Notice that the first term of Equation (57) is the im- 
pulse instant solution and the second term is the post im- 
pulse solution. 

Notice that since t is a function of w, both Equations 
(57) are functions only of the parameter, w. See Figure 
10. 

It is interesting to compare the plot of the parametric 
solution, Equation (57), Figure 10(a), with the plot of 
the conventional solution Equation (56), Figure 11. The 
parametric solution clearly shows the initial condition to  

be zero, i.e.,  ,0 0
c

T x
Q
  , strictly in accordance with  

the specified condition, Equation (32), and, furthermore 
it shows the initial, instantaneous process of the change  

of temperature, i.e.: 1
c

T
Q
  

 
 , while the plot of the  

conventional solution shows the initial temperature to be  

 ,0 1
c

T x
Q
  , which is not in agreement with the speci- 

fied condition, Equation (32). Also in Figure 11 the 
pseudo initial condition is plagued by the spurious oscil- 
lations due to the Gibbs phenomenon. 

4.2. Example 2 

Consider a mass-spring non-linear system subjected to an 
initial impulse where the spring force is given by: 

3
SF x                 (58) 

as in the Duffing equation. 

 

 

Figure 10. Plots of the parametric solution, Equations (57). 
(a) “Front view” plot. Notice that the instantaneous change 
of the value of the temperature from its initial value, 0, to 1 
(in non-dimensional terms) is clearly shown by the front 
“wall” which is not present in the plot of the conventional 
solution, Figure 11. (b) “Rear view” plot. 
 

   2
3

2

d 0d
,0

dd
RH tx

m x I t I
tt

 


   ,    (59) 

with initial conditions: 

   0 0 and 0 0x x            (60) 

I is the magnitude of the impulse. 
Converting the second order Equation (59) into two 

first order equations by means of the state variables: 

   3 d 0d
0

d d
d

d

RH tv
m x I t I

t t
x

v
t

 
 

    

 

    (61) 

Introducing the parameter w into Equation (61): 
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Figure 11. Plot of the conventional solution, Equation (56). 
The value of the initial temperature was given as zero, but 
in this plot it is shown as one (dimensionless) and the in-
stantaneous change of temperature process that takes place 
during the impulse instant (the “wall” of Figure 10(a)) is 
not shown. The oscillations in the value of the pseudo initial 
temperature along the full length of the rod are spurious, 
they are due to the Gibbs phenomenon. Compare this with 
the plot of the parametric solution, Figure 10. 
 

 3 d 0d d d

d d d d
d d

d d

RH tv w w
m x I

w t w t
x w

v
w t


 

  

 

      (62) 

multiplying by 
d

d

t

w
: 

 3 d 0d d

d d d
d d

d d

RH tv t
m x I

w w w
x t

v
w w


 

  

 

       (63) 

substituting Equations (26) and (27) into Equation (63) 
yields the control equations: 

   

 

3d
1 1 1

d
d

1
d

v
m x w I w

w
x

v w
w

  



      

 


   (64) 

4.2.1. Impulse Instant 
During the impulse instant: , Equation 
(23), and thus Equations(64) become: 

0 1,w t   0

d

d
d

0
d

i

i

v
m I

w
x

w

 




               (65) 

(The subscript i refers to the impulse instant). 
Notice that the parameterization resulted in the simpli- 

fication of the forcing function which is now simply the 
constant I, i.e., the Dirac delta, as such, is absent from the 
previous equations. Also absent is the term referring to 
the spring force, thus representing faithfully the physical 
reality, i.e., during the impulse instant, there is no time 
for the displacement of the mass, and thus the spring 
does not participate in this process. 

Integrating Equations (65): 

 

 
1

2

i

i

I
v w w c

m
x w c

  

 

             (66) 

from the initial conditions the integration constants are 
evaluated, thus: 

   0 0, 0 0i iv x    1 20, 0c c  

and, therefore, the governing equations for the impulse 
instant are: 

 

  0

i

i

I
v w w

m
x w

 

 

              (67) 

and so at the “end” of the impulse instant, i.e., at 1,w   
0t  , Equation (23): 

 

 

1

1 0

i

i

I
v

m
x




               (68) 

The 2nd of Equations (67) states that there is no motion 
during the impulse instant. 

Now 

     , 0
1 0i ii t

I
v w v v

m
0            (69) 

, 0i tI m v                   (70) 

This is the principle of impulse and momentum and it 
was applied automatically by virtue of the parameteriza- 
tion. 

4.2.2. Post Impulse Time 
At post-impulse time (designated as interval P):  

 Equation (23), and thus Equation (64) become: 
1,w 

0,t 

3d
0

d
d

d

P
P

P
P

v
m x

w
x

v
w

   




            (71) 

In this interval: 1w t   and thus . Conse- 
quently, Equations (71) become: 

d dw  t
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3d
0

d
d

d

P
P

P
P

v
m x

t
x

v
t

   




            (72) 

It is convenient to reduce the pair of Equations (72) 
into the single equation: 

2
3

2

d
0

d
P

P

x
m x

t
              (73) 

Resorting to Equations (68) we establish the initial 
conditions of post-impulse time: 

   

   
1, 0 1, 0

1, 0 1, 0

1 1

1 1

P i
w t w t

P i
w t w t

0

I
v v

m

x x

   

   

 

 
,          (74)  

the phase-plane solution of Equation (73) is 

2
4

2 2P P

I
v

mm


   x              (75) 

At this point it is convenient to use dimensionless vari-
ables: 

1 4 1 4 1 4 1 2

1 2 3 4
, ,P P

m I m
x t v

II m

      .    (76) 

In terms of these variables Equation (75) becomes 

4

1
2

                  (77) 

Thus the complete phase-plane solution may be ex- 
pressed as: 

   

  

4

1 1 1 1
2

1 1

w w w

w w

  

 


         

   

     (78) 

In the first of Equations (78) the first term refers to the 
impulse instant and the second term refers to the post 
impulse time. 

See Figure 12. 
Equation (77) leads to: 

4

d
d

1
2






 

              (79) 

the solution of Equation (79) is the hypergeometric func- 
tion 

4

2 1

1 1 5
 , , ,

4 2 4 2
F

 
 

 
 

           (80) 

see Figure 13(a). 
From Equation (77): 

 

Figure 12. Plot of the phase-plane solution. 
 

 

Figure 13. (a) Time vs. displacement plot, (b) Time vs. velo- 
city plot. 
 

  1 4
22 1                (81) 

Substituting Equation (81) into Equation (80) yields: 

  1 4
2 2

  2 1

1 1 5
2 1 , , , 1

4 2 4
F           

   (82) 

see Figure 13(b). 
Equations (80) and (82) may not be considered a con- 

venient analytical solution; however their plots, Figure 
13, make up a useful graphical solution. 

5. Conclusions 

The parametric representation of the Dirac delta as pro- 
posed in [1] has been reviewed with the purpose of clari- 
fying the concept. 

The parametric Dirac delta, contained in the forcing 
function of a differential equation referring to an impul- 
sive process, has an operator action that splits this equa- 
tion into two: the first referring to the impulse instant and 
the second referring to post-impulse time. In the impulse 
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instant, the operator action converts the delta forcing func- 
tion into a constant; and furthermore, it cancels the terms 
referring to the phenomena that cannot take place instan- 
taneously. 

Also, the operator action makes the post-impulse equa- 
tion homogeneous. All of this makes the process of ob- 
taining the solution considerably easier. As it has been 
mentioned before, in the case of Example 1 referring to 
the metal rod heated impulsively, the term associated 
with heat conduction disappears from the impulse instant 
equation. This is reconciled with the physical reality, i.e., 
there is no time for this process to take place. 

In the case of the second order mass-nonlinear spring 
problem of Example 2, the term representing the spring 
force disappears from the impulse instant equation. This 
illustrates the faithfulness of the mathematical model, 
since in the impulse instant there is no time for the dis- 
placement of the mass to take place. 

In Examples 1 and 2, the parametric representation per- 
mits the separation of variables even though the original 
differential equations are non-homogeneous. 

In the parametric solution, the real initial conditions 
are used and the processes that take place during the im- 
pulse instant are fully represented as such. In contrast to 
this, in the solution of problems involving impulsive pro- 
cesses in some textbooks, the forcing function is some- 
times replaced by equivalent initial conditions [10].  

During the impulse instant: time, t, does not flow, but 
pseudo-time (parametric time), w, does flow and this is 
what makes possible the establishment of the equations 
that represent the processes that take place instantane- 
ously. 

In the parametric solution, the impulse instant be- 
comes a finite interval in terms of the parameter. Thus 
there is no need to deal with infinitesimals. 

This parametric representation may be taught at an 
earlier stage because the principle on which it is based is 
easily visualized geometrically and because it is only ne- 
cessary to have a knowledge of elementary calculus to 

understand it and use it. 
By virtue of the parametric representation of the Dirac 

delta, the principle of impulse and momentum was ap- 
plied automatically in Example 2, also in Example 1 a 
similar result was obtained: the heat impulse is equal to 
the change in sensible heat. This suggests that the para- 
metric representation of the Dirac delta may turn out to 
be a valuable research tool. 
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