
Journal of Applied Mathematics and Physics, 2013, 1, 26-30
Published Online November 2013 (http://www.scirp.org/journal/jamp)
http://dx.doi.org/10.4236/jamp.2013.16006

Open Access JAMP

A Parallel FEA Computing Kernel for Building Structures

Jin Duan, Yungui Li, Xiaoming Chen, Hu Qi, Jianyun Sun
China State Construction Technical Center, Beijing, China

Email: duanjin78@126.com, duanjin78@qq.com

Received August 2013

ABSTRACT
With the rapid development of high-rise buildings and long-span structures in the recent years, high performance com-
putation (HPC) is becoming more and more important, sometimes even crucial, for the design and construction of com-
plex building structures. To satisfy the engineering requirements of HPC, a parallel FEA computing kernel, which is
designed typically for the analysis of complex building structures, will be presented and illustrated in this paper. This
kernel program is based on the Intel Math Kernel Library (MKL) and coded by FORTRAN 2008 syntax, which is a
parallel computer language. To improve the capability and efficiency of the computing kernel program, the parallel
concepts of modern FORTRAN, such as elemental procedure, do concurrent, etc., have been applied extensively in
coding and the famous PARDISO solver in MKL has been called to solve the Large-sparse system of linear equations.
The ultimate objective of developing the computing kernel is to make the personal computer have the ability to analysis
large building structures up to ten million degree of freedoms (DOFs). Up to now, the linear static analysis and dynamic
analysis have been achieved while the nonlinear analysis, including geometric and material nonlinearity, has not been
finished yet. Therefore, the numerical examples in this paper will be concentrated on demonstrating the validity and
efficiency of the linear analysis and modal analysis for large FE models, while ignoring the verification of the nonlinear
analysis capabilities.

Keywords: High Performance Computing; Finite Element Analysis; Building Structure; PARDISO

1. Introduction
With the rapid development of high-rise buildings and
long-span structures in the recent years, high perfor-
mance computation (HPC) is becoming more and more
important, sometimes even crucial, for the structure de-
sign and building construction.

The traditional design softwares, such as PKPM,
ETABS, MIDAS, YJK and so on, can’t match the ad-
vanced requirements of HPC. On the other hand, the
large scale general finite element analysis (FEA) soft-
wares, such as ABAQUS, ANSYS, ADINA, etc., al-
though have the powerful computational abilities, but
they can’t be applied directly to the architectural struc-
ture analysis and design, due to the fact that their pre-
processors are inconvenient for building modeling and
their postprocessors can’t present computational results
according to the building codes in civil engineering.

To satisfy the engineering requirements for HPC, an
integrated simulation system for building structures has
been designed by the authors. This system, which is a
coalition of some secondary software developments toge-
ther with the traditional design softwares and general
FEA softwares, will provide high performance computa-

tion, simulation and technical supports for the design and
construction of the large and complex buildings.

To achieve the above objectives, there are many im-
portant technical indicators to be considered seriously,
typically the following aspects: 1) data transformation
from the structural model to FEA model; 2) parallel FEA
computing kernel developed specially for the building
structures and serving as the supplements to the general
FEA softwares.

In this paper, the above mentioned computing kernel
will be presented and discussed using some numerical
examples. This FEA computing program is based on the
Intel Math Kernel Library (MKL) and coded by FOR-
TRAN 2008 syntax, a parallel computer language. To
improve its capability and efficiency, the parallel con-
cepts of modern FORTRAN, such as elemental proce-
dure, do concurrent, etc., have been applied extensively
in coding. And furthermore, the famous PARDISO solv-
er in MKL will be called to solve the Large-sparse sys-
tem of linear equations.

2. Parallel Syntax in Modern Fortran [1,2]
The modern FORTRAN, i.e. FORTRAN2003/2008, has

http://dx.doi.org/10.4236/jamp.2013.16006�

J. DUAN ET AL.

Open Access JAMP

27

been designed for parallel processing.

2.1. Elemental Procedure
Elemental procedures are written with all scalar dummy
arguments. When called with array actual arguments, the
compiler will automatically call the procedure for each
array element. A typical example is presented in the Fig-
ures 1 and 2.

2.2. Do Concurrent
The do concurrent statement is an explicit way to indi-
cate that a specific doloop may have its iterations per-
formed in parallel. In this sense, it is a simplified version
of the OpenMP parallel do directive that indicates the
same task. It is the most appropriate for shared memory
systems when enhancing existing doloops, when array
syntax would cause the creation of temporary arrays, or
as a replacement for all constructs. Here is an example of
the do concurrent construct, shown in Figure 3.

2.3. Coarray
Coarray, maybe is abbreviated from “concurrent array”,
is a new feature that Fortran 2008 introduces. The coar-
ray extension adopts the Single Program Multiple Data
(SPMD) programming model, i.e., a single program is
replicated into multiple “images”. Animage can be thought

Figure 1. Definition of elemental procedure.

Figure 2. Calling of elemental procedure.

of as what we have referred up to now as a process envi-
ronment (PE). Coarray can be thought of as a simplified
and integrated alternative to MPI. The coarray model sup-
ports both shared memory and distributed memory hard-
ware. Figure 4 presents a typical application of coarray.

3. Pardiso Solver
Solving linear systems of equations lies at the heart of
many problems in computational science and engineering,
particularly in finite element analysis (FEA), because the
FEA system is often very large and the associated matrix
A is sparse. Among the currently-available software
packages for the direct solution of sparse linear systems
of equations, PARDISO (Parallel Sparse Direct Solver),
coded by O. SchenkandK. Gartner [3,4] with fortran and
c, maybe the most popular one, partly because it has been
integrated into the math kernel library (MKL) of Intel
Parallel Studio.

The PARDISO package is a high-performance, robust,
memory-efficient and easy to use software for solving
large sparse symmetric and non-symmetric linear sys-
tems of equations. Its most remarkable characteristic is
parallel computing, not only for the shared-memory ar-
chitectures but also for the distributed-memory architec-
tures.

4. Numerical Examples
Because the nonlinear analysis, including geometric and
material nonlinearity, has not been finished yet by now,
the numerical examples in the follow → followi ng will
be concentrated on demonstrating the validity and effi-
ciency of the linear analysis and modal analysis forlarge-
scale FE models, while ignoring the nonlinear analysis

Calling pure procedure

Figure 3. Illustration of do concurrent.

Figure 4. Illustration of coarray.

J. DUAN ET AL.

Open Access JAMP

28

capabilities.

4.1. Static Analysis of a Cubesubjected to
Gravity Load

Figure 5 shows a cubic model subjected to gravity load
and with bottom fixed. The comparing of the static anal-
ysis results with ANSYS software and the computing
program of this paper has been illustrated in Table 1 and
Figure 6. Obviously, the results are in good agreement
with each other.

To verify the validity and efficiency of this computing
program furthermore, Table 2 gives the displacement
results of the cube with different mesh size. It can be
observed that the displacement results will increase
slightly with the mesh size decrease → decreases, and
finally arrive at the convergence state. This phenomenon
is in accordance with the FEA theory.

4.2. Natural Frequency Analysis of a Multitower
Building

Figure 7 shows a multi-tower building. The natural fre-
quency computed by SATWE software and the pro-
gram in this paper has been shown in Tables 3 and 4 and
Figure 8. Obviously, the results are very close, with

G

Length of side:100;
Density:7800;E:5.75e8;V: 0.3;
Loaded by gravity;Fixed bottom

Figure 5. Cubic model.

Table 1. Results compared with ANSYS.

 ANSYS This paper Error
Mesh 50*50*50 50*50*50 --

Dofs (million) 0.4 0.4 --
Time (m) 3 1.5 --
Max_Uz 0.65398 0.65376 0.03%
Max_Ux 0.13075 0.13061 0.11%
Max_Uy 0.13075 0.13061 0.11%

(a)

J. DUAN ET AL.

Open Access JAMP

29

(b)

Figure 6. (a) Displacement-contour plot of ANSYS; (b) Displacement-contour plot of this paper.

Table 2. Results of the cube with different mesh size.

mesh Dof (Million) Time (minutes) Max_Uz

50*50*50 0.4 1.5 0.65376

60*60*60 0.7 4 0.65386

70*70*70 1.1 15 0.65392

80*80*80 1.6 30 0.65397

90*90*90 2.2 70 0.65400

100*100*100 3.1 130 0.65403

Figure 7. Multi-tower building.

Table 3. Computing scale and time compared with SATWE.

 SATWE This paper

Mesh size (m) 1.5 1.5

Slab model Rigid Elastic

Dofs (million) 0.6 1.5

Dynamic dofs 690 500,000

Time (m) 10 10

Table 4. Results compared with SATWE.

 SATWE This paper Error

Freq (Hz)
1st, 30th

0.26 0.24 7.7%

1.79 1.65 7.8%

Effective mass coefficient
0.60 (x) 0.61 (x) 1.7%

0.62 (y) 0.63 (y) 1.6%

0 5 10 15 20 25 30

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Fr
eq

 (H
z)

No. of freq

 this paper(elastic slab)
 Satwe(rigid slab)

0 5 10 15 20 25 30

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Fr
eq

 (H
z)

No. of freq

 this paper(elastic slab)
 Satwe(rigid slab)

Figure 8. Natural frequency.

J. DUAN ET AL.

Open Access JAMP

30

the maximum error 7% - 8% approximately, which may-
be resulted from the following reasons: 1) the FE DOFs
scale of this model has exceeded the capacity of SATWE
software, so the rigid slab hypothesis is introduced to
decrease the DOFs scale of SATWE; 2) the SATWE
software has introduced penalty function to simulate the
restraints between the beams and walls, which is ignored
in the program of this paper; 3) the lumped-mass models
for the SATWE software and the present program are not
identical, because the SATWE software has the mass of
components, e.g. walls, beams, columns, braces etc.,
lumped at the top of itself.

For the multi-tower building shown in Figure 7, if the
mesh size is set to 1.5 m, the DOFs scale will be 1.6 mil-
lion; if the mesh size is set to a smaller one, the DOFs
scale will get much larger; when the mesh size decreases
to 0.5 m, the DOFs scale will increase to 11 million. The
modal analysis results with the above different mesh size
by the present program has been shown in the Table 5
and Figures 9 and 10. Observing the results, it can be
easily concluded that the natural frequencies will de-
crease with the mesh size decreasing and finally arrive at
a convergence state. This conclusion is exactly coinci-
dent with FEA theory.

Table 5. Results for the building with different mesh size.

Mesh
Size(m)

Dofs
(million)

Time
(minutes)

Freq(Hz)
(1st, 30th)

1.5 1.6 3.5 0.2364 1.6316

1.2 2 4.5 0.2321 1.5926

1.0 3.1 6.0 0.2256 1.5409

0.8 4.7 55 0.2200 1.4800

0.5 11 90 0.2156 1.4375

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fr
eq

 (H
z)

no. of freq

Freq with different mesh size
 0.5m,11 million dofs
 0.8m,4.7 million dofs
 1.0m,3.1 million dofs
 1.2m,2 million dofs
 1.5m,1.6 million dofs

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fr
eq

 (H
z)

no. of freq

Freq with different mesh size
 0.5m,11 million dofs
 0.8m,4.7 million dofs
 1.0m,3.1 million dofs
 1.2m,2 million dofs
 1.5m,1.6 million dofs

Figure 9. Frequency with different mesh size.

0 5 10 15 20 25 30
0
2
4
6
8

10
12
14
16
18
20

1.0m

1.5m
1.2m

0.8m0.8m

Fr
eq

 e
rro

r (
%

)

No. of freq

Freq error with different mesh size

0.5m (reference value)

0 5 10 15 20 25 30
0
2
4
6
8

10
12
14
16
18
20

1.0m

1.5m
1.2m

0.8m0.8m

Fr
eq

 e
rro

r (
%

)

No. of freq

Freq error with different mesh size

0.5m (reference value)

Figure 10. Frequency-error with different mesh size.

5. Conclusion
All the test work of this paper is on a personal computer
of the author. The main hardware parameters are as fol-
lows: 4-processor CPU with 3.1 GHz, 16 G RAM,
WIN7-x64 OS. Therefore, it can be concluded at least
partially that the FEA computing kernel presented in this
paper has the ability to analysis large building structures
up to ten million DOFs, using personal computer instead
of workstation.

REFERENCES
[1] ISO/IEC, “F2008 Working Document,” 2008.
[2] S. Norman, “Clermanand Walter Spector. Modern Fortran

Style and Usage,” Cambridge University Press, Cambri-
dge, 2012.

[3] O. Schenk, K. Gartner and W. Fichtner, “Efficient Sparse
LU Factorization with Left-Right Looking Strategy on
Shared Memory Multiprocessors,” BIT Numerical Mathe-
matics, Vol. 40, No. 1, 2000, pp. 158-176.
http://dx.doi.org/10.1023/A:1022326604210

[4] O. Schenk and K. Gartner, “On Fast Factorization Pivot-
ing Methods for Symmetric Indefinite Systems,” Elec-
tronic Transactions on Numerical Analysis, Vol. 23, 2006,
pp. 158-179.

[5] N. I. M. Gould, Y. Hu and J. A. Scott, “A Numerical
Evaluation of Sparse Direct Solvers for the Solution of
Large Sparse, Symmetric Linear Systems of Equations,”
ACM Transactions on Mathematical Software, Vol. 33,
No. 2, 2007, Article No. 10.

http://dx.doi.org/10.1023/A:1022326604210�

	2. Parallel Syntax in Modern Fortran [1,2]
	2.1. Elemental Procedure
	2.2. Do Concurrent
	2.3. Coarray
	3. Pardiso Solver
	4. Numerical Examples
	4.1. Static Analysis of a Cubesubjected to Gravity Load
	4.2. Natural Frequency Analysis of a Multitower Building
	5. Conclusion

