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where Wexp is the work of external forces: 

exp ( )e z n xn x yn yA s
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Assume the new internal force field as follows: 
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and 11j , 12j , 21j , 22j  are components of the inver- 
sion matrix of Jacobian . 

After substituting Equation (3) into Equation (1), the 
new form of energy functional can be written as: 
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By the principle of stationary: 
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the parameters of the assumed internal force field can be 
written as: 
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Substitute Equation (7) into Equation (3), the new in- 
ternal force can be obtained. 

Compared with plate elements, it is much easier to ex- 
tend this method to plane elements. The according hybrid 
discrete energy functional of plane elements can be writ- 
ten as [6]: 

11
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Similar to Equation (4), a new form of stress field of 
displacement-based plane element can be assumed as: 

{ } [ ]{ } σ P α                (10) 

Substitute Equation (10) into Equation (9), the para- 
meters i  in [ ]P  can be obtained by using the prin- 
ciple of stationary. The according matrix named [ ]K  
and [ ]qK  for plane elements are as follows: 

1[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

e

e

T

A

T
q bA

tdA

tdA

  

 

 






K P D P

K P B
      (11) 

With different matrix of [ ]P , the stress field will be 
different too. This new method will be used to try to im- 
prove the stress accuracy of plane element named 
AQ4  and AQ4  [7]. 

3. Introduction of AQ4θ and AQ4θλ 

AQ4  and AQ4  are two plane elements with drill- 
ing DOF formulated using quadrilateral area coordinate 
methods presented by Long et al. [8,9]. They have the 
merits of high accuracy and robust against mesh distor- 
tions. After having been programmed into the software 
for the analysis of high-rise buildings, the results show 
that better accuracy is still needed for the stress of shear 
walls with holes. 

The definition of DOF of these two elements is: 
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TTe T T T   q q q q q       (12) 

where 

   Ti i i iu v q  1,2,3,4i             (13) 

and i  is the additional rigid rotation at element node. 
The displacements of element are as follows: 

     0  u u u                (14) 

where  0u  is a polynomial about iu  and iv , u  is 
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the additional displacement field induced only by the 
rigid rotation at nodes denoted as 

i . 
In order to determine the displacement field  0u , the 

shape functions in reference [10] is used, they are as fol- 
lows: 
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Assume the rotational displacement field as polyno- 
mials of quadrilateral area coordinates: 
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with the conforming Equations as follows, the rotational 
displacement can be obtained. 
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and 1 2i i ib y y   , 2 1i i ic x x    

Then the stiffness matrix of element AQ4  can be 
solved out easily, and the strain matrix is: 
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After substituting Equation (21) into the stress-strain 
relationship, the stress of AQ4  can be obtained. 

AQ4  is an improved element based on AQ4  by 
adding a displacement field which is induced by internal 
parameters. 

The additional displacement fields mentioned above 
are as follows: 
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where ' '
1 1 2 2, , ,     are the internal parameters. 

In order to solve the undetermined parameters, the 
conforming Equations are taken as: 

{ } 0
ijl

ds  u               (25) 

Substitute Equation (24) into (25), the shape functions 
of { }u  can be formulated out, they are: 
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For element AQ4 , 1N  is taken as the final inter- 
nal shape function, then: 
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Through the condense calculation, stiffness matrix of
AQ4  can be written as: 
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and  B  is the strain matrix of additional displacement 
field. The according stress fields are as follows: 

    λBε λ                 (31) 

Combined Equation (21) with (31), the stress field of 
AQ4  can be obtained. 

4. Hybrid Post-Processing of AQ4θ and 
AQ4θλ 

In the formulating of stress in elements AQ4  and
AQ4 , the strain matrix q  B  and  B  are the 
differential results of displacements to coordinates. The 
differential calculation lowered the accurate order of 
stress. To avoid the differential, Hybrid Post-processing 
procedures can be used to improve the stress accuracy. 
Based on this theory, three forms of stress fields are pre- 
sented for these two displacement-based elements. 

4.1. Stress Field I 

The first form of stress field is assumed as Equation (32). 
It is the stress field of a hybrid element developed by 
Pian and Wu [6]: 
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4.2. Stress Field II 

In order to raise the complete order of stress field, the 
second form is assumed as a polynomial of analytical 
trial function method presented by Fu and Long [11]: 
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4.3. Stress Field III 

Try to make the three stress components to be indepen- 
dent, the third form of stress field is assumed as follows: 

 
1

12

1

1

1

x y xy

x y xy

x y xy





  
     
    

σ  (35) 

5. Numerical Examples 

5.1. Strict Patch Test 

The constant strain/stress patch test using irregular mesh 
is shown in Figure 1. Let Young’s modulus E = 1000, 
Poisson’s ratio  = 0.25, and thickness of the patch t = 1. 
After modified by three different forms of Hybrid Post- 
processing, these two elements can produce exact solu- 
tions without any problem. 

5.2. Cook’s Skew Beam 

This example was proposed by Cook et al. [12]. As 
shown in Figure 2, a skew cantilever beam subjected to 
distributed shear load along its free edge. The results of 
max at point A and min at point B are listed in Tables 1 
and 2. 

6. Conclusion 

Using the traditional method to calculate stress of dis- 
placement-based elements, the accuracy will descend for 
the reason of differential when strains are derived from 
the displacement fields. For improving the stress accura- 
cy, hybrid/mix elements are very effective. However, the 
formulations of the hybrid elements are more compli- 
cated than those displacement-based elements. Based on  
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Figure 1. Patch test. 
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Figure 2. Cook’s skew beam. 
 
Table 1. Stress at point A and B of Cook’s Beam of AQ4θ. 

Method 
σAmax σBmin 

2 × 2 4 × 4 8 × 8 2 × 2 4 × 4 8 × 8

Field I 0.1791 0.2261 0.2338 −0.1700 −0.1929 −0.2002

Field II 0.1951 0.2298 0.2348 −0.1942 −0.1933 −0.2010

Field III 0.1914 0.2240 0.2319 −0.1769 −0.1938 −0.2009

Source Val. 0.1917 0.2241 0.2377 −0.1877 −0.1939 −0.2060

Ref. Val. 0.2362 −0.2023 

 
Table 2. Stress at point A and B of Cook’s Beam of AQ4θλ. 

Method 
σAmax σBmin 

2 × 2 4 × 4 8 × 8 2 × 2 4 × 4 8 × 8

Field I 0.1913 0.2271 0.2342 −0.1748 −0.1919 −0.2009

Field II 0.2145 0.2358 0.2364 −0.2084 −0.2032 −0.2027

Field III 0.2147 0.2358 0.2364 −0.2092 −0.2033 −0.2027

Source Val. 0.2498 0.2338 0.2358 −0.1729 −0.1896 −0.2018

Ref. Val. 0.2362 −0.2023 

 
the Hellinger-Reissner variational principle, hybrid post- 
process procedure can take advantage of the merits of 

these two kinds of elements to establish the relationship 
between the displacement and the stress or internal force 
fields. In this paper, based on this theory, three forms of 
stress fields are used to improve the stress of plane ele- 
ments with drilling DOF. Through the numerical results, 
for element AQ4θ , only the second form of stress field 
is effective, but for AQ4θ , except for the first form of 
stress, the other two forms can present better results than 
the source elements. It is proved that the method of hy- 
brid post-process procedure is workable. 
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