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ABSTRACT 

On the example of tetraantraquinoporphyrazines—potential photosensitizers for photodynamic therapy, thermodynamic 
approach to the choice of exogenous transport system was demonstrated. By means of isothermal titration calorimetry 
and electron absorption spectroscopy, the state of TAP in aqueous solutions was studied. The possibility of aggregation 
equilibrium displacement due to the pyridine adding was evaluated. 
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1. Introduction 

Metal complexes of tetraantraquinoporphyrazines (TAP) 
are perspective substances for practical use. High ther- 
modynamic stability, kinetic stability and cromophore 
properties are provided by multicircuit conjugate aro- 
matic system [1]. Presence of peripheral substitutes pro- 
vides water solubility and allow using TAP as catalysts, 
photo- and chemosensors and photosensitizers. All prac- 
tically useful properties of TAP depend from tendency of 
TAP to aggregate in solutions [2]. Self-aggregation 
causes tenfold decrease of biochemical, photo- and cata- 
lytic activity of macroheterocycles. That’s why it is nec- 
essary to establish the influence of peripheral substitute’s 
nature to TAP’s aggregation tendency [3]. Investigations 
devoted to revelation of regulation mechanism for TAP 
state in solutions are very actual. For example, it can be 
the complex formation with neutral molecular ligands. 
Tetraantraquinoporphyrazines deserve attention as poten- 
tial photosensitizers because of the presence of two types 
of macrocyclic systems (anthraquinon and porphyrine) 
providing expansion of photoactivation range from UV 
to long-wave region of spectrum. From the other side, the 
widening of aromatic system from porphyrazines to 
tetraantraquinoporphyrazines causes intensification of 
hydrophobic behavior of macroheterocycles and in- 
creases the tendency of macrocycles to self-aggregation 
[4]. Transport systems are necessary for using TAP as 

photosensitizers for photodynamic therapy of cancer. 
Synthetic and natural polymers can be used as carrier 
agents [5]. That’s why information about complex for- 
mation between TAP metal complexes and electron-donor 
ligands is necessary for the design of transport system.  

The aim of this work is to determine the thermody- 
namic characteristics of TAP dimers dissociation induced 
by molecular complex formation of TAP with electron- 
donor ligands. 

2. Experimental 

Sodium salts of tetraantraquinoporphyrazines (Figure 1) 
were synthesizes and purified according to standard pro- 
cedures [6].  

Crystalline samples were dried over vacuum at 343 - 
353 K to constant mass. The grade of obtained sub- 
stances was examined by means of elemental analysis 
and electron absorption spectroscopy. Experimental data 
showed that grade of substances is 99.95%. Very-high- 
purity pyridine was kept above NaOH during 1 - 2 days 
with following fractional distillation. Solutions were pre- 
pared using double distillated deionized water.  

In order to evaluate thermodynamic parameters of 
complex formation we used isothermal titration calo- 
rimetry. Calorimetric measurements were performed 
with a differential automatic titration calorimeter [7]. 
Experimental data treatment and thermodynamic parame-  
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Figure 1. Molecule of tetraantraquinoporphyrazine (M = 
AlOH, Co; R = COONa, SO3Na). 
 
ters calculation techniques are minutely described in [8- 
10]. We took into account the following equilibriums for 
titration pyridine solution into solution of TAP:  
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where        2n n nn
librium constants of TAP, TAP in dimer, molecular com-  

TAP , TAP , TAP ,L L     are equi-  

plex and pyridine correspondingly;     
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0 0
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are initial concentrations of TAP and pyridine corre- 
spondingly after adding of n-th doze of titrant, n—step of 
titration. 

The energy evolved after the n-th injection of titrant 
can be determined from: 

   1 2TAP TAPn n nn
Q H V H V L    

n
,    (5) 

where  is the volume of reaction mass. nV

Values of 1 2 1 2, , ,K K H H   were determined by al- 
ternating-variable descent method combined with least- 
squares method. Optimization processes was stopped 
when the minimum of the function  

    2
expn nQ Q cal   was reached, Qn(cal) is calcu- 

lated Qn(exp) is experimentally determined values of 
thermal effect. The descent method is unbalanced for 
disordered relief having some local extremums. For 
global minimum founding we used the random search. 
For all studied systems in the field of К1, К2, Н1, Н2 
having physical meaning the local minimum was found. 
Thereby it was confirmed that the data obtained via this 
method are reliable. Independence of thermodynamic 
parameters on TAP concentration from 10−7 M to 10−5 M 
is an evidence of existence of TAP mainly in monomers 
and dimers in mentioned concentration range. 

Electron absorption spectra of solutions of tetraan- 
traquinoporphyrazine and phthalocyanine at additions of 
BSA were registered using a spectrometer Unico 2800 
(United Products and Instruments, Inc., USA) in the 
range of 200 - 800 nm. The 10 mm quartz cuvettes are 
used.  

3. Results and Discussion 

UV-VIS spectrum of HOAlTAP(COONa)4 is shown on 
Figure 2.  

Concentration dependence of TAP solution absorbance 
showed that Lambert law did not perform. Dimerization 
of tetraantraquinoporphyrazines causes the decrease of 
Q-band intensivity (690 nm), its widening and blue shift. 
Such spectral changes are typical for π-π—dimerization. 
It is obviously that high-order associates’ formation in 
the case of hydroxyaluminium tetraantraquinoporphy- 
razines is impossible due to steric factor (Figure 3). 

Adding of pyridine to HOAlTAP (PhSO3Na)4 solution 
results in red-shift of Q-band, its widening and increase 
intensity while absorbance at 640 nm decreased. Titra- 
tion is isobestic and indicative of the shift of the dim- 
mer-monomer equilibrium to the monomer species. 

According to X-ray data [11,12] the distance between 
π-π-interacting molecules is no more than 3 - 4 A. π-π- 
dimers of hydroxoaluminium tetraantraquinoporphyrazi- 
nes can’t form complexes with pyridine because of axial 
OH-groups on the outer side of dimer and too small in- 
ternal space. Consequently the equilibrium: 

 2
HOAlTAP 2  HOAlTAP         (6) 

will be shifted to the right according to Le Chatelier 
principle due to the complex formation process: 

HOAlTAP + Py  HOAlTAP Py       (7) 

Equilibrium (6) significantly depends on anionic-cati- 
onic interactions [13]. That’s why all calorimetric and  
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Figure 2. Electron absorption spectra of HOAlTAP (COONa)4 
in solution (0.05 M NaCl) during pyridine addition (0 - 0.09 
M). 
 

 

Figure 3. Layout view of TAP dimers in aqueous solutions. 
 
spectral studies were carried out in aqueous solutions us- 
ing NaCl as base electrolyte (0.05 M). Use of NaCl as 
base electrolyte is necessary to eliminate salt effect. As at 
high total ion concentrations changes of activity coeffi- 
cients of TAP vs the concentrations are not very strong, 
an addition of the excess of the salt results in constant 
activity coefficients [14]. Complex formation of TAP 
with pyridine causes decrease of thermodynamic stability 
of dimers. 

Thermodynamic parameters of dimer dissociation of 
hydroxoaluminium tetraantraquinoporphyrazines depend 
on peripheral substitute’s nature (Table 1).  

In water-pyridine solution dimers of HOAlTAP 
(SO3Na)4 are more stable than dimers of HOAlTAP 
(COONa)4. It can be explained by higher proton acceptor 
and nucleophilic ability of COO− group in compare with 

3 . Electrostatic repulsion efficiency between simi- 
larly charged substitutes in the case of HOAlTAP 
(COONa)4 decrease and causes rising of dimers stability.  

SO

Thermodynamic parameters of TAP complex forma- 
tion with pyridine are totally indifferent to nature of pe- 
ripherial substitutes. It can be explained by spatial re- 
moteness of substitutes from reaction site. It is well 
known that inductive effect of heteroatom fully decay in 
3 - 4 carbon bonds. From the other side the substitute can 
effect on reaction site by means of mesomeric effect and 
field effect. According to [15] COO− group possesses 
higher negative inductive effect than 3  group. Inde- 
pendence of thermodynamic parameters from nature of  

SO

peripherial substitutes shows that tetraantraquinoporphy- 
razines are multicircuit conjugated systems such as 
phthalocyanines.  

Obtained thermodynamic parameters interindependent 
properties (1) and (2) allows to calculate equilibrium 
concentration of dimers in solution for each step of titra- 
tion. It also allows to determine quantities of pyridine 
required for equilibrium displacement to monomer spe- 
cies. All calculations were performed for the same con- 
centrations of macrocycles (1.2 × 10−4 M).  

The relationship of TAP dimers percentage from pyri- 
dine quantities for HOAlTAP (SO3Na)4 is close to expo- 
nential (Figure 4).  

Adding of more than 150-fold molar excess of pyri- 
dine into TAP solution insignificantly reflected to TAP 
dimers percentage. It is fundamentally important because 
tetraantraquinoporphyrazines are insoluble in pure pyri- 
dine and existence of high excess of pyridine in solution 
is undesirable.  

4. Conclusion 

The dependence between TAP dimer percentage and 
molar ratio Py/TAP (Figure 4) shows that pyridine is in- 
effective as complexing reagent for HOAlTAP (COONa)4. 
In the case of HOAlTAP (COONa)4, introduction of aro- 
matic amine into carrier system is unreasonable. On the 
contrary, in the case of HOAlTAP (SO3Na)4, pyridine is 
effective as complexing reagent and the system contains  
 
Table 1. Thermodynamic parameters of equilibriums (6) 
and (7) in aqueous solution (0.05 M NaCl) at 298.15 K. 

TAP К1 
Н1,

kJ·mol−1
S1, 

J·mol−1·K−1 
К2 

Н2, 
kJ·mol−1

S2, 
J·mol−1·K−1

HOAlTAP 
(SO3Na)4

3.56 × 10−4 58.49 196 130 −29.54 −535 

HOAlTAP 
(COONa)4

2.25 × 10−5 69.91 234 105 −30.19 −454 
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Figure 4. The dependence of TAP dimers percentage from 
quantities of added pyridine (molar ratio TAP/Py). 
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pyridine N-atom which can be used as the carrier system. 
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