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ABSTRACT 

In this paper, Aitken’s extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the 
solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduced that enables successive 
decomposition of high Eigen values of the iteration matrix to enable convergence. While extrapolation of a convergent 
fixed point iteration using a geometric series sum is a known form of Aitken acceleration, it is shown that in this paper, 
the same formula can be used to estimate the solution of sets of linear equations from diverging Gauss-Seidel iterations. 
In both convergent and divergent iterations, the ratios of differences among the consecutive values of iteration eventu-
ally form a convergent (divergent) series with a factor equal to the largest Eigen value of the iteration matrix. Higher 
order Aitken extrapolation is shown to eliminate the influence of dominant Eigen values of the iteration matrix in suc-
cessive order until the iteration is determined by the lowest possible Eigen values. For the convergent part of the 
Gauss-Seidel iteration, further acceleration is made possible by coupling of the extrapolation technique with the succes-
sive over relaxation (SOR) method. Application examples from both convergent and divergent iterations have been 
provided. Coupling of the extrapolation with the SOR technique is also illustrated for a steady state two dimensional 
heat flow problem which was solved using MATLAB programming. 
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1. Introduction 

Iterative solutions to systems of equations are widely 
employed for solving scientific problems. They have 
several advantages over direct methods. For equations 
involving large number of unknowns iterative solutions 
involve operations of order (n2) compared to direct solu-
tions of order (n3). In computer applications, iterative 
solutions require much less memory and are quite simple 
to program [1]. In addition iterative solutions are in many 
cases applicable to non-linear sets of equations.  

One set of iterative methods that are in wide use is 
centered on generation of Krylov sub space such as the 
method of conjugate gradients developed by Hestens and 
Stiefel [2]. Such methods are guaranteed to converge in 
at most N steps for problems involving N unknowns. 
However, iterative solutions based on stationary methods 
such as Gauss-Seidel and others that are simpler to pro- 
gram and do not generate new iteration matrix are re- 
ceiving greater application [3]. Iterative methods that 

mimic the physical processes involved such as the for-
ward-backward method have been shown to produce 
solutions for some problems faster than Krylov methods 
[4]. However, fixed point iterative methods are known to 
be less robust than Krylov methods and convergence is 
not guaranteed for ill-conditioned systems of equations. 

Iterative processes involving fixed point iterations that 
are convergent such as Jacobi and Gauss-Seidel iterations 
are known to form error series that are diminishing in the 
form of geometric series [5,14,16]. The geometric series 
sum based form of Aitken extrapolation for fixed point 
iteration involving the system of equations AX B  is 
based on the formula [6]: 

1
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  


 

where X is the Aitken extrapolation of the solution, Xk is 
the approximation to the solution at the kth iteration, Ek is 
the difference in X at the kth iteration  1 –k kX X  and   
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is the ratio of the difference in X values  1k kE E   . 
The geometric series extrapolation requires at least 

three points of the iteration. The extrapolation in terms of 
the three points at the k, k + 1 and k + 2 iterations takes 
the form [6]. 
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which is a known form of Aitken extrapolation. 
Irons and Shrive [7] made a modification to Aitken’s 

method for scalars (sequences) which can also be applied 
to individual x values of fixed point iterations such as the 
Gauss-Seidel iteration. The extrapolation to the fifth 
point uses four points. After the four point extrapolation 
the fixed point iteration formula is used to obtain the fifth 
point. In this way by joint application of both extrapola-
tion and fixed point iteration, the method is said to be 
dynamic with better convergence properties. A dynamic 
model in such a form does not require restarting the it-
eration procedure as the method generates all necessary 
iterates from the latest extrapolation [8]. 

The reduced rank extrapolation method [9] extends the 
scalar form of Aitken extrapolation into vectors of a 
given dimension. The extrapolation formulation for the 
iteration vector is a vector parallel of Aitken’s extrapola-
tion: 

  1

K KX X M I E


      

where M is the iteration matrix of the fixed point itera-
tion, I is the identity matrix of rank N, X are the iteration 
vector and Ek is the vector difference in X at the kth itera-
tion. The method involves computing the generalized 
inverse involving the second order difference vector and 
is time consuming for solving non-linear systems of 
equations of larger size. 

Gianola and Schaffer [6] applied geometric series ex-
trapolation for Jacobi and Gauss-Seidel iterations in ani-
mal models. The optimal relaxation factor was lower 
when solutions were extrapolated, but its value was not 
as critical in the case of extrapolation. 

Fast Eigen vector computations that require matric in-
version or decomposition are unsuitable for large size 
matrix problems as many of them involve operations of 
the order O(n3). Kamvar, et al. [10] applied Aitken ex-
trapolation for accelerating page rank computations. 
They showed that Aitken acceleration computes the prin-
cipal eigenvector of a Markov matrix under the assump-
tion that the power-iteration estimate  x k  can be ex-
pressed as a linear combination of the first two eigen-
vectors. 

Calude Breziniski and Michela Redivo Zaglia [11] 
proposed extension of Aitken’s extrapolation into a gen-
eral form involving transforming the sequence of itera-
tion into a different form using known sequences which 
can lead to stabilization and convergence of the original  

iteration. The transformation, however, is not simple and 
straight forward and required further refinement. 

Chebyshev acceleration is also a way of transforming 
the iteration sequence which, for iteration matrix of 
known upper and lower bound Eigen values, the trans-
formed sequence using Chebyshev polynomials leads to 
convergence of the fixed point iteration. In Chebyshev 
acceleration, the sequence of iteration values is modified 
by multiplication with Chebyshev polynomials which are 
constructed from known or estimated ranges of Eigen 
values of the iteration matrix. The choice of the form of 
Chebyshev polynomials is such that the procedure leads 
to progressive reduction of the norm of the error vector 
through a min-max property which minimizes the maxi-
mum value that the polynomial has for the range of Ei-
gen values specified [12]. However, Chebyshev accelera-
tion has the drawback of the need to accurately estimate 
the bounds of Eigen values of the iteration matrix, be-
cause outside the domain of Eigen values the polynomial 
shows divergence and the min-max property does not 
hold. 

The following sections in this paper will give the basis 
of Aitken extrapolation for convergent fixed point itera-
tions and the derivation for the extension of the extrapo-
lation to divergent fixed point iterations. The paper con-
tinues by introducing higher order Aitken extrapolation 
and shows how each order of extrapolation successively 
reduces the rank of Eigen values which helps in stabiliz-
ing the extrapolation of a divergent iteration. Thereafter, 
application examples of both convergent and divergent 
fixed point iterations follow that include finite difference 
solution of Laplace equation to a two dimensional heat 
flow problem which was solved using MATLAB pro-
gramming. 

2. Method Development 

For solving a system of linear equations using fixed point 
iteration, the Aitken extrapolation formula can be written 
in the form: 

1
k

k
k

e
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  


 

where: 
x = The estimate of the solution at the limit of itera-

tion; 
ek = The difference in consecutive x values, i.e.,  

1k kx x  ; 

k = The ratio of differences in x values, i.e., 
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k k k
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 1  




 


 

It will now be shown that the above formula is appli-
cable to both convergent as well as divergent Gauss- 
Seidel iteration. In addition it will also be shown that 
successive application of the Aitken extrapolation for-  
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The differences in the solution vector Xk among con-
secutive steps of iteration are formulated as follows: 

mula to a higher order will result in deflation of the 
dominant Eigen values one by one there by transforming 
a divergent iteration to a convergent form. 

Let the system of linearized equations for a given 
problem be represented in the matrix form: 

AX B  

where A is the coefficient matrix, B is the right hand side 
vector and X is the solution vector. Writing the matrix A 
further in terms of the components L, U and D matrices 
gives 

A U L D    

where U and L are the upper and low triangular matrices 
respectively and D is the diagonal matrix. 

For the Gauss-Seidel iteration, the system of equations 
now can be written as: 

 U L D X B    

 L D X UX B     

Using the (k + 1)th and kth iteration X-vectors for the 
left and right hand sides of equation above respectively; 

  1k kL D X UX B     

Solving for 1kX  ; 

   1 1

1k kX L D UX L D
 

       B      (1) 

This is the Gauss-Seidel iteration and the matrix; 

  1
L D U

    

is called the iteration matrix. The actual iteration in terms 
of the x values (scalars) takes the form; 

1
1 1

1 1

1 1i n
k ki

i ij j
j j iii ii ii

b k
ij jx a x a x
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
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 

   
     

   
 



k N

U

B

B

k

   (2) 

   1 11k kX L D UX L D
         

   1 12 1k kX L D UX L D
         

   12 1 1k k kX X L D U X X
         

In other words, 

  1

1k kE L D U


 E                (4) 

For a convergent Gauss-Seidel iteration, the differ-
ences in x values Ek written in terms of the difference 
between consecutive vectors of x values in Equation (4) 
above converges to the zero difference vectors when the 
solution X vector is reached. Denoting by M the iteration 
matrix; 

  1
M L D U

       

and the difference vector of X among consecutive steps 
of the iteration by: 

         0 1 2 1, , , , , ,k kE E E E E    

   1k kE M E    

Assuming that the initial difference in x values (here 
after termed the error vector) E0 can be written as a linear 
combination of the Eigen vectors 1 2, , Nv v v  of the itera-
tion matrix M of size N with corresponding Eigen values 

1 2, , , N    in decreasing order of magnitude where 1 
is the dominant Eigen value: 
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For the Gauss-Seidel iteration the vector of x values is 

successively computed from the fixed-point iteration 
process by: 

   1 1

1k kX L D UX L D B MX
 

         (3) 

where the matrix  is the iteration 
matrix and . 

  1
L DM

 
  1

D B
 N L Taking the ratio of the Euclidean norms of Ek and Ek+1;  
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If 1 is the dominant Eigen value, then the ratios 

2 1 2 1 1, , , N       tend to zero at higher k values 
so that 

 

 

1 221
1 1 1

1
11 22

1 1 1

lim lim

k

k

k k kk

c vE

E c v










 

       
  
   

    (5) 

Therefore, for both converging and diverging Gauss- 
Seidel iterations, the error vector ratios are determined by 
the dominant Eigen value of the iteration matrix, 1. 

2.1. Case I: Convergent Gauss-Seidel Iteration 

For a convergent iteration in which the dominant Eigen 
value is less than one, the difference vector Ek converges 
to zero. Denoting the estimate of the largest Eigen value 
of the iteration matrix M at the kth iteration by 1; and 
taking the difference among respective values of x as; 

1 1k ke e    

Starting with the kth difference in x values among con-
secutive steps of iteration, a geometric series is formed in 
terms of the e values; 

2 3
1 1 1, , ,k k k ke e e e     

The sum of this diminishing geometric series is given 
by (since 1 < 1); 
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
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It is possible to write the e values so that; 
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So that; 

 
11

i
k

i k
i k

e
e x x







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            (6) 

Therefore, the solution x at convergence is extrapo-
lated from Equation (6) above; 

11
k

k

e
x x
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

              (7) 

2.2. Case II: Divergent Gauss-Seidel Iteration 

For a divergent Gauss-Seidel iteration, the error propaga-
tion is studied as the iteration progresses. Let X0 be the 
initial estimate of the solution while Xs is the true solu-
tion of the system of equation. The initial error vector Ero 
can then be written as: 

0ro sE X X   

The difference between consecutive iteration values X 
is as defined before, i.e., 

1k kE X X k   

The Gauss-Seidel iteration formula given in Equation 
(3), i.e., 

   1 1

1k kX L D UX L D
 

       B  

can also be rewritten as: 

1k kX MX N    

where   1
L DM

  U  is the iteration matrix as 

defined before and    1
.D B


N L 

The successive values of X of the iteration can now be 
written as follows; 

 
 

1 0 0s r

s ro s ro

X MX N M X E N

MX N ME X ME

    

    
 

The above expression is true because at the true solu-
tion Xs, the Gauss-Seidel iteration satisfies the relation: 

s sX MX N   

Similarly for X2; 

 2 1 s roX MX N M X ME N      

  2 2
2 s ro s roX MX N M E X M E      

Proceeding similarly at the kth iteration, the X-values 
can be written as: 

k
k sX X M E  ro               (8) 

Interms of the difference between consecutive x-esti-
mates, recalling the formula derived earlier in Equation 
(4), i.e., 

     1

1

2 3 1
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0 0
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k
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X X M E










       
      

 

   

(9) 

It is seen from Equations (8) and (9) above that the X 
values increase in proportion to the iteration matrix M. 

Representing this increase in proportion to M by the 
largest Eigen value of the iteration matrix, 1, Equations 
(8) and (9) can now be written as: 

 1 1 0
k k

k s ro s sX X E X X X               (10) 

 1
0 1

0 1 0 0
0 1

1

1

k
k

i
k

i

E
X X E X











   

          (11) 
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The expression in Equation (11) above is derived us-
ing the general geometric series sum formula for an ex-
panding geometric series. 

Equating the expressions for Xk in Equations (10) and 
(11): 

 
 0 1

1 0 0
1

1

1

k

k
s s

E
X X X X


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   
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k
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E
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
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
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1 11 1s

E E
X X

 
   

 
 

0
0

11s

E
X X


 


 

In general for iteration estimation made from the kth it-
eration vales of xk and individual ekvalues the formula 
can be written as: 

11
k

s k

e
x x


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
              (12) 

It can be seen, therefore, that the same formula used 
for extrapolating a convergent Gauss-Seidel iteration can 
be used to extrapolate the solution from the divergent 
Gauss-Seidel iteration. Such a procedure which is un-
conventional works well as the examples that follow il-
lustrate. 

2.3. Higher Order Aitken Extrapolation 

For the first-order Aitken extrapolation, the ratio of the 
norms of the error vector was shown in Equation (5) to 
be equal to the dominant Eigen value of the iteration ma-
trix, i.e., 

 

 

1 221
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 
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For the second order Aitken extrapolation, the ex-
trapolation made at the kth and (k + 1)th iterations are con-
sidered: 
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The second order error in terms of the extrapolated X 
vectors can be written as: 
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 
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Similarly for the (k + 1)th iteration; 
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At the kth iteration, the ratio of the norm of the error 
vector becomes; 

 
 

 

 
 

1
1 1

2 1
11

1
1

1

Δ

1

Δ

1

k
k

k

k k
k

E
E

E

E E
E











 

  
  



       (13) 

In terms of the Eigen values  and Eigen vectors v of 
the iteration matrix M, the terms in the norm expression 
of Equation (13) above are given by: 

 1
1 1 1 2 2 2 3 3 3

k k k
k NE c v c v c v c v        k

N N

1
N Nv

 

 1 1 1 1
1 1 1 1 2 2 2 3 3 3

k k k k
k NE c v c v c v c     
       
     

   
   

1 1 1
1

1 1 1 1 2 2 2 2

3 3 3 3

Δ

1 1

1 1

k k k

k k

k k
N n N N

E E E

c v c v

c v c

   

   

 

   

     v  

     

   
   

1 1 1
1 2 1

1 1
1 1 1 1 2 2 2 2

1 1
3 3 3 3

Δ

1 1

1 1

k k k

k k

k k
N n N N

E E E

c v c v

c v c

   

   

  

 

 

 

   

     v

 

Collecting the terms for both the numerator and de-
nominator yields, 

 
 

 
 

 

 

1
11 1

1 1
1 1

1
1

1
11

Δ 1
1

1 1

1Δ
1

11

kNk i
k i i ii

kN ik
i i ik i

E
E c v

E
c vE




 







 



     
 
    




(14) 

Examination of the terms on the right hand side of 
Equation (14) above reveals that the first terms of the 
summation (i.e. i = 1) in both the numerator and de-
nominator vanish. Therefore, the second-order Aitken 
extrapolation reduces the Eigenvalue so that 2 becomes 
the dominant Eigen value. As will be shown below, the 
second dominant Eigen value of the iteration matrix, 2, 
will be equal to the ratio of the error vectors for the sec-
ond order Aitken extrapolation. 

Factoring out the 2 term in Equation (14) above will   
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result in the following expression: 

 
 

 
 

1
1

1 21 1
2 2 2 31

1 21

1
1 2

2 2 2 3
1 1 2 1

11Δ 1 1
1 11

Δ 11
1 1

1 1 1

k
Nk i ik

i iik

k
Nk k i i

k i ii

E c v c vE

E
E c v c v

 
 

    








1
     
    


   


    




         


     
    






 

 
Once 1 has been eliminated and 2 is the dominant 

Eigen value, the ratios: 
1

2 2

, 3, 4,
k k

i i i
 
 


   

   
   

5,  

being less than one, will vanish at higher k values so that 
the error norm ratios become 

 
 

 

 
 

 

1
1 11 2

2 1 2 2 2
1 11

1
1 2

2 2 2
11

2

1
2

Δ 1
1

1 1

1Δ
1

11

kk
k

k

k kk
k

k

k

E
E c v

E

E E
c vE

E

E


 













                  

 
  

 


 

Similarly, it is easy to show that for the third and 
higher order Aitken extrapolations the error vector ratios 
correspond to the ith Eigen value of the iteration matrix. 
The higher order decomposition of Eigen values through 
higher order Aitken extrapolation can be generalized as: 

 
1   for   1, 2,3, ,

i

k
i

k

E
i

E
 

   
 

 N

k

     (15) 

In effect, higher order Aitken extrapolation succes-
sively decomposes the dominant Eigen values so that the 
error terms are determined eventually by the lowest Ei-
gen value of the iteration matrix. This works for both the 
convergent and divergent Gauss-Seidel iteration. How-
ever, the procedure is best in decomposing the first two 
dominant Eigen values beyond which the decomposition 
might be slow or inexact due to the successively small 
difference in the error vectors. The examples that follow 
later for diverging Gauss-Seidel iteration illustrate this 
fact. 

2.4. Coupling of SOR Technique with  
Geometric Series Extrapolation 

Theextrapolation to the Gauss-Seidel iteration can well 
be extended to the successive over relaxation (SOR) 
method. In matrix form, the SOR iteration process is: 

       

 

11

1

1kX D L U D X

D L B

  

 





       

  
  (16) 

where  is the relaxation factor and the other terms are as 
deifned above. The iteration matrix is the coeffic
the Xk term in Equation (16) above and is given by

ient of 
: 

   1
1M D L U D               (17) 

The iteration formula for the successive over relaxa-
tion technique in terms of individual x values is given by; 

       k11 1 k kkx x b a x a x
   

     

(18) 

The acceleration factor  cannot be easily determined
in advance. It depends on the coefficient matrix A. If the 
coefficient matrix A is symmetric as well as pos
definite, the spectral radius of the iteration matrix
w

 mentioned 
ea

 
ex

t  

1, 2, ,

i i i ij j ij j
j i j iiia

i n

 
 
 

 

  

 

itive 
 M  

ill be less than one—ensuring convergence of the proc-
ess—when the  value lies between 0 and 2. 

The procedure for extrapolation of the SOR process 
using geometric series sum, based on the dominant Eigen 
value of the iteration matrix as a ratio of the geometric 
series, follows a similar process to the one

rlier. The only change is in the iteration matrix which 
is modified by the relaxation factor  while the condition 
for convergence (i.e. the dominant Eigen value of the 
iteration matrix being less than one) remains the same.  

However, it should be noted that the optimum relaxa-
tion factor  is not necessarily the same as the SOR- 
optimum when the SOR technique is combined with 
Aitken extrapolation. This is illustrated in the application

ample of the heat flow problem presented in this paper. 
The opt for the SOR techniques is so chosen that the two 
dominant Eigen-values become equal in magnitude and 
these Eigen values at the optimum  can be complex 
numbers leading possibly to the failure of extrapolation 
methods. The fact that, at the optimum value of the ac-
celeration factor , the dominant Eigen values turn out to 
be complex numbers is also shown in the heat flow ex-
ample presented in this paper. Coupling the SOR tech-
nique with the Aitken extrapolation at the exact optimum 
 is not necessary as the result is not very sensitive to the 
 value as will be shown in the heat flow example that 
follows. However, failure is not necessarily always the 
case for coupling at the optimum  value. The applica-
ion example suggests that in the case of coupling of 
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The first example below is a simple 2 × 2 equation in x 

eidel iteration starts at values distant from 
the solution, i.e. the starting values of x = 10,000 and y = 
4250. The x and y values of the eration, differences in 
consecutive steps of the iteration e  and the ratios, , are 
co

ue of the iteration ma- 
tri

 to −0.5). Therefore, the second x value, i.e., x   

OR with Aitken’s extrapolation, the  value can be 
chosen so that it is slightly less than the SOR optimum 
value enabling the coupling to be made at real Eigen 
values without the method failing to lead to convergence 
to the solution. 

3. Examples from Convergent Iterations 

3.1. Example 1 

and y values. 

2 7x y 
 

2x y 

The Gauss-S

it
i

mputed and shown in Table 1. 
It is clear that the ratios of differences in x and y val-

ues converge almost immediately to −0.50 for both the x 
and y values of the iteration. It will be later shown that, 
this value is the largest Eigen-val

x, M.  
For calculating the extrapolated x value of the itera- 

tion, x = 10,000 cannot be used as the x0 value since the 
ratio at this level (−0.26) is not sufficiently convergent 
(compared 1

= −2125.5 is taken. For this value the 
0xe  value is listed 

in Table 1 as 3186.75. For the y iteration y0 = 4250 can 
be taken as the ratio converged immediately with the first 
iteration. The  value is also taken to be −6373.5. 

0y

The x and y values are calculated as; 
e

 
0

0

3186.75
2121.5 3.000

1 1 0.5
x

x

e
x x

      
  

 

 
0

0

6373.5
4250 1.000

1 1 0.5
y

y

e
y y




    
  

 

These values as expected are exactly equal to the solu-
tion of the equations. 

To see that the ratios of alternative differences are the 
same as the largest Eigen value of the iteration matrix, 
the equation: 

2 7

2

x y

x y

 
 

 

is written as AX B ; 

2 1 7

1 1 2

x

y

     
          

 

Using the relation A = L + D + U 

2 1 0 0 2 0 0 1
; ; ;

1 1 1 0 0 1 0 0
A L D U

      
   


        
       

 
ion of the Gauss-Seidel iteration for the 2 by 2 equation. 

Consecutive Difference ei (y) Ratio ei+1/ei (x) Ratio ei+1/ei (y)

 
It can be shown that using the L, D and U matrices; 

Table 1. Computation for geometric series extrapolat

Iteration Step x y Consecutive Difference ei (x) 

0 10000.00 4250.00 −12121.50 −6373.50 −0.26 −0.50 

1 50 

10 25 106 5

−2121.50 −2123.50 3186.75 3186.75 −0.50 −0.

2 65. 3.2 −1593.38 −1593.38 −0.50 −0.50 

3 −528.13 −530.13 796.69 796.69 −0.50 −0.50 

4 268.56 266.56 −398.34 −398.34 −0.50 −0.50 

5 −129.78 −131.78 199.17 199.17 −0.50 −0.50 

6 69.39 67.39 −99.59 −99.59 −0.50 −0.50 

7 −30.20 −32.20 49.79 49.79 −0.50 −0.50 

8 19.60 17.60 −24.90 −24.90 −0.50 −0.50 

9 −5.30 −7.30 12.45 12.45 −0.50 −0.50 

10 7.15 5.15 −6.22 −6.22 −0.50 −0.50 

11 0.93 −1.07 3.11 3.11 −0.50 −0.50 

12 4.04 2.04 −1.56 −1.56 −0.50 −0.50 

13 2.48 0.48 0.78 0.78 −0.50 −0.50 

14 3.26 1.26 −0.39 −0.39   

15 2.87 0.87 −2.87 −0.87   
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  1 0 1 2

0 1 2
L D U

  
   

 
 

and that 

  1 0 1 2

0 1 2
M L D U

           
 

The Eigen values of the iteration matrix M matrix are 
solving the determinant equation; found by 

 
0 1 2

det 01
0

2

M I





 
  

 
 

  1
0         

2 

1
0  or 0.

2
      

The largest Eigen value is −0.5 and it can be seen from 
Table 1 that the ratios of consecutive differences for both 
x and y variables converge to the largest Eigen value of 
the iteration matrix. 

3.2. Ex

n vector is 
The iteration starts with the 


uss-Seidel iteration was carried out 13 times at 

which level four decimal-digit accuracy was obtained for 
th rences in x, y and z values. 
T s and ratios of 
consecutive e values. 

can be shown that the iteration matrix M is given by; 

ample 2 

The 2nd example is a 3 × 3 systems of linear equations 
given below 

3 5

2 3 4

4 2

x y z

x z

x y z

  
   
   

 

The solutio
T  ,  ,  1,  1,  1x y z   

vector:  
  T T
 , , 10, 8,5x y z    
The Ga

e ratio of consecutive diffe
able 2 shows the corresponding x, e value

It is shown in Table 2 that, with the geometric series 
extrapolation a 5 digit accuracy has been obtained for the 
solution with just 9 iterations. The normal Gauss-Seidel 
iteration requires more than 60 iterations to arrive at 5 
digit accuracy.  

For the coefficient matrix A of the given equation, it  

  1

1 1
0
 

3 3
1 10

0
6 6

8 2

M L D U


 
 
     

  

 

The Eigen values are found by solving the determinant; 

1 1
0
 
  

    

 

1 1
0

3 3
1 10

det 0 0
6 6

1 1
0

8 2

M I



 



  

     

  

 

  2 2 1
0

3 8
           

0, 0.152579324 0.81924599or       

Therefore, the largest Eigen value of the iteration ma-
trix M is  = −0.81924599 and all the ratios used above 
were approaching towards the largest Eigen value of the 
iteration matrix accurate to 5 digits as sho n in Table 2. 

3.3. Applicat

steel plate with dimension 10 × 20 cm has one of its 10 
e 

w

ion Example (Heat Flow Problem) 

Example of application of the Aitken extrapolation me- 
thod for a steady state heat flow problem involving 
Laplace equation is given below [15]. A rectangular thin 

cm edges held at 100˚C and the other three edges ar
held at 0˚C. The thermal conductivity is given as k = 0.16 
cal/sec·cm2·˚C/cm. Figure 1 shows the steel plate steady 
state conditions temperatures. 

The steady state heat flow problem is described by the 
Laplace equation: 

2 2

2 2
0

u u

x y

 
 

 
 

with the boundary conditions,  
       ,0 ,10 0, 0  and  20, 100 Cu x u x u y u y     . 
The nine-point finite difference formula of the Laplace 

equation is used for computation. is formula is sym-
bolically represented by: 

ss-  equation after 9 iterations. 

Rat

Th

 
Table 2. Results geometric series extrapolation of the Gau

Values after 9 iterations Differences in values 

Seidel iteration for the 3 by 3

ios of differences Extrapolated values 

x0 = 1.44846653 
0xe = −0.81586443 x = −0.81923923 x = 1.000001908 

y0 = 1.79206166 y = −0.81924816 y = 0.999998918 0ye  = −1.44095868 

z0 = 1.31013205 
0ze  = −0.56420578 z = −0.81924493 z = 1.000000209 
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2
, 6i ju

h
  , 0i ju   

2

1 4
1

4 20 4

1 4 1

 
 


The a he differen

1



lgebraic form of t ce equation is: 

1, 1 1, 1 1, 1 1, 12

1, 1, , 1 , 1 ,

1

6

4 4 4 4 20

i j i j i j i j

i j i j i j i j i j

u u u u
h

u u u u u

       

   

   

     0 
 

w pera-
tures at the intersection of the rectangular grid lines. 

Using a grid size of 2.5 cm, the 21 interior grid points 
shown in Figure 2 are generated. 

The coefficient matrix A of the linearized form of the 
Laplace equation AU = B by finite differencing is given 

near 
sy

itially. In addition the 
ge

h  

ions for the n del itera-
t on ed. In addition t orms of 
t s for each step o ere com- 
p eometric series  addition 
t ctors and norm ctors, the 
consecutive difference ratios, as app n of the 

between 2.1 
an

 

 

here h is the grid size and the u values are the tem

in Table 3, followed by the right hand side vector B.  
A MATLAB program was written to solve the li
stem of equations for the 21 unknown temperatures 

using the Gauss-Seidel iteration in
ometric series extrapolation of the Gauss-Seidel was 

computed by writing the corresponding program in the 
MATLAB environment. The solution vector X for eac

of the 100 iterat ormal Gauss-Sei
i was comput
he error vector

he Euclidian n
f the iteration w

uted. For the g extrapolation, in
o the solution ve  of the error ve

roximatio
maximum Eigen-value were also computed. 

Figure 3 shows a comparison of the number of itera-
tions required to arrive at more or less the same magni-
tude of the norm of the error vector for the normal 
Gauss-Seidel iteration and for the extrapolation. It is ob-
served from Figure 3 that the extrapolation procedure 
will give an acceleration factor in the range 

d 2.2. For example whereas 16 iterations are required 
for the normal Gauss-Seidel iteration giving error norm 
of 0.06+ , the geometric series extrapolation required only 
7 iterations. For the subsequently smaller error norms, 
the numbers of iterations required are in the ratio of 16/7, 
18/8, 20/9, 22/10, 24/11. It is clear that as the error norm 
gets smaller, the acceleration factor approaches a value 
of 2. 

The right hand side vector of the finite difference 
equation is given as: 

T, 0, 600, 0, 0, 0, 0, 0,0, 550   0, 0, 0, 0, 0, 0, 550, 0, 0, 0, 0B   , 0

 

Figure 1. Rectangular plate for the steady state heat flow problem with boundary conditions. 
 

 

Figure 2. Rectangular plate for the heat flow problem with interior points and boundary conditions shown. 
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Table 3. Coefficient matrix A of the finite difference form of the heat flow problem. 

−20 4 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 

4 −20 4 0 0 0 0 1 4 1 0 0 0 0 0 0 0 0 0 0 0 

0 4 −20 4 0 0 0 0 1 4 1 0 0 0 0 0 0 0 0 0 0 

0 0 4 −20 4 0 0 0 0 1 4 1 0 0 0 0 0 0 0 0 0 

0 0 0 4 −20 4 0 0 0 0 1 4 1 0 0 0 0 0 0 0 0 

0 0 0 0 4 −20 4 0 0 0 0 1 4 1 0 0 0 0 0 0 0 

0 0 0 0 0 4 −20 0 0 0 0 0 4 1 0 0 0 0 0 0 0 

4 1 0 0 0 0 0 −20 4 0 0 0 0 0 4 1 0 0 0 0 0 

1 4 1 0 0 0 0 4 −20 4 0 0 0 0 1 4 1 0 0 0 0 

0 1 4 1 0 0 0 0 4 −20 4 0 0 0 0 1 4 1 0 0 0 

0 0 1 4 1 0 0 0 0 4 −20 4 0 0 0 0 1 4 1 0 0 

0 0 0 1 4 1 0 0 0 0 4 −20 4 0 0 0 0 1 4 1 0 

0 1 

0 0 0 0 1 4 

−

−

−  

−  

−  

−

−

0 0 0 1 4 1 0 0 0 0 4 −20 4 0 0 0 0 1 4 

0 0 1 4 0 0 0 0 0 4 −20 0 0 0 0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 4 

1 4 

1 0 

1 0 0 0 

0 0 0 0 

0 4 

20 4 

20
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Figure 3. Comparison of number of iterations required for given norm of error vector between the normal Gauss-Seidel it-
eration and the geometric series extrapolation. 

 
3.4. Application Example—Double Acceleration  

Combined with the SOR Technique 

For the rectangular plate heat flow problem given above 
with 32 mesh divisions of interval  cm in 
both x and y directions forming 21 interior points for 
the Gauss-Seidel iteration, the successive over relaxa- 
tion technique (SOR) was applied in conjunction with 
the geometric series sum based Aitken’s extrapolation. 
The optimum acceleration factor  to be used in Equa-
tions (17) and (18) for rectangular regions with uniform 
boundary conditions (Drichlet conditions) is given by 

[15]. 

2.5h 
2

4

2 4
opt

c
 

 
            (19) 

The value of c in Equation (19) above is given by; 

π
cos cosc

p q

 
  
 

 

where p and q are the number of mesh divisions in the x 
and y directions. For the given problem p = 8 and q = 4,  
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so that; 

π π
cos cos 1.63098

8 4
c

    
 

 

2

4
1.267

2 4 1.63098
opt  

 
 

Therefore, the minimum number of iterations required 
is achieved by using the optimum acceleration factor  
of 1.267. This is shown in Table 4 for the SOR column 
where the minimum number of iteration of 35 was re-
quired to reach to the solution vector within 10−15 accu-
racy. The normal Gauss-Seidel process required 80 itera-
tions whereas the geometric series extrapolation needed 
47 iterations. Coupling of the SOR technique with geo-

4, a reduc-

by c  extrapo-

d on th

etween SOR and the coupled iteration is insignifi-
cant suggesting that a value  slightly less than the SOR 
optimum should be used if coupling 
interesting to note [13] that the largest Eigen values of the  

iteration matrix for the SOR technique, i.e., 

metric series extrapolation resulted in further reduction in 
the number of iterations required from 35 to 2
tio  by about 31% from the SOR result. 

The rate of reduction in number of iterations required 
oupling SOR with Aitken geometric series

n

lation is displayed in Figure 4 below for different values 
of the SOR acceleration factor,  base e values 
given in Table 4. It can be seen from the figure that sig-
nificant reduction in the number of iterations required is 
achieved for  values between 1 and opt. In fact, the 
optimum value of  for the coupled iteration (SOR + 
Aitken geometric series extrapolation) lies below the 
SOR optimum for, i.e., at  = 1.23. 

Beyond the optimum acceleration factor, the differ-
ence b

is to be made. It is 

    1
1M D L U D            

turn out to be a complex numbers at the optimum  
value and beyond (refer to Table 4 for  = 1.267 and 
above). For all the  values above the SOR optimum, the 
corresponding largest Eigen values are complex numbers 
and the spectra radii are increasing. The progressive re-
duction in largest Eigen values of the iteration matrix is 
also evident as the  value increases towards the SOR 
optimum. However, the extrapolation did not fail even if 
the dominant Eigen values were complex numbers at end 
beyond the optimum  values. 

The advantage of coupling the SOR technique with 

Gauss-Seidel iteration and as such does not involve extra 

 2 × 2 system of 
eq  

 

Aitken extrapolation is evident from  example. 
In addition, the Aitken extrapolation is based on the 

 the above

calculation except generating a geometric series sum. 
The optimum SOR value is not always predictable. 
However, Aitken’s geometric series extrapolation can 
still work with or without the use of optimum  value. 
The above example shows that for acceleration factors 
slightly greater than one, significant reduction in the 
number of iterations required were obtained when the 
SOR was coupled with extrapolation. 

4. Examples from a Divergent Gauss-Seidel  
Iteration 

4.1. A 2 × 2 Equation with Diagonally  
Non-Dominant Coefficient Matrix 

The first example below is a simple
uations with diagonally non-dominant coefficient ma- 

 

Figure 4. Comparison of number of iterations required for
geometric series extrapolation coupled with SOR. In the figu
Relaxation. 

 given norm of error vector between the SOR method and the 
re, GE = Geometric series extrapolation. SOR = Successive Over 
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Table 4. Comparison of number of iterations required between
with the SOR technique. 

w SOR + GE SOR Extra acceleration Normal

 SOR and Aitken’s geometric series extrapolation coupled 

Largest Eigen value of the SOR iteration matrix 

0.8 78 127 1.63 80 0.859905 

0.9 59 102 1.73 80 

1 47 80 1.70 80 

1.05 40 70 1.75 80 

1.1 34 62 1.82 80 

1.15 26 54 2.08 80 

1.2 25 45 

0.827175 

0.788581 

1.23 24 40 1.67 80 

1.25 26 35 1.35 80 

1.267 27 35 1.30 80 

0.760252 

0.729593 

0.691062 

0.637938 1.80 80 

Complex number 

1.24 25 37 1.48 80 Complex number 

1.3 32 37 1.16 80 Complex number 

1.4 41 48 1.17 80 Complex number 

1.6 72 76 1.06 80 Complex number 

1.8 298 168 0.56 80 Complex number 

0.59002 

0.532422 

 
trix 

The Gauss-Seidel iteration starts at values of x = 8 and 
y = 10. The x and y values of the iteration, differences in 
consecutive steps of the iteration ei and the ratios, , 
were computed and are shown in Table 5. As Table 5 
shows, the Gauss-Seidel based iteration diverges as the 

atrix. However, the Aitken ex-
trapolatio s (sho ns o
tab  in nv o t x =
y  

ng the es of econd iteration in Table 5, the 
extra y val , xs and ys culated using 
Eq tion (12 ; 

2 10 12

15 5 10

x y

x y

 
 

 

coefficient matrix is also diagonally non-dominant. This 
is also evident from the ratio of differences in x and y 
values shown in Table 5. This ratio is −15 for both x and 
y iterations and it corresponds to the dominant Eigen 
value of the iteration m

n iteration
variably co

wn in
erge t

 the last colum
he true solutions 

f the 
 1 and le)

= 1.
Usi

polated 
valu
x and 

the s
ues  are cal

ua ) as

 
0

0

10
676 1.000

1 1
x

s
x

e
x x




   
  

 
800

15


 
0

0

32
1.000

1 1
y

s
y

e
y y




    
 

 

se valu s expe d are exactly equal to the s
tion of the equations. 

4.2. A 4 × 4 Equations with Diagonally  
Non-Dominant Coefficient Matrix 

A second example of a four by four system of equations 
in which the coefficient matrix is once again diagonally 
non-dominant is presented below. 

400
2026

15

The es a cte olu-

1

2

3

20 234 123 20 783

136 56 120 125 346

123 120 76 25 127

x

x

x



420 125 145 20 481x

   
   
  
 

 


 


   
   


  
 
 

 

The normal Gauss-Seidel iteration quickly diverges as 

such. Higher order Aitken extrapolation has to be carried 
out sin
matrix fifth or-
der Aitken extrapolati ssfully achieves conver-
gence whereas the first inant Eigen values were 
successfully decomposed with and second order 
Aitken extrapolations re ly.  

The solution of the s  equations together with 
the Eigen values of the iteration matrix for the Gauss- 
Seidel iteration as obta  program are 
given in Table 6. 

Figure 5 shows the sition of error ratios for 
the five-order Aitken extr tion. Comparing the ra- 
tio of successive errors t each level of extrapola-
tion with the Eigen values of the iteration matrix given  

expected and it is not possible to reach to the solution as 

ce the two dominant Eigen values of the iteration 
 are large (16.7 and 5.77 respectively). A 

on succe
 two dom

the first 
spective
ystem of

ined using MATLAB

decompo
apola

given a
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Table 5. Gauss-Seidel iteration results for a diagonally non-dominant and diverging 2 × 2 system of equations. 

Iteration Consecutive Difference
) 

Consecutive Difference
ei (y) 

Ratio ei + 1/ei

(x) 
R Extrapolation 

(X) 
Extrapolation

(Y) Step 
x y 

ei (x
atio ei + 1/ei 

(y) 

0 8 10 −52 −144 −13.846 4.49 1 −15 

1 − −  2160 −15 1 1 

6 2026 00 −32400 −15 1 1 

−10124 −30374 162000 486000 −15 1 1 

151 45  000 −7290000 −15 1 1 

−22  −6 4 0 1.09 × 108 −15 1 1 

1876 102515626 −5.5E+08 −1.6 × 109 1 

−5.1 × 108 −1.538 × 109 8.2 × 1009 2.46 × 1010

8 7.69 ×109 2.3066 × 1010 1.2 × 1011 −3.7 

54   

5.2 × 1012     

44 134 720 −15 

2 76 −108 −15 

3 −15 

4 876 5626 −2430 −15 

5 78124 83437 3645000 −15 

6 3417 −15 −15 1 

7  −15 −15 1 1 

× 1011 −15 −15 1 1 

× 1012   

−

9 −1.2 × 1011 −3.46 × 1011 1.85 × 1012 5.

10 1.73 × 1012 5.1899 × 1012 −1.7 × 1012 −

 
Table 6. Values of solution to the four by four system of equa
program. 

Solutions of the systems of equation 

tions and Eigen values of the iteration matrix using MATLAB 

Eigen values of the iteration matrix 

X1 = 3.054225004761563 −16.700300071436452 

X2 = −2.904223059942874 

X3 = −0.661832433353327 

X4 = −4.154545738306979 

5.774221605390342 

0.085523954767930 

0 

 

 

Figure 5. Variation of rat os of the error vectors at 1st to 5th o en apolation

in ble 6 ve sho at the first dominant Ei-
gen values decom d exactly −16.7003 
and 2 = 5.7742). How  the 3 igher order 
ext ola sition slo t eventually 
reduces s tly g conve f the itera-
tion. 

F ur  ss of r f the norm
of the error vector computed from 

i rder Aitk  extr . 
 

Ta  abo ws th two 
 are pose

ever, for
(i.e. 1 = 
rd and h

rap tion the decompo ws bu
ufficien enablin rgence o  

ig e 6 shows the progre eduction o  

E B AX   

As can be seen om Ta , with e fifth ord
extrapolat the no  the erro ector eve ally 

down 0−9. It ld be recalled that t nor-
mal Gauss-Seidel iteration is rapidly diverging for this 

m of equ s. On t ther han igher order Ait-
ken extrapolation as applied in this example successfully   

 fr ble 7 th er Ait-
ken ion, rm of r v ntu
reduces  to 1  shou he 

syste ation he o d h
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F duction of the error vector for a 5th ord . 
 

Table 7. Progress of the 5th order Aitken extrapolation for the 4 ns. 

Iteration number X2 X3 rm of the error vector 

igure 6. Progress of re er Aitken extrapolation

× 4 system of equatio

X1 X4 No

1 1 1 1 1 1689.086 

2 3.044218606 −2.904617307 0.622362121 −4.153534798 8.14532 

3 3.05422335 −2.904224136 −0.66182978 −4.15448631 0.00781 

4 3.054225007 −2.904223059 −0.66183244 −4.154547438 0.000223 

5 3.054225005 −2.90422306 −0.661832433 −4.15454574 6.37 × 10−6 

6 3.054225005 −2.90422306 −0.661832433 −4.154545738 1.83 × 10−7 

7 3.054225005 2.90422306 −0.661832433 −4.154545738 5.32 × 10−9 

−

 
converges to the solution of the system of equations. 

4.3. A 6 × 6 System of Equations with a  
Diagonally Non-Dominant Coefficient  
Matrix 

A further example of diagonally non-dominant six by six 
systems of linear e





The dominant Eigen value of the Gauss-Seidel itera-
tion matrix is −75.7966. Table 8 shows the exact solu-
tions of the system of equations together with the Eigen 
values of the iteration matrix which were obtained from a 
MATLAB program. With the combination of dominant 
Eigen values shown in Table 8, the normal Gauss-Seidel 
iteration quickly diverges. However, a 4th order Aitken 
extrapolation was enough to bring the iteration to con-
vergence. 

Figure 7 shows the decomposition of the ratio of error 
vectors at each order of Aitken extrapolation. At the first 
and second order extrapolation the ratio of the errors are 
exactly equal to the first two dominant Eigen values of 
the iteration matrix (i.e., 75.7966 and 11.7041). However, 
the third and higher order ext olations decompose 

ling convergence 

The variation of the norm of the error vector with the 
number of fifth order Aitken iteratio  is given in Figure 
8.

series making it suitable for extrapolation through ex-
amination of the ratios of consecutive differences in the 
solution vector at each step of the iteration. The ratio 
belongs to the largest Eigen value of the iteration matrix. 
When sufficient digits of accuracy are obtained for the 
ratio, the process can be extrapolated towards the solu-
tion using a geometric series sum. This procedure is the 
equivalent of Aitken extrapolation for a convergent itera-
tion. A significant reduction in the number of iteration 
required is obtained through such extrapolation. Cou-  

quations is given below: slowly to successively lower ratio  enab
of the Aitken extrapolation. 


6

T

0 2000 800 0 874 657

7830 3460 1270 4810

x    

    

1

2

3

4

5

400 35 432 10 4820 0

35 600 485 30 20 2000

196 10 545 48 34 974

0 30 48 631 20 347

4820 20 34 545 768 0

x

x

x

x

  
  
  
  
  
  
  




 

7623.8 2690

x

 


 

rap
s

n
 As can be seen from the figure, the norm of the error 

vector reduces quickly with the first few iterations. 

5. Conclusions 

The Gauss-Seidel iteration in the case of a convergent 
iteration is known to follow a diminishing geometric 
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Table 8. Values of solution to the six by six system of equations and Eigen values of the iteration matrix. 

Solutions of the systems of equation Eigen values of the iteration matrix 

X1 = −0.563147393304287 −75.796638515975403 

X2 = −0.731832157439239 −11.704130560629785 

X3 = 1.857839885254053 −0.368124943597328 

X4 = −6.666186315796603 −0.027943199473836 

X5 =−1.725114498846410 −0.000000000000001 

X6 = −1.833877505834098 0 

 

 

Figu ion of ra ror vec th order olation. re 7. Variat tios of the er tors at 1st to 5  Aitken extrap
 

 

ctor for a 4th order Aitken extrapolation. 

less than the optimum as the heat flow example pres

Figure 8. Progress of reduction of the error ve
 

pling of the successive over relaxation technique with 
Aitken’s extrapolation is possible with further reduction 
in iteration while employing relaxation factors not nec-
es

coupling with SOR technique is done at  value typically 

ented 
.  

ergent Gauss-Seidel iterations the ap-
sarily restricted the optimum value which may be dif-

ficult to predict in advance for some types of equations.  
Coupling of extrapolation with SOR technique is nor-

mally not always possible at the optimum acceleration 
factor w because the largest Eigen value at this optimum 
value can turn out to be a complex number. Therefore, 

in this paper showed
In the case of div

plication of Aitken extrapolation formula is made possi-
ble and in many cases the extrapolation at each level of 
the Gauss-Seidel iteration indicates convergence towards 
the solution. Higher order Aitken extrapolation succes-
sively decomposes the dominant Eigen values of the it-
eration matrix. In doing so, the iteration is successively 
transformed from an expanding (divergent) form to a 
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stable convergent iteration. At each stage of the applica-
tion of higher order Aitken extrapolation, the ratio of the 
error vectors (differences in successive x values) ap-
proaches the dominant Eigen value for that order of ex-
trapolation
an interesting possibility of stabilizing, i.e., converting a 
divergent fix d  convergent 
iteration. In gene late the solution 
from divergent a s an interesting 
possibility that exp e of application 
of fixed point iteratio hampered 
by problems of di
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